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In this paper, the boundary behaviour of a reproducing
kernel, introduced by Henkin, for strictly pseudoconvex domains
is studied. As an application, an improved version of a known
result about generators of certain maximal ideals is given.

The boundary behaviour of the Bergmann kernel B(z, ¢{) for a
strictly pseudoconvex domain has been studied by Bergmann [1] and
Hormander [S]. Among other things, they determine the rate at which
B(z,z) goes to infinity as z approaches a boundary point of the
domain. Another type of reproducing kernel has been introduced by
Henkin [3] for bounded strictly pseudoconvex domains D, in
C". Henkin’s kernel is of the form K({, z)/®"({, z), where K and ® are
holomorphic in a neighborhood of D for each ¢ in 8D, the boundary of
D. The denominator ® has the properties that ®({, ) =0 forall { € 4D
and that ®({, z) #0 if z € D\{¢}. For z near ¢, ® is given explicitly (up
to a nonvanishing factor) in terms of the plurisubharmonic function p
that defines the domain D. Precise statements about the way (¢, z)
approaches zero as z approaches { from inside D are given in Henkin’s
paper [3]. We show that this determines the behaviour of the kernel
K/®" by showing that K(¢, ) #0.

It has been proven in [4], [6], [7] and [9], that if f is in the space
A (D) of functions continuous on D and holomorphic in D and if a € D
then there exist functions g, - -, g. € A(D) such that

f(z)—f(a)=§ (z, - a)g,(2).

This is a solution to a problem originally posed by Gleason [2] for the unit
ball in C". Using Henkin’s integral formula and our result on the
behaviour of Henkin’s kernel we can improve the result just stated in two
ways. Firstly, we show that the g, can be chosen in such a way that the
association between f and the n-tuple of functions (g, - - -, g,) is linear,
and secondly we show that the g may be also chosen to depend
analytically on a as well as on z.

1. Notation. D will always denote a bounded strictly
pseudoconvex domain in C" defined as D ={z:p(z)<0}, where p is
defined and strictly plurisubharmonic in a neighborhood U of D, such
that the gradient of p is not zero on the boundary of D. For € >0 we let
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D.={z€ U:p(z)<e} and if V is.a neighborhood of 4D we let
V.=V ND,. Wedenote by C*(V, H(D.)) the space of C* functions
on V. with values in the space H(D.) of functions holomorphic in
D.. In other words, functions that are C* on V, X D, and holomorphic
in D, for each fixed { € V.. Finally, we let S, , ={{:|{—z|<8}.

2. The work of Henkin [3], modified slightly by Qvrelid [8], shows
that if D has a C® boundary then there are functions K and ® and a
neighborhood V of 4D and an e >0 such that:

21. (a KeC\(V,H(D.)) and
® € CY(V, H(D.)).
(b) (L, z) #0 if z € D\{Z}.

22. If fe A(D) then

f(z)=LD f(()anié’—ld (0), for all z € D,

where do is 2n — 1 dimensional volume measure on dD.

2.3. There are constants y, 8,>0 such that for all z€ D and
0<8 <8,

{~z _ 1
faonsm5 %’E—Z‘,ﬂ do’(g)z ‘)’6 lOg 5

THEOREM A. Suppose K and ® satisfy properties 2.1, 2.2, and 2.3,
then K({o, (o) #0 for any ¢, € aD.

Proof. We assume that K({,, {,) =0 and arrive at a contradiction. If
K (o, £o) were zero then, from property 2.1, there would be a constant M
such that

(a) IK(g’ fo)’ = M’ &= {OI’

(b) lK({,Z)— K(§0>z)l = MI{— gOl,

© K@ 2) =Mz - &l
Now it follows from (a) and 2.3 that

K@ 4w
. (2, 4)] 7)<

We will show that if f € A (D), then
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24 f@= [ 1) 3558 do @),

Due to the remark just made, the right hand side of 2.4 is well-
defined. To prove 2.4 we show that as z approaches ¢, in a certain way,
the expression,

2.5. f(z)—fw f(§)§,,(‘(%% do({)

converges to 0. Now by 2.2 we have,

0|, 105G g 0=, 10 (oG 5 ) 40

_ KoL) K(Lz)
= f 0 [@”(g: ) (¢ z)] do ()

K({, 50) _ K(;Q o
* f f(&) [@“(4 L) (L z)] do ()

Now for any fixed 6 >0, the first integral above approaches zero as z
approaches {,, since we can take the limit under the integral sign. As for
the second integral, its absolute value is not greater than

Lm%,& @ |qI><n“(L—ni5,?])| d0(£)+f.am‘0.s (D) '%—((%% do(?).

Now by (a) and 2.3, the first of these integrals is majorized by
M| fll.y81log1/6. To estimate the second of these integrals we let z
approach {, along the inward normal to dD. Now if z lies on this
normal and if é is sufficiently small then there is a constant C such that
|z-8|=Clz—-¢| and [{ - ¢|=C|z—¢| as long as |z — | < & and
[{— 4] <8 and hence |K({z)|=|K(z)— K(&o,2)|+|K (L 2)|=
M|{ =G|+ M|z = 4| =2MC|¢ - z|. So with these assumptions,

K( z - {—z
| ) U—ﬁ,@ Ghjaro=iname| =zl o @)

=2MC |fll.y26 logss. if 25 < 3.

So now if we first choose & sufficiently small and then let z approach ¢,
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along the inward normal we see that 2.5 approaches zero. This proves
2.4. Now it is easy to finish the proof of the theorem. We take
f€ A(D)such that f(£,)=1and|f(¢)|<1for { € D\{{,}. Applying2.4
to fN we get

1= @)= [ 10 g do @)

However the right hand side approaches zero, by the bounded
convergence theorem. This contradiction completes the proof of
Theorem A.

We now apply Theorem A to obtain

THEOREM B. Suppose D is a bounded strictly pseudoconvex domain
in C" with a C* boundary. There is a linear mapping T: A(D)—

H(D % D)" such that (Tf), € C[(D X D\{(z, z): z € dD}] for every f €
A (D) and such that

f(2) = f(w) = 2 (2. = @) (Tf). (2, w).

Proof. From Henkin’s integral formula we see that

o)~ fw) = [ fo) TLeLELE N T LDKE0) 4o )

f L({z,0)=P"({w)K(,z)-P"({2)K(,w), then LE€ECY(V,
H(D. x D.)) and L(¢, z, z) =0, so by the argument given as a remark on
page 148 of [8] there are functions L, € C'(V,,, H(D. X D.)) (for some
€' < €) such that

L 2 0)= 2 (zi — @) Li({, 2, ).

Hence, we have

f)- @)= 3 2= o) [ 1) g sz 400

So it remains to show that

fla0)= [ 1) grg St ay 400
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satisfies the statement of the theorem. Certainly f, € H(D X D) so we
need only show that f, € C[(D x D)\{(z, z): z € 3D}]. Suppose (z, w) €
D XD and (z,w)— ({, wo) € D x D\{(z,z):z € dD}. We wish to
show that f,(z, w) has a limit. We will assume that {, € dD and w, € 4D
and {, # w,. The other possibilities are treated in a similar fashion (and
are easier). By Theorem A, K({, &) #0, and K(w,, w,) #0. Hence
there is a 8 >0 such that if |z —{|=28 and |{—{|=28 then
K(z,0)#0,and if |z — w)| =28 and | { — wy| =28 then K(z,{)#0. We
also assume 48 <|{,— w,|. Let ¢(z)be a C* function that is identically
equal to 1 if |z|= §* and identically 0 if |z|= (26)’. Now we write

_ Li({’ 7(‘)) (‘ _§D K(ga )
feo)=| 1) Lrolelz LD ELI) o)

Lz () K(lw)
+] @ K o) (L2)  (w) ¢

+[ 10 g S - ez - 2P~ el - Pl o)

for |z —¢|<8 and |w— w,/ <8 The third term has a limit as
(z, @)= (Lo, wo) since we may take the limit under the integral sign. We
write the first term as

26, [ rox 0 552 ar @),

where all we need to know about y is that it is continuous on
dD X D x S, 5 and that there is a constant C such that Ix(& 2z, w)—
x({,z,w)=C|{—-{], for all z,w, ¢, and ¢’. Now we just imitate the
proof of Lemma 4.3 of [3] to see that 2.6 has a limit as
(z, w)— (L, wy). The second term is handled in the same way as the
first. This completes the proof.

Note that if

f)=f@) =3 @ - w)g(z @) then ZL(z)=g(2),

so so that g need not be in A(D X D) when f€ A(D).
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