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Let S and T denote complete separable metric spaces. Let
P(S) denote the collection of probability measures on S and
equip P(S) with the weak topology. If ¢: S — T is continuous
and onto, then ¢ induces a weakly continuous mapping ¢° of
P(S)onto P(T). We show that ¢° is open in the weak topology
it and only if ¢ is open. However, ¢° is always open in the
norm topology. Let K be a totally disconnected compact metric
space and let S denote the set of continuous mappings of K into
S. Then there exists a natural mapping 7 of P(S*) into
P(S)¢. Blumenthal and Corson have shown that = is
onto. We establish that 77 is an open mapping in the weak
topology.

1. Introduction. Let S beacomplete separable metric space
and let C(S) denote the algebra of bounded continuous real-valued
functions on S. Let M(S) denote the collection of Borel measures on S
which have finite total variation ||u|. Given f€ C(S) and p € M(s),

set w(f) = f f(s)du(s). The weak topology on M(S) is the topology on

M(S) induced by C(S). Thus, a neighborhood system at u in M(S) is
given by sets of the form

No(usfio o f)={vEM(S): (0 —v)f|<efori=1,---, n}
where € >0 and f,,-- -, f, € C(S).

Let M*(S) denote the non-negative measures and let P(S) denote the
probability measures in M(S).

Our goal is to establish open mapping theorems for some naturally
induced mappings between sets of probability measures. Let ¢ be a
continuous map of S onto 'T where § and T are complete separable
metric spaces. Define ¢ M(S)— M(T) by

¢°u(g)=pn(go¢) for each g € C(T).

A result of P. A. Meyer [9, p. 126] shows that ¢° maps P(S) onto
P(T). We show that ¢°is open in the weak topology if and only if ¢ is
open.

Let K be a totally disconnected compact metric space and let $*
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denote the collection of continuous maps of K into S. Given f, g € S,
set D(f,g)=max{d(f(x),g(x)): x € K} where d is the metric on
S. Then S* is a complete separable metric space with respect to
D. Given f € C(S) and x € K, we may define a mapping f,: S* - R by
f.(g)=f(g(x)) for each g&S* Now define a mapping m:
P(S¥)— P(S)* by

(7). (f) = u(f.) for each f € C(S).

One easily checks that x — (7 ), is continuous in the weak topology and
so one may consider the family (7u ), as a continuous family of marginals
associated with u. Blumenthal and Corson [1] have shown that 7 maps
P(S¥) onto P(S)*. We show that 7 is open in the weak topology.

2. The mapping ¢°: P(S)— P(T). Other than the in-
terior mapping principle for F-spaces [6, p. 55] and its generalizations,
there are few results in functional analysis on openness of
mappings. For example, P. Cohen [4] has shown that if T: ¢, X ¢,— ¢,
is a continuous bilinear mapping which is onto, then T need not be open
at (0,0). If Q is a compact subset of a Banach space B and if the
mapping (x, y)—i(x, y) is open on Q X Q, then the set ex () of extreme
points of (1 is closed. Our example below shows that the converse,
which was left unresolved by Vesterstrom [10, p. 293], is
false. However, convex averaging is open on P(S) and this plays a
crucial role in our results.

ExampLE 2.1. There exists a compact convex subset () of R* such
that the extreme points of ) are closed and the midpoint mapping
(x,y)—3(x,y)isnot open on 2 x Q. Let Q be the convex hull of (0, 1, 0,
0) and (0,— 1, 0, 0) and (x, 0, 1, x*) and (x, 0,— 1, x*) for 0= x = 1. The
extreme points of  are the two points and two arcs described
above. But, the midpoint mapping is not open since (0, 1, 0, 0) +(0, — 1,
0,0)=(0, 0, 0, 0) and u, v € Q with 3(u + v)=(x, 0, 0, x*) where x# 0
implies u and v are of the form (x, 0, A, x°) where — 1= =1.

Let S be a complete separable metric space. We recall here some
topological properties of P(S) and M*(S). Every measure u in P(S) is
tight [8, p. 32], i.e., given € >0, there is a compact subset F of S such that
n(S\F)<e. The weak topology on M*(S) is topologically complete.
Thus, we may consider M*(S) and P(S) as complete separable metric
spaces. By embedding S is a countable product of unit intervals and
using the fact that the unit ball in space of uniformly continuous functions
on a totally bounded metric space is separable, we have the following
result [8, p. 47].
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LEMMA 2.2. Let S be a complete separable metric space. There
exist continuous real-valued functions g, g,,- - - on S such that (g, [-=1
for n =1,2,--- and such that the metric p defined on M*(S) by

p(u )= 2 27 (1~ ).

is equivalent to the weak topology on M*(S).

We now show that convex averaging is open on M*(S). But, first
we establish a result on selecting weakly convergent measures. We
write w, —> u if (u,);-, converges to u in the weak topology.

ProposiTION 2.3, Let w,, u € M*(S) where u, > . Assume 0=
v=u. Then there exists 0=v, = u, forn=1,2,--- such that v, —> v.

Proof. Given € >0, there exists g continuous on S such that
0=g=1and p(gu, v)<e. Hence, we may choose f, continuous on S
such that 0=f, =1 and f,u —v. But fu, — f,u as k > . So there
exist n; = n, =--- such that n, > and v, = f, u, — v.

THEOREM 2.4. Let S be a complete separable metric space. Let
0<A<1. The mapping (u,v)—Apn +(1—2A)v is open on M*(S)X
M™(S) and is open on P(S)Xx P(S).

Proof. Fix wu, vEM'(S) and set w =Au +(1—A)r. Assume
w, = o where w, € M*(S). Since Ap = o, there exist w, € M*(S) such
that u, > Apn and 0= u, = w,. Hence,

1 1
I\ Mn ™ L and T——)\(w"_'u")_—) v.

Thus, the mapping (u, v)— Aun + (1 —A)v is an open map of M*(S) X
M*(S) onto M"(S). One readily obtains that convex averaging is an
open map of P(S)x P(S) onto P(S).

Let S and T be complete separable metric spaces and let ¢: S— T
be continuous and onto. Then ¢ induces a mapping ¢°: M(S)— M(T)
defined by ¢°u(g)=pu(geo¢) for each g € C(T). As noted in §1, ¢°
maps P(S) onto P(T). We examine the openness of ¢° on P(S) with
respect to the weak topology and the norm topology.

THEOREM 2.5. Let S and T be complete separable metric spaces and
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let o: S — T be continuous and onto. Then ¢ is open if and only if ¢°:
P(S)— P(T) is open with respect to the weak topology.

Proof. Assume ¢" P(S)—P(T) is open in the weak
topology. Fix s,€ S and set t,= ¢(s;). Assume ¢ is not open at
s,. Then there exist t, —t, and € >0 such that d(s,, ¢ '(t.))= € for
n=1,2,---. Choose f& C(S) such that f(s))=1 and f=0 on
{s€S:d(s,s0)=€}. Since U ={u € P(S): |[(n —8,)f| <€} is a weak
neighborhood of 8,, there exist N and u, € U such that ¢’u, = §, for
n=N. But w,(f)=0 since ¢ '(t,) supports u, and so wu,Z U, a
contradiction.

Assume ¢: S— T is open. Fix pu € P(S). Let €>0 and let
fi,- - f.: S—[0,1] be continuous. Set ¥V ={v € P(S): [(n —v)fi|<e

fori=1,---,n}. We must show that ¢°¥" is a neighborhood of ¢°u in
P(T). Choose po, 1, +, ty € P(S) and Ay, A\, -+ -, A, >0 such that

(1) p=ZApy,

(2) A¢<e€ and each of u,, -, u, has compact support

(3) the oscillation of f, on the support of w, is less than €/2 for each
i=1,--,nandj=1,--- m.

Set ¥, ={vE€P(S): |(v—p)f.|<e for i=1,--- n}. Clearly, we have
AP(S)+ AV + -+ A, 7, C V. Weclaim that ¢°¥, is a weak neigh-
borhood of ¢’u,. For each j =1, -+, m choose an open subset U, of S
containing the support of u, such that the oscillations of f,, -+, f, on U,
are less than €/2. Then V, = ¢ (U,) is an open subset of T containing

the support of v, = ¢°u,. It suffices to show that v € ¢°(7)) if v(V,)>
1-€/2 and v € P(T). Choose B, € P(T) and B € P(V,) such that

€

V=§BO+<1—§>B.

Choose ao € P(S) and a € P(U,) such that ¢°a,= 3, and ¢’a = B. We
have

and fori=1,---,n

[ -5 (1-5) ] | =5 160 - alfl 41w, - )t <

But "V D AP(T)+ A0V + -+ - + A¢°Y,, and so by Theorem 2.4, ¢°V
is a weak neighborhood of ¢‘wu.
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We next show that the mapping ¢° is open in the norm topology.

THEOREM 2.6. Let S and T be complete separable metric spaces and
let ¢ : S — T be continuous and onto. Then ¢°: M*(S)— M*(T) is norm
open and hence, ¢°: P(S)— P(T) is norm open.

Proof. Fix u € M*(S) and set v = ¢°u. Assume v, — v in norm
where v, € M*(T). Choose compact subsets K,CK,C--- of § such
that u(K,)— n(S). Set a, = u|K, and B, = ¢°a,. Then B, has com-
pact support and B, = v. Also, v, A B,— B. as k =>». Hence, there
exist 1 =n,=n,=--- such that n, > and y, A B, — v. As shown in
[5, Lemma 2.2], there exist 0 = u, = a,, satisfying p°u, = v A B.. Then
w—u in norm. Choose 1y, € M*(S) such that % =
v — (v A By). Then ||y, ||—0 and so u, + y. — u. Hence, ¢’ is open
in the norm topology at pu.

REMARK 2.7. The proof of the openness of ¢’ in the weak topol-
ogy seems to break into the two parts (1) ¢’ is open at the extreme points
of P(S) and (2) convex averaging is open on P(T). There should be a
general theorem on the openness of affine maps between convex subsets
equipped with a metric which would yield Theorem 2.5.

CoNJECTURE. Let E and F be Banach spaces and let (E), and (F),
denote the closed unit ball in E and F respectively. Let T: E— F be
continuous and linear. If T maps (E), onto (F), and if (E), is strictly
convex, then T is an open map of (E), onto (F),.

Note. Example 2.1 resolves a conjecture of Clausing and Magerl in
[3, p. 76]. S. M. Chang [2] has extended Theorem 2.4 to averaging of
continuous collections of probability measures.

3. The mapping 7: P(S*)— P(S)*. Let S be a com-
plete separable metric space and let K be a totally disconnected compact
metric space. Let $¥ denote the collection of continuous maps of K
into S. We equip S¥ with the metric D(f, g)= max{d(f(x), g(x)):
x € K} where d is the metric on S. Thus S* is a complete separable
metric space. The space P(S) can be equipped with a metric which is
equivalent to the weak topology and with respect to which P(S) is
complete and separable. Thus, the space P(S)* denotes the continuous
maps of K into P(S) and P(S)" is equipped with the topology of uniform
convergence in the weak topology. There is a natural mapping of P(S*)
into P(S)*. Let u € P(S¥) and x € K. If U is a Borel subset of S,
then u,(U)=un({g € S*: g(x) € U}) defines a probability measure pu,
on S. One recognizes the family (u.).cx as a family of marginals
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associated with u. The measure p, may alternately be defined as
follows. Given f&€ C(S) and x € K, define f,: S*—>R by f.(g)=
f(g(x)). Ifu €P(S¥)and x € K, then u.(f) = n(f.). This latter equa-
tion shows that the mapping x— pu, is continuous in the weak
topology. Weset mu(x)= u,. Blumenthal and Corson [1] have shown
that = maps P(S¥) onto P(S)*. Although there is no natural way of
pulling back elements of P(S)* to P(S*), we shall prove that 7 is an
open mapping. We begin by extending Prop. 2.3 to continuous collec-
tions of nonnegative measures.

LEmmA 3.1. Let S be a complete separable metric space and let X be
a compact Hausdorff space. Let 0< A <1 and let ®,¥: X — P(S) be
continuous. Assume ®, 2 AV, foreachx€ X. If ®,: X— P(S) and
®, — © uniformly in the weak topology, then there exist continuous maps
V,: X— P(S) such that &, =z AV, forn=1,2,--- and ¥,—>V uni-
formly in the weak topology.

Proof. By Lemma 2.2, we may choose continuous maps g, g, - - - of
S into [0,1] such that the metric p on P(S) defined by p(u,v)=
227" |(u — v)g.| is equivalent to the weak topology on P(S). If f€
C*(S) and if u € P(S), then we define a nonnegative measure f-u on S
by (f - n)g = n(fg) for each g € C(S). Foreach p=1,2,--- choose a
partition of unity ff,--- ff for S such that each of g, ---, g, has
oscillation less than 1/p on the support of f? for i =1,---,n, Pick
€, >0 satisfying pe,n, =1. Given A: X — P(S), define m,(A): X —
M~*(S) by

m,(A), = >, ap(%%)f ‘A

Recall that f7 - A, (g)= A.(f’g) for each g € C(S).
Setting f, = f* and € = ¢,, we have

(@) (8)= 3 G (rrisy (@) (fge)

where x € X and 1=k =p. Let a%(B}) denote the minimum (max-
imum) of g, over the support of f. Then B% —a* <1/p. Also,

> V()= V. (g)= D BAY.(f).

Choose M such that
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1 {6)] -+ € 1
1 ——< 22 <1+—= for m=M.
p O +e) p

For m z M and 1 =k = p, we have

T (P ), (8) — W (8)

=3 Fo(k B @) ()= S at ()

= (%+ Bt - at . (f)

2
<=
p

On the other hand, for m =Z M and 1= k = p, we have

7 (P ) (8) = V(1)

23§ (s @1 @ ()= S BHYL()

=3 G @@ (- BV

=S (et (1-5)- 5 B0 -3,

2 1 1< 1>
=S —=_—=(24+—).
p Ap p A

Hence, for mz M, |[m(P.)-¥](g)x=QC+1A)/p if 1=k=
p. Thus, we may choose m, < m,< --- such that ||[7,(®,)— V] (&)=
2+1/A)piftk=pandm=m, SettingV¥, =7,(P,)ifm,=m<m,,
and ¥, =®, if m <m,, we have ¥, — V¥ uniformly in the weak
topology and also, A¥, =®,. One may now modify the ¥, so that
¥,.: X — P(S) and at the same time preserve the uniform convergence to
¥ and the inequality AV, =®,,.
We next show that convex averaging is open on P(S)*.

LEmmA 3.2. Let X be a compact Hausdorff space and assume
0<A<1. Let ®,¥: X — P(S) be continuous. If U and V" are neigh-
borhoods of ® and V¥ in P(S)* respectively, then AU +(1—A)V is a
neighborhood of A®+ (1— A ).

Proof. Let A, > A®+(1-A)¥ where A,: X — P(S) is continu-
ous. Then there exist ®,: X — P(S) such that &, —>® and AP, =
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A.. Then1/1—A)(A, —AP,)—>¥. Hence, A% + (1 - A)¥ is a neigh-
borhood of AP+ (1 - A)WP.

We are now prepared to show that the “marginal” mapping 7 of
P(S¥)onto P(S)¥ is an open map. In [5], this result was proved for the
case S is compact and K is a two point space.

THEOREM 3.3. Let S be a complete separable metric space and let K
be a totally disconnected compact metric space. Then 7: P(S*)— P(S)¥
is open in the weak topology.

Proof. Let w € P(S*). Fix continuous maps G,,---,G, of S¥
into [0,»). Set U ={v € P(S*):|(v — )G |<lforj=1,---,m}. We
need to show that 7% is a neighborhood of mu. There exist
Pos s """y i € P(8%), Aoy Ay, A, >0, >0 and f,, -+, f, € S¥ such
that w =2 Au, and (1) the support of u, is a compact subset of
N;(fy={f€ S*: D(f, f) < 6} and (2) the oscillation of G, is less than 1/2
over N, (f,) for each i=1,---,n and j=1,---,m. Now set U =
{vEP(S*):|(v—w)G/|<1 for j=1,---,m} for i=1,---,n. Then
MP(S)+ XU+ -+ -+ AU, CU By Lemma 3.2, it remains to verify
that 79, is a neighborhood of wu,. Let M be an upper bound for
Gy, -+, G, Choose x,,---,x, and compact subsets K;,---, K, of K
such that K is the disjoint union of K,,---, K, and x, EK, and K; C
Ns(x,)={x:d(x,x;)< 8} and such that f(K))C N;(f.(x,)) for each i =
l,---,n and j=1,---,p. Now the support of wu;(x) is contained in
Nys(fi(x,)) when x € K. Choose 0<A <1 such that (1-A)M<
1/2. Consider the set ¥, = {® & P(S)*: ¥ € P(S)* such that = A ¥
and the support of ¥, is contained in N;(f,(x,)) whenever x € K;}. Then
7, is a neighborhood of wu,, We claim that 7% D V.. Fix®€ ¥, and
choose ¥ € P(S)* such that ® = A ¥ and the support of ¥, is contained
in N;(f.(x,)) whenever x € K. Then ¥|K is a continuous mapping of K
into P(N;(fi(x,))). By the result of Blumenthal and Corson [1], we can
choose v, € P(N;(f.(x,))*) such that =y =V¥|K. Set v=
v X---Xvy,. Then v is a probability measure on S* and satisfies
v =Y. Now choose w € P(S*) such that 7w = (P —A¥)/A. Then
7[Av+ (1~ A)w]=d. Finally, we check that Av + (1 — A)w belongs to
U. If 1=j=m, then

|(Av + (1= Vo — )G,
= A= w)G |+ (1= N)|(w - )G
=AR+(1-AM<1,

Thus, 7, is a neighborhood of mu..
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4. Marginals for P(IIX,). Let X, be a compact Haus-
dorff space for each A € A and let 7, denote the projection of I1X, onto
X,. If u is a probability measure on I[1.X), then the family of probability
measures (i, ).ea, defined by w, (E) = u(7r;'(E)) for each Borel subset E
of X,, is the family of marginals associated with u. We next give an
open mapping result for the mapping u — (u.).ea With respect to the
norm topology.

THEOREM 4.1.  Suppose X, is a compact Hausdorff space for each
AEA. Let a € P(I1X,) and let (a\).cx be the family of marginals
associated with «. Assume (B\).ea is a family of probability measures
where 3, € P(X,). Then there exists B € P(I1X,) such that (B, ).ca is the
family of marginals associated with B and ||a — B||=Z| e, — B, |-

Proof. Let a € P(I1X,) and let (,),cq be the family of marginals
associated with a. Fix (B,),es in IIP(X,). Choose x, € X, for each
A €A. Given a finite subset F={A,,---,A,} of A, let ar denote the
probability measure obtained from a by the natural projection of I1X,
onto II', X,. The associated marginals of ar are a,, -, @,. By
applying a result in [5, Thm. 2.2], there exists a probability measure Br on
I1X,, with associated marginals B,,---, B, satisfying |ar— B[ =
2| a, —B.|l- Let & denote the point mass measure at (x,)iear in
IlyenrX,. Then & X ar and &8 X B are probability measures on
IIX,. The net 8; X ar converges to a in the weak* topology. Let 8 be
a weak* limit point of the net 8 X B¢ in P(IIX,). Then, B has
associated marginals  (B.)iea. Also, |a — B[ =suprl|lar— B =

e = Bl
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