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We pr6&uce 2° mutuzlly nonhomeomorphic countable se-
quential spaces. These are used

(1) to answer in the negative the following question of
Michael and Stone [4]: is every regular T'space which is a
quotient of some separable metric space and a continuous image
of the space P of irrationals a quotient of P?

(2) to characterize ¢ (with or without the continuum
hypothesis) as the smallest cardinal k with the property that a
metric space of cardinality k exists of which every sequential
space of cardinality = x is a quotient.

1. Introduction. We let Q denote the space of rationals, P
the space of irrationals, R the real line, and ¢ the cardinality of R. For
any set X, the cardinality of X is denoted | X|.

We begin with the basic construction, which will be applied in the
sequel in two different directions. Denote by Y the set [Q X
(O —{0}] U{=} and, for E CR, denote by 7 the quotient topology
induced on Y by the obvious map from the subspace [Q X (Q —{0})] U
(E x{0}) of RXR. The set Y endowed with the topology 7= will be
denoted Y:. Note that Y, is a countable, regular, T)-space which is, by
construction, the quotient of a separable metric space. (Thus, see [3],
Y: is both an N-space and a k-space.)

2. Quotients of P. In [4], Michael and Stone establish that
every metrizable continuous image of P is a quotient of P. The question
is raised there whether this result can be extended to nonmetrizable
images of P, that is, whether a regular T-space which is at the same time
a quotient of some separable metric space and a continuous image of P
must be a quotient of P. The construction of §1 provides the negative
answer. To see this, first note that the countable discrete space (hence,
every countable space) is a continuous image of P (collapse each interval
(n,n + 1) to a point). It follows that each space Y is a regular T-space
which is a continuous image of P and a quotient of some separable metric
space. But:

THEOREM. Not every space Yg is a quotient of P.

Proof. If E and F are distinct subsets of R, the topologies 7 and 7¢
on Y are different, one containing a set containing % which does not
belong to the other.
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Now let S be the set of all surjections f: P— Y such that each
f'(y), y € Y, isclosed in P, and let ® be the set of all ¢: Y —2°, where
2° denotes the collection of closed subsets of P. Then f—f"'is a
one-one map from S into ®; since |®|=c™=c¢, we have [S|=c. LetJ
be the set of all T, topologies 7 on Y such that (Y, 7) is a quotient image
of P. Then each 7 €J is generated by some fE€ S, so |J|=c. Since
[{re | E CR}| = 2¢, and since each ¢ is T, it follows that (Y, 7z) is not a
quotient of P for some E CR.

Notes. (1) From the above, it is easily seen that there are 2°
nonhomeomorphic spaces Y, at most ¢ of which can be quotients of
P. This result can be sharpened, with some difficulty. In fact, Ye is a
quotient of P iff E is an analytic subset of R. )

(2) If, in the construction of Y, the set Q X (Q —{0}) is replaced by
a discrete space, say {(k/n, 1/n)| k, n € N}, the spaces Yy which result still
work, and have now the additional property that each has only one
nonisolated point.

3. Quotient-universal sequential spaces. Let k be an
infinite cardinal and let S(« ) denote the collection of all sequential spaces
of cardinality = «. A sequential space S is quotient-universal* for S(x)
if S € S(x)and every T € S(x) is a quotient of S. We are particularly
interested in the existence of metrizable quotient-universal spaces for
S(k).

Whenever k™ = k, the disjoint union of k copies of the converging
sequence will serve as a metrizable quotient-universal space for
S(x). In particular, there is a metrizable quotient-universal space for
S(c). In this section, we use the construction of §1 to demonstrate that,
whether or not the continuum hypothesis is true, c is the smallest cardinal
for which this is true. In fact, we exhibit a countable sequential space
which is not a quotient of any metric space of cardinality <c.

LEMMA. There exists a subset E of R with | E | = ¢ which contains no
uncountable closed subset of R.

Proof. Let {C,|a <c} be a transfinite enumeration of the ¢ un-
countable closed subsets of R. Pick p, and g, in C, with p, # q,. If p, and
9. have been chosen in C, for & < B so that all p, and g, are distinct,
choose p; and g, in C; so that p; # g and py, g, are distinct from all p,, q.
for « < B. This is possible since any uncountable closed subset of R has
cardinal ¢ so that C; —{p., q. |a < B} # ¢.

* The term ‘““universal” has been preempted by those who study spaces with a given property P
which contain as subspaces every space (of appropriate cardinality or weight) having property P. See,
for example, [2], [5] and [6].
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Let E ={p.|a <c}. Then |E|=c¢ and E contains no uncountable
closed subset of R since q, € C, — E for each a.

Let E CR be the set of the lemma. Let M; denote the subspace
[QO X (O —-{0})]U(E x{0}) of RXR. Recall that Y; is the quotient of
M obtained by collapsing E X {0} to a single point e. Let g: Mg — Yg
be the quotient map.

Y: is a countable sequential space, but:

THEOREM. Y; is not the quotient of any metric space of cardinality
<c.

Proof. Suppose there is a quotient map f of S onto Y, where S isa
metric space and | S| = k <c. Foreachp € E, let g, = (x,1, X,2, - - ) be a
sequence in Q X (Q —{0}) such that

. {1
'xpn - (p7 0)[ = min {;7 ‘xpn'I - (P, 0),}
Recall that g denotes the quotient map of My onto Y. For each n, let

zP" = q (xP")

and denote by m, the sequence (z,,2,,--') in Yg Now
n, — e. Hence, since f is a hereditary quotient map, there exists some
b, € f'(e) and a sequence o, =(s,,8,5, ") in S—f'(e) such that
o,— b, and f(o,)=m,. Let

fie)={x.la <«}
and, for a <k, let

A, ={pEE|b, = x.}.

We claim some A, must contain a sequence (p,) converging to some
element of R— E. For otherwise C1x(A,)CE fot each a < k, whence
E is the union of fewer than ¢ closed sets. But since | E|= ¢, one of
these would be an uncountable closed set in E, contradicting the
construction of E.

Without loss of generality, say A, contains a sequence (p,) which is
closed and discrete in E. Then the sequence 7, = (z,, Z,,, ") con-
verges to e, for each i, and the sequence §, = (s, S,2, - - * ) converges to
x,;, for each i. A diagonal sequence (S,,n,, Sy, - -+ ) With n, = k for each k
will then converge to x,. Then (2,4, Zpm * -+ ) converges to e. Hence
(Xpinis Xpuns, * ) Must have a cluster point in M.
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But |Xpm — (P, 0)| = | Xpu — (P, 0) = 1/k, so any cluster point of
(Xpis X, -+ ) in Mg would be a cluster point of ((pi,0),(p,,0),---),
which is impossible by choice of the p.

We conclude with some observations on extension of the result
above.

(1) Asnoted in §2, there are 2° mutually nonhomeomorphic spaces
Y: Since there are at most ¢ quotients of any single countable
sequential space, there can exist no quotient-universal space (metrizable
or not) for S(Ny). It is at least consistent with the usual (Zermelo-
Fraenkel) axioms for set theory (with Choice) that this result extends to
all cardinals k <¢, for Martin’s axiom entails 2° <2 for k <c.

(2) Let M(x) denote the collection of metrizable spaces of
cardinal = k. The space Q of rationals is a (metrizable) quotient-
universal space for M(N,), while the disjoint union of ¢ copies of the
converging sequence is a quotient-universal space for M(c). For cardi-
nals k between N, and c little is known. Baumgartner ([1]) has shown
that it is consistent with Zermelo-Fraenkel set theory with choice that all
N.-dense subsets of R are order-isomorphic. (A subset A of R is
N-dense if whenever a < b in R, (a,b) N A has cardinal N,.) If this is
the case, then every separable metric space M of cardinal =N\, is a
quotient of the unique N,-dense subset D of R. For M is a quotient of
M X D, while ([7], Theorem 76) M X D is homeomorphic to a subset of R
and hence, by Baumgartner’s result, to D.
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