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The main goal of this paper is a detailed analysis of the
problem of imposing a topological bundle structure on a
spherical fibre space over a simply connected base. The method
involves a careful study of the notion of fibre homotopy
transversality due to N. Levitt. The point is, a topological
disc bundle satisfies strong transversality properties for maps
from manifolds to the associated Thorn space. These pro-
perties can be formulated at least for spherical fibre spaces.
Thus, obstructions to transversality can be interpreted as
obstructions to imposing a topological bundle structure on a
spherical fibre space. It turns out that over a simply con-
nected base the obstructions to transversality coincide exactly
with the obstructions to a topological structure.

The obstructions to transversality for a spherical fibre
space ξ can be interpreted as obstructions to a deformation
of the identity map on the Thom space Tζ to a certain sub-
complexes Wζ. The fibre of the map Wζ —> Tζ isa sp ace with
a suitable iterated loop space homotopy equivalent to G/TOP.
The total obstruction to transversality becomes the obstruction
to a KO <g) Z[l/2] orientation of the Thom space Tξ, mixed
with certain cohomology classes of Tξ, ^eH^+1{Tζ, Z(2)) and
STeH^-KTξ, Z/2). These obstructions are then also interpre-
table as the obstructions to lifting in the fibration sequence
GITOP — BSTOP -> BSG.

In this introduction, we give a rather detailed outline of our
results and describe the relationship with work of others, particularly,
N. Levitt [10], F. Quinn [18], and L. Jones [8]. Suppose that
π: ξ —* Bξ is a spherical fibre space, with Thom space Tξ, and let
/ : M —» Tξ be a map from a PL manifold to Tξ. The primary
question is, very roughly, when can one deform /, so that f'^Bξ) c M
is a Poincare duality space?

If ξ —>Bξ is a (block) PL sphere bundle, the answer is always.
In fact, in this case we may deform / so that L = f'^Bξ) c M is a
PL submanifold of M, with a tubular neighborhood V = f'^Dξ), where
Dξ is the associated PL block bundle of ξ. V is a block bundle over
L and / induces a bundle map
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Note that V itself is Poincare duality space, homotopy equivalent to
L, and the inclusion of the boundary dVQV is, up to homotopy, a
spherical ίibration.

These considerations lead one to a correct definition of transver-
sality if π: ξ —• Bξ is only a spherical fibration. Namely, let ^£ξ =
ξ x / Uίxo Bξ be the mapping cylinder of π: ζ —> βξ. (If ξ is an honest
sphere bundle, ^fξ is the associated disc bundle Dξ.) Then Tζ =

where ^ f is the cone on ξ.

DEFINITION (approximate). f:M—>Tξ,M a closed manifold, is
globally Poincare transversal if the inclusion f~\ξ) Q f~\^ζ) is a
spherical fibration, induced by / from ξ Q

If ξq has fibre S9"1 and M has dimension q + i, the definition
implies that f~~\^ξ) is a Poincare duality space (PD space) of
formal dimension i. There is an analogous definition if the manifold
M has a boundary; in this case, {f-\^?ξ\ f~\^ξ) Π dM) is a PD
space with boundary.

Now the theory of Levitt states that if Bξq is 1-connected, q Ξ> 3,
there is an Eilenberg-MacLane obstruction theory, with obstructions
in Hq+ί+ί(M, Qi), to deforming f: M~+ TξQ to a transversal map, where
(at least if i > 4) the group Qt is isomorphic to the surgery obstruction
group

P, = Z, 0, Z/2, 0 as i = 0, 1, 2, 3 (mod 4) .

Quinn's theory of surgery on PD spaces implies that if M has dim-
ension q + j + 1, there is a single obstruction, in P, to deforming
/: M —> Γfg to a transversal map. This discrepancy is easy to
explain. By "transversal map," Levitt means that M is triangulated
such that for each simplex Δ c M, f \Δ: A —> T£q is Poincare transversal,
whereas Quinn uses "transversal map" in the global sense of the
definition above. One problem which interested us then was whether
we could identify a global, "top" obstruction in the context of Levitt's
cell-by-cell obstruction theory. We do define a global obstruction to
transversality, using the Levitt theory, much as one picks out the
surgery obstruction from all the invariants of a normal map. How-
ever, the methods of this paper only enable us to prove that this
top obstruction is the obstruction to cobording (rather than homo-
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toping) a map f:M—+Tξ to a transversal map. Our obstruction
does agree with Quinn's, however, and thus from his theory it follows
that it is the obstruction to homotoping / to a globally transversal
map.

A second problem was to extend the results of Levitt and Morgan
[11] relating Poincare transversality and topological structures on
a spherical fibration ξ. They prove (roughly) that if the base space
Bξ is A-connected and if every map f:M—*Tξ can be made Poincare
transversal, then ξ admits a topolgical structure. In fact, there is
a 1 — 1 correspondence between topological structures on ξ and
"Poincare transversality structures" on ζ. We extend these results
to 1-connected base spaces. A homotopy theoretic reformulation of
these geometric results gives that at odd primes p, a topological
structure on ξ is equivalent to a KO (g) Z(ί,rtheory orientation of Tξ,
(this is a well-known theorem of Sullivan [23]) and at p = 2, a
topological structure is equivalent to null-homologies of certain stable
cohomology characteristic classes of f, X ^ e ί f 4 * " 1 ^ , Z/2) and
£?(ζ) e ϋ4*+1(J5ί, Z(a)). Similar results were proved by Quinn [Q2, QJ;
the p = 2 results have also been proved by Madsen and Milgram [12]
and Jones [8]. A very precise definition of the classes ^~{ξ) and
J2?(ζ) and a detailed study of their properties accounts for much of
the bulk of the present paper.

Our third main problem was to understand the relations between
the top obstruction to Poincare transversality in dimensions An + 1
and the index of Poincare duality spaces. We prove, for example,
that the obstruction =Ŝ (f) 6 H4*+1(Bζ, Z(2)) to a topological structure
(or to Poincare transversality, since these are the same) is the
Bockstein (for the coefficient sequence 0 —* Z(2, —> Z(2) —> Z/8 —> 0) of a
characteristic class l(ζ) e H'*(Bζ, Z/8). Among the properties of l(ξ)
is this: if K4n is a 4^-dimensional PD space and vκ is its stable normal
spherical fibration, then (l(vκ)), [K]) = index (K) (mod 8). (The exis-
tence of such a class was shown by D. Frank, also using Levitt's
theory of transversality. We gives additional properties of l(ξ)
which characterize it uniquely.) The result «5f (f) = βl(ζ) is intimately
related to the theorem of Morgan and Sullivan [15] that there is a
Z(2) characteristic class L(ξ) e ff**(J5f, Z(2)) of topological bundles ξ,
which measures the index in Z of topological manifolds. L is defined
using topological transversality, and reduces modulo 8 to our class
l(ξ). The connection is clear: if one has enough transversality, the
Z/8 index class l(ξ) lifts to a Z(2) index class L(f), which gives a
homology of ^(ξ) = βl(ζ) to 0.

We now begin a more detailed outline of the individual sections
of the paper. Chapter I, consisting of the first four sections, contains
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the geometric machinery and results of the paper. In § 1 we develop
a modified version of the Levitt obstruction theory. Namely, we
strengthen the definition of a Poincare transversal q + 2 simplex,
f:Jq+2->Tζq, by adding the condition that /"V^Cf) c Aq+2 have
the homotopy type of a 2-manifold with boundary. In other dimensions,
the definition is unchanged. It is an old conjecture [24] that all 2-
dimensional PD spaces are homotopy equivalent to manifolds. If this
is true, our obstruction theory agrees with Levitt's. The advantage
of the stronger definition is that it is possible to compute the obstruction
groups in all dimensions, whereas Levitt's low dimensional obstruction
groups were unknown.

The fundamental lemma in §1 is the following local result.

THEOREM A. Suppose that the spherical fibration ζg admits a
PL structure, q ^ 3, π^Bξ') = 0, and let f: Dq+i+ί — Tξq be a map
such that f\dD:Sq+ί—*Tξq is Poincare transversal. Assume further
that if i = 2, f~\^tξ) Π Sq+ί is homotopic to a 2-manifold. Then
there is a well-defined obstruction a(f)ePi such that f deforms
rel 3D to a Poincare transversal map if and only if <x{f) = 0.

a(f) e Pi is the surgery obstruction of a degree one normal map
L' —> L, where U is an ΐ-dimensional PL manifold and L is an i-
dimensional PD space. Namely, L = f~\^ζ) Π Sq+i, and L ' c L is
obtained by deforming / : Dq+ί+1 —> Tξq slightly to a PL transversal
map, keeping f~\^ξ) setwise fixed.

Using the local result, we set up an obstruction theory, with
obstructions in Hq+ί+ί(M, Px), to deforming a map f:M—>Tζq to a
strongly transversal map, where ξq is any spherical fibre space with
simply connected base. The idea is, we may cover the base Bξq by
simply connected, open sets Ua, all containing the base point such
that ξq\Ua admits a PL structure. This induces a cover {Va} of Tζq,
and our first step is to triangulate M such that for each simplex
AcM, f{Δ) c Va, some a. If / is strongly transversal on the q + i
skeleton of M, the local result enables us to define an obstruction
cocycle in CQ+ί+1(M, P%), which vanishes if and only if / deforms rel
the q + i skeleton to a map which is strongly transversal on the
q + i + 1 skeleton.

In §2 we reformulate the obstruction theory. Specifically, let
WξQ be the subcomplex of the singular complx of Tξq consisting of
simplexes f:Aq+ί—>Tξq which are Poincare transversal, with f(Jq+ί)c: Va,
some Vaa{Va}, and with f~\^ζ)c Jq+ί homotopic to a 2-manifold
if i = 2. As a corollary of the obstruction theory of §1, we deduce

πq+t+1(Tξ', Wξq)-^+P<.
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In fact, the obstructions to deforming f: M*-> Tζq to a strongly trans-
versal map can be interpreted as the obstructions to lifting / to a
map / in the diagram

Tζq

M

The space WξQ was also studied by Levitt, without the extra
condition on q + 2 simplexes. Our space Wξq is more natural for
studying topological structures on ζq, since if ξg is a topological bundle,
topological transversal simplexes Aq+ί —• Tξq clearly belong to Wζq.
On the other hand, Levitt's original space was more closely related
to Poincare duality cobordism, the problem he was studying at the
time.

Let Fξq be the fibre of the natural map Wξq -> Tξq. In §2 we
also define very powerful homomorphisms on the Z/n bordism of
FζQ, n^O,

0>n: Ωg+ι(Fζqf Z/n) > P% (x) Z/n .

(A Z/n manifold is an oriented manifold M, together with an orien-
tation preserving isomorphism of the boundary of M with n disjoint

copies of a manifold δM, φ: ]JnδM^dM. A Z/0 manifold is thus a
closed, oriented manifold. δM is called the Bockstein of M; a Z/n
bordism element must map the n copies of the Bockstein equivariantly.)
To define ^ , we first give a geometric interpretation of bordism
elements of Fζq. Namely, φ: M-+ Fζq corresponds to a strongly
transversal map / : M —> Tξq, together with a homotopy F:M x I—» Tξq

from Fo = f to F± = oo9 oo e Tξq the cone point. Using the obstruc-
tion theory of §1, we show that if Mq+i is Z/n manifold, there is a
well-defined obstruction ^ [M, φ\ePi® Z/n to deforming F: M x
J—> Tξq, re\M x dl, to a globally transversal map. έ?n[M, f] is (not
surprisingly) the surgery obstruction of a degree one normal map
L' —>L, where U is a Z/n PL manifold and L is a Z/n PD space.

To see how these surgery problems arise, suppose first that ξq

admits a PL structure. Shift F: M x I->Tξq slightly to a PL trans-
versal map, G, keeping F"\^ζq) setwise fixed. Then U = G~ι{Bξq) n
M x {0} c G-\ΛTξ*) Π l x ( 0 } = F-\^rξq) n I x { 0 } = L ί s a degree
one normal map.

If ξq is an arbitrary special fibre space, we use the obstruction
theory to produce a normal map. Namely, since H*(M xl, Mx {0}) = 0,
we may deform F ΐelM x {0} to a strongly transversal map G: M x
I—> Tζq, such that G\MX{1}: M x {1} -> T(ξq\π)f where U is a contractible
neighborhood of the basepoint of Bξq. (See Chapter I for details.)
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Moreover, G\MX{1}: M x {1}—> T(ξq\u) is homotopic to the constant map
oo, oo e Tξ\ since G is the deformation of F. Now ζq\u admits a PL
structure since U is contractible, hence we apply the construction of
the paragraph above to G\MX[1} to obtain a normal map.

We point out that if ξ9 admits a PL structure, the normal map
produced by this general construction is cobordant to the normal map
produced directly from PL transversality. Thus the surgery obstruc-
tion is well defined.

The resulting homomorphisms d7%\ Ωq+i(Fξq, Z/n) —> Pt (x) Z/n satisfy
properties essentially identical to the properties of the classical
surgery obstruction homomorphisms of Sullivan;

Sn: Ωt(G/TOP, ZJn) > P< <g> Z/n .

The most important properties are (i) the composition

is an isomorphism and (ii) ^ satisfies a multiplicative formula like
those of [15] with respect to the index; that is, if φ: Mq+ί —• Fξq is a
Z/n bordism element and Nj is a Z/n manifold, then

<S?n[Mq+t (x) Nj, φπ,] = έ?n[Mq+ί, φ]-index (Nj) .

(See [15] for a definition and properties of the "product" Mq+ί (x) Nj

of Z/n manifolds.)
Just as Sullivan showed that the surgery obstruction homomor-

phisms SΛ: Ωi(G/TOP, Z/n)—>Pi(S)Z/n completely determine the homotopy
type of G/TOP, we show in §5 that the obstructions ^n: Ωq+i(FξQ, Z/ri)—*
Pi (x) Z/n completely determine the homotopy type of Fξq. The result
is that Fξq is a copy of GjTOP, shifted g-dimensions. (We will discuss
this further below.)

These results of §2 were known earlier to Levitt and Morgan
[11] for the (q + 4)-connected cover of FξQ. The results of this paper
simply extend their results, thanks to the stronger definition of
transversality in dimension q + 2.

In § 3 we define obstructions to global transversality, up to
cobordism. The main idea is that, in the stable range, i < q, there
is an isomorphism

Ωg+t+ι(W€q, Fξq, Z/n) — Ωq+i+1(Tξq, Z/n) .

Composing the ^ of §2 with the boundary homomorphism for the
pair Wζq, Fζq, thus defines homomorphisms

sn: Ωq+i+1(Tζq, Z/n) > P, (x) Z/n ,
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for i < q, q ^ 3. We prove

THEOREM B. // i is even (resp. i odd) and f: Mq+i+1 -• Tζq is
a Z/n manifold, then [M, f] is Z/n-bordant to a globally transversal
map if and only if sn[M, f] = 0 e P^Z/n (resp. s(δM, f\δM) =

As remarked earlier, Quinn [18] has sharper results about these
obstructions to global transversality, namely that these are the obs-
tructions to homotoping f:M-+Tξq to a globally transversal map.

As a corollary of Theorem B, note that any map / : Mq+4i —> Tξq, M
closed, is cobordant to globally transversal map g: Nq+4i —> Tξq. Let
jjx __ g-\^£ξ) c Nq+4i be the associated PD space. We prove in
§3 the following.

LEMMA C. Index (L4ί) e Z/S in an invariant of the bordism class
of [M, / ] .

Since there is a null-homotopic PD transversal map g: Sq+4ί —>
Sq = Teq, with g~\^eq) = W4ί, where Wu is the almost parallelizable
Milnor manifold of index 8, we see that the modulo 8 reduction of
the index is the best invariant we can obtain from a transversal
m a p g: Nq+4i -> Tξq.

In §8 we generalize Lemma C to Z/S manifolds. Not all Z/S
manifolds /: Mq+4ί —» Tζq are cobordant to globally transversal maps,
because of the obstruction s[δM, f\δM] e P4ί_2 = Z/2, provided by
Theorem B. However

LEMMA D. If g: Nq+4i —> Tζq is a globally transversal Z/S mani-
fold, and L4i = g~ι{^fξ) c Nq+4i is the associated Z/S PD space,
then index (L4ΐ) e Z/S is an invariant of the Z/S bordism class of
[N, g\.

This is the main result we need to define Z/S characteristic
class of spherical fibrations, which measures the index (mod 8) of
PD spaces. (We will discuss this further below.)

In §4, we extend the main result of Levitt and Morgan [11]
concerning the equivalence of topological structures on bundles ζq

over 4-connected base spaces and liftings I in the diagram

11 \ lίd
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Our result is

THEOREM E. // ξq is a spherical fibratίon over a simply con-
nected base, q ^ 3, then there is a natural bijection between equi-
valence classes of topological structures on ζq and equivalence classes
of lifting I in the diagram

Wζq

\ Id

Tξq .

The proof breaks into two parts. The first part uses topological
transversality to construct a lifting I for a topological bundle ξq.
This step is somewhat indirect since topological transversality cannot
be assumed in codimension 4. We use a "crossing with CP(2) trick"
to overcome this difficulty. The second part of the proof essentially
uses the fact that GJTOPq and Fζq are very closely related to establish
that the map from topological structures on ξq to liftings I in the
diagram is a bijective correspondence.

Chapter II, consisting of §§5 through 7, deals with homotopy
theoretic consequences of the geometric results of Chapter I. In § 5,
we show how the homomorphisms <^n: Ωq+i{Fζq, Z/n) —> P< ® Zjn, n^O,
determine the homotopy type of Fξq. In particular, the 2-localization
of Fζq is a product of Eilenberg-MacLane spaces,

(Fζq){2) = Π K(Z/2, q + U - 2) x K(Zl2), q + U) .

The ^-localization of Fξq, p odd, is a loop space of a connected cover
of Bθip). Except for computing the low dimensional homotopy groups
of Fςq, these results were proved in [11] by the same techniques.

The 2-localization result is equivalent to establishing a cohomo-
logical formula for <£?: Ωq+i(Fξg) —> P, and for ^ : Ωq+i(Fξq, Z/2r) ->
P< (g) Z/2r, r >̂ 1. Namely, we prove

THEOREM F. There are unique cohomology classes

and

such that given f: Mq+4j~2 —>Fq,Ma Z/2 manifold,

<?JίM, f] = < F W ) /*(^Γ), [M]} e Z/2

and given g: Nq+ij —>Fξq, N a closed or a Z/2r manifold,
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<?ΛM, f] = <L(N)-g*(&)f [N]> + i(VSqιV(δM)-g*(3n9 [δN]) e Z/2r

( e Z if N is closed)

where i: Z/2 —> Z/2r is the inclusion.

The formulae of Theorem F giving ^ 2 : Ωq+ij_2{Fξq, Z/2) -> Z/2 in
terms of J Γ and giving έ?n: Ωq+ij(Fξq, Z/n)-+Z/n, n = 0 or 2% in terms
of JS^ and J ^ are identical to the formulae in [15] for the surgery
obstruction homomorphisms Sn: Ω^G/TOP, Z/n)—* P< ® Z/n in terms
of cohomology classes

3ΓeH»-\G/T0P,Z/n) and ££> eiT4*(G/TOP, Z(2)) .

This is no accident, since the ^ are defined as surgery obstructions.
The proof of Theorem F is essentially given in the Appendix,

where we give a detailed discussion of how homomorphisms on the
bordism of a space can be used to define cohomology classes. The
version we present is due to Sullivan, [23], although variants of the
idea have been used earlier, (for example, in Thorn's definition of
rational Pontrjagin classes for PL manifolds). The classes J%^ and
£f of Theorem F then define a homotopy equivalence

3T x jSf: (Fξg)i2) = Π K(Z/2, q + U - 2) x K(Zi2), q + U) .

From the cohomology exact sequence of the fibration Fξ—>Wξ—>
Tξ (in the stable range) we see that the classes 3ίΓ and £f in the
cohomology of Fξ determine classes in the cohomology of Tξ. From
the Thorn isomorphism Φ: H*(Bξ) —> H*(Tξ), we then get classes
^r(£) e H^iBξ, Z/2) and &(ξ) e H»+1(Bξ, Z{2)). Precisely, Φ(^T(ξ)) =
τ(j%Γ) and Φ(j#(ί)) - τ(£?) where τ: iϊ*(F,) — H*+ί(Tξ) is the trans-
gression, in the stable range, of the fibration Fξ—>Wξ-+Tξ.

The classes J%Γ(ξ) and «^(f) are stable characteristic classes for
spherical fibrations. From the definition of the global transversality
obstructions sn: Ωq+i+1(Tξq, Zjn)-* Pt(g) Z/n, in terms of

^ . : Ωq+i(Fξ, Z/n) > P, ® Z/n ,

we obtain cohomological formulae for the s2r in terms of the classes

and Φ(£?(ξ)): (see Theorem F above)

\ f] =

if / : Jlf̂ 4*-1 -> Γίff is a Z/2 manifold, and

6 Z/2r
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if g: Ng+ij+1 -> Tξq is a Z/2r manifold. Here i: Z/2 -> Z/2r is the

inclusion. We thus regard J$Γ(ξ) and <2f(ξ) as obstructions to global

Poincare transversality.

The main theorem of §6 is that, at the prime 2, <βΓ(ξ) and

^f(ξ) are the only obstructions to a topological structure on ξ. More

precisely, let J2Γ 6 H^iBSG, Z/2) and &> e H**+1(BSG, Z{2)) be the

universal characteristic classes and let i: X—> BSG{2) be the inclusion

of the fibre of the map

x . # : £SG(2) > Π #CZ/2, 4i - 1) x #(Z ( 2 ), U + 1).

THEOREM G. There is a commutative diagram

X

BSTOPi2) - — BSGi2)

with Bπ the natural map and I a homotopy equivalence.

Thus a lifting of ξ:Y-*BSG{2) to f r Γ — BSTOP{2) is equivalent

to null-cohomologies of the characteristic classes 3fΓ(ζ) and oSf(f).

F. Quinn has proved a theorem very similar to Theorem G, [19],

[20], In fact, his thoerem is probably identical to Theorem G, but

his definition of characteristic classes, corresponding to our 3ίΓ and

^ is rather abstract. I. Madsen and R.J. Milgram, [12], have also

proved that BST0P{2) is the fibre of a map

BSG{2) > IL*i K(Z/2, 4i - 1) x K(Zi2), 4i + l) .

Namely, they prove that B(G/T0P){2) is a product of Eilenberg-MacLane
spaces. The resulting cohomology classes of BSG are %o£ identical
to our JΓ~ and ^ but they are closely related. At present, there
is no geometric explanation of the connection between B(G/T0P),
the classifying space for G/TOP with the Whitney sum structure,
and Poinare transversality. The transversality theory seems more
closely related to a second iϊ-space structure on G/TOP. See also
L. Jones [8] for a version of Theorem G.

In §7, we identify the suspensions of the cohomology classes
3T and j # ; that is, σ(^T) 6 H^~\SG, Z/2) and σ(Jf) e H**(SG, Z{2)),
where σ: H*+1(BSG) -> Jff*(SG) is induced by the natural map Σ*SG~->
BSG.

THEOREM H. σ(&) = τr*(^T) and σ(£?) = π*(£f), where π:
SG-* G/TOP is the projection and ^T eH^\G/T0Py Z/2) and
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eH**(G/TOP, Z{2)) are the canonical surgery obstruction classes of

[15].

Chapter III, which consists of §§8 and 9, gives the definition
and properties of the Z/8 index class I = 1 + lλ+ l2-\ e HA*(BSG, Z/8).
In §8, I is defined in terms of a homomorphism on the Z/8 bordism
of MSG, φ:Ω*(MSG, Z/S)-> Z/S. If f:M^MSG is a transversal
map, M a Z/8 manifold, with L = /''(BSG) c M the associated Z/8
PD space, then

φ[M, f] = index (L) - 4<FSg1F(ikf) /*Φ(^T), [Λf]> e Z/8 .

Using results of the Appendix, we show that φ determines a class
leH"(BSG,Z/S) with

φ[M, f] = <L(M)./*Φ(0, M ) e Z / 8 .

REMARK. Not all elements of Ω4k(MSG, Z/S) are represented by
transversal maps f:M-+MSG. In fact, the subgroup generated by
transversal maps has index 2, in each dimension 4ft. To extend the
above definition of φ to all of Ω4k(MSG, Z/S), we need to choose a
very specific non-transversal element [K, a], set φ[K, a] = 0, and then
prove that this is consistent with the definition of φ on transversal
elements.

The class { has the following properties

THEOREM I. (i) If L is a Z/S PD space and v: L—>BSG is its
normal fibration, then

O*(0, [L]> = index (L) e Z/S .

(ii) The Z/2 reduction of I is V2eH4*(BSG, Z/2).
(iii) The class I satisfies the Whitney sum formula

i(£ x V) =
eH'XBξ x Bη,Zβ)

where ί: H*( , Z/2) —•> iϊ*( , Z/8) is έ/̂ β natural coefficient map.

(iv) βl =• £? e H**+1(BSG, Z(2)), î feerβ /3 is £fcβ Bockstein homo-

morphism of the coefficient sequence 0 —+ Z(2) —> Z(2) —> Z/8 —* 0.

Property (iv) relates the Z/8 index class I and transversality
obstruction =Ŝ  and was discussed earlier. Here is a more precise
statement of the relation between transversality and the index (mod 8).
Suppose / = Mq+iί+1 -> Tξq is a Z/n manifold such that /1 δM: δM-> Tξq

is globally transversal. Let Lu = f~~\^ξ,q) Π δM, a closed PD space.
If f:M—*Tξq is itself transversal then index index (L4ί) = 0, since
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then n-Lu bounds a PD space, namely f~\^^) c M. Thus index (L)
is an obstruction to cobording the map f:M—>Tξ9 to a transversal
map. We prove, in fact, that the transversality obstruction sn[M, f] e
Z/n of § 3 always has order dividing 8, and is exactly index (L) e Z/8.
(In particular, if n is odd, sn = 0.)

Theorem I(iii), the Whitney sum formula for I, is quite difficult.
Its proof requires all of §9, the longest section of the paper. The
term which measures deviation from multiplicativity, i{VSqιV(ξ)®
^ί(rj) + ^Γ(ξ)®VSqιV(η)), arises for the following reason. If we
form a product of transversal maps / and g, f x g: Mp+a x Nq+b —»
Tξp A Tη\ with a and b odd, a + b = 0(mod 4), then clearly the index
of the inverse image of Bξ x BΎ] is zero, since this inverse is a
product of odd dimensional PD spaces. However, if / or g is not
transversal, it can occur that / x g is transversal with nonzero
index for the inverse image of Bξ x Bη. This implies that, in BSG x
BSG, the I class can evaluate nontrivially on products of odd dimen-
sional manifolds.

Since £? = βl, the Whitney sum formula for I implies a Whitney
sum formula for <2f. We also establish in the paper a Whitney sum
formula for the class J3ΓJ namely

THEOREM J.

JT(£ X η) = ^{ζ)®V\η) + F2(ί) (X) J3T0?) G i ϊ 4 * - 1 ^ X Bη, Z/2) .

Using this formula and the fact that

σ{ST) = π*{3T) e H4*~2(SG, Z/2), TΓ: SG > G/TOP ,

(see Theorem H). We deduce

COROLLARY K. ^ = F 2 IT, where g7 ^ Σ ^ ^ - υ 2^
H2%~\BSG, Z/2) is the unique primitive element with

σ(e2i^) = π*(Sr2i_2)eH2i~2(SG, Z/2) .

Clearly ^T(f) = 0 if and only if gf (|) = 0, Thus, although 5?
is nonzero in every dimension 4ΐ — 1, i ^ 1, the "marrow" of the
_5Γ"-class is concentrated in dimensions 2ί — 1. There is evidence that
this class i? is the same as the class defined by D. Ravenal in terms
of twisted secondary operations [21]. i? is definitely equal to the
class in dimensions 4* — 1 produced by Madsen and Milgram's result
that B(G/TOP){2) = Π*ai JOT2, 4ΐ - 1) x K(Z{2), U + 1).

Chapter IV, which consists of §§10 and 11, is concerned with
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giving homotopy theoretic definitions of the classes 3ίΓ and £?. Section
10 extends slightly recent work of W. Browder, [1]. Namely, Browder
observed that if a sphere a: S9+U~ι —• Tξq is transversal, then a lifts
to ff:Sff+4<-1—Γfff<vM>, where K(Z/2, 2% - 1) -> Bξ (v2i) ~* Bξ is the
fibration which kills the Wu class v2i(ξ) e Hu{Bζ, Z/2), and ξq(v2i) is
the bundle ξq lifted to Bξ(v2i). a lifts to a because if Ku~ι is a PD
space of dimension 4i — 1, v2i(Ku~1) = 0. Browder then proved that
the homomorphism

p*: πq+u_x{Tξ) > πq+iUTξ/Tξ(v2i})

has image (p*) c Z/2 and that p*(a) agrees exactly with the Levitt
obstruction to transversality on spheres a: Sq+ii~1 —* Tξq. Moreover
he showed how p* (a) e Z/2 is computed as an explicit functional
cohomology operation.

We observe that since Ω*(Tξ, Z/2) = π*(Tξ A MO A RP(2)), we
can use Browder's functional operation on homotopy elements in the
Thorn space Tξ A MO A RP{2) to compute s2: Qq+ii_x{Ti\ Z/2)-*Z/2.
Since s2 defines *5f(ξ)9 we obtain an alternate definition of J^(f),
purely in terms of homotopy theoretical constructions. We use this
functional operation definition, in fact, to prove the Whitney sum
formula of Theorem J for the class ST.

In § 11, we give a somewhat similar homotopy theoretic definition
of the Z/8 index homomorphism Ωq+ii(Tξq) —* Z/8 (see Theorem B and
Lemma C). Since this determines the transversality obstruction homo-
morphisms sn: Ωq+u+1(Tξq, Z/n) —+ Z/n, (see the discussion of Theorem
I(iv)), we obtain a homotopy theoretical definition of the class =S (̂f).

The paper concludes with an Appendix describing how to define
Z/2, Q, Zi2), or Z/2r cohomology classes of a space X, in terms of
homomorphisms on the bordism of X with various coefficients. The
cases Z/2, Q, and Zi2) are discussed thoroughly in [23] and [15]; the
Zj2r case is implicit in [15] and [13]. We include the Appendix
primarily for completeness.

CHAPTER I

1* The obstruction theory• In this section we will set up an
obstruction theory for the question of putting a manifold fiber homo-
topy transverse regular to the base of a spherical fiber space. This
obstruction theory is just a recasting of the one originally developed
in [10] except that we make different technical assumptions about
the class of maps which we will consider. This allows us to avoid
the difficulties encountered in the original theory. We will prove
that if f:Dq+k-+T(ξq) is f.h.t. on the boundary and ξq admits a PL
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structure (though none is preferred) then there is one obstruction
a e Pk^ to shifting / relative to the boundary to a transversal map.
a is the surgery obstruction of the following normal map. Put a
PL structure on ξq and shift / slightly to be PL transverse. Let
Y* = /^(O-section). Then dYQ c f~\Mς) Π Sq+k~ι is a degree one normal
map. We show that a is well defined independent of the PL structure
we put an ξq.

Using this local result we are able to develop an obstruction
theory. Namely, let / : M9+k —• T(ζq). Suppose we are given a trian-
gulation of M such / (any simplex) is contained in the Thorn space
of a bundle admitting a PL structure. Then we have an obstruction
theory to inductively deforming / over the skeleta of M to be f.h.t.
The obstructions lie in H*(M; P * . ^ ) . The rest of this paper involves
ramifications of this theory.

We begin by recalling the definition of fiber homotopy transverse

regular (denoted f .h.t.). Let E(ξq) —^-> X be a spherical fiber space
(i.e., the homotopy theoretic fiber of π is S*"1). Let Mξ be the mapping
cylinder of π and let

T(ξq) = Mξ\J cone (E(ξq)) .
E Q )

T(ζq) is the Thorn space of ξq. E(ζq) c T(ξq) has a trivial line bundle
as normal bundle

DEFINITION 1.1. / : Mq+n -> T(ξq), M a closed PL manifold, is
globally fiber homotopy transverse to X, (f.h.t.) if and only if

(1) / is PL transverse to E(ξq) c T(ξq) and

—
i . i

is a map of spherical fiber spaces. Of course, the spherical fibration

on the right is canonically equivalent to E(ξ2) > X.

From this definition it follows easily that f~\Mξ) is a Poincare
duality space, (PD space) of formal dimension n (see [24] for a
definition), and that its normal bundle in Mq+n is induced from ξ by
/ restricted to f'^Mζ).

If Mq+n is a manifold with boundary, we require
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Γ)dMczf-1(E(ξ))^->E(ξ)

I . i
to be maps of spherical fiber spaces. It follows in this case that
(f~ι(Mξ), f~ι{Mz) Π dM) is a Poincare duality pair (PD pair), of formal
dimension n.

We will use a stronger, local concept of transversality.

DEFINITION 1.2. Let Mq+n be a PL manifold with a given com-
binatorial triangulation, and let ξq be as before. We say that
/ : Mq+n -> T(ξQ) is strongly f .h.t. if and only if

(1) f\Δi:Δi-> T(ζq) is f.h.t. for each simplex Δ* in the triangula-
tion of M, and

( 2 ) (f'ι(Mξ) Π Δq+\ f~ι{Mξ) n dΔq+2) is then a 2 dimensional PD
pair; we require that this pair be homotopy equivalent to a PL 2-mani-
fold with boundary.

This definition requires some explanation. First, there is a great
difference between a map of a manifold into a spherical fibration
being f.h.t. and strongly fiber homotopy transverse, even if we ignore
the extra low dimensional condition. We will see later that the
former is analogous to requiring a map between simply connected
manifolds to have 0 surgery obstruction (i.e., be normal cobordant
to a homotopy equivalence), whereas the latter is analogous to requiring
all the splitting invariants of the map to be 0. (Which of course
makes it normally cobordant to a homeomorphism.) The analogy is
easily understood from the remark that if f;M~+T(ξ) is strongly
transverse then so is / restricted to any simplicial singular subman-

ifold of N (i.e., N-^M-^ T(ξ) for N a manifold and r simpli-
cial). Secondly, the condition on the (q + 2)-simplicies is to cir cum vert
our lack of understanding of G-framed PD bordism in dimension 2.
We will reduce problems about f.h.t. on (q + fe)-simplicies to problems
about G-framed PD bordism in dimension k. We will be able to
handle the problems about G-framed PD bordism except in dimension
2 where we will use the extra hypothesis.

The main theorem of this section is the following.

THEOREM 1.3. // ζq —̂ -> X is a spherical fibration, π^X) = 0,
q ^ 3, ξq admits a block PL structure, and

f: Dq+n+1 > T(ξq) is f.h.t. on Sq+n ,

then
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(1) if n Φ 2 there is well-defined element in Pn (the wth surgery
obstruction group) whose vanishing is necessary and sufficient for
f to be homotopic relative to Sq+n to a f.h.t map.

(2) If n — 2 the above conclusion holds if in addition
f~ι{Mζ) Π Sq+n is homotopy equivalent to a 2-manifold.

(3) If ht is a homotopy relative to Sq+n from f to a f.h.t.
map we may assume hjι{Mζ U E{ξq) x [0, 1/2]) is constant. (Here
E(ζq) x [0, 1/2] (zE(ξq) x [0, l]/{E(ζq) x [1]} - cone (E(ξq)).)

We emphasize that we do not have a PL structure for ζq, only
the hypothesis that one exists.

Proof. We first need a lemma from the theory of PD spaces
to the effect that 1-dimensional surgery is possible.

LEMMA. Let Mg+n -^-> T(ζq) with 3 ^ n, 3 ^ q, πx(M) = 0 ami
= 0. Asswmξ aiso that f is f.h.t. TVfcew- there is a homotopy

F:MxI-+ T(ζ% F\Mx [0] - / which is f.h.t. wiΐΛ F~ι(Mξ) Π Mx [1]
simply connected.

For a proof when w ^ 4 see [10]. For w = 3 use the fact [24]
that any 3 dimensional PD space is bordant to Ss. (In fact this
bordism can be taken to be framed.)

We now return to a proof of the theorem. Put a block PL
structure on ξq, Eq —> ζq. In this structure shift / slightly to / '
which is block PL transversal to a small block tube around the
0-section of E. We clearly may do this so that f~ι(Mζ) Π Sq+n and
/"We U E(ζ) x [0, 1/2]) do not change. That is to shift a map to a
PL transversal one we need only alter it in a neighborhood of the
0-section. Let Yn+1 = /'^(O-section) and Z = f~ι{Mζ)> Yn+ί is a PL
manifold of dimension (n + 1) with boundary equal to Y 0 Sq+n = Wn.
Z n Sq+n is an ^-dimensional PD space, and Wn c Z n Sq+n. We claim
that Wn c Z Π Sq+n naturally has the structure of a degree one normal
map. This is proved by the following lemma.

LEMMA 1.4. Let f: Mq+n -> T(ζq) be f.h.t. with f-ί(Mζ) = X.
Suppose ξq has a PL structure, E, and ht is a homotopy from f
to a block PL transversal map f':M—*T{ζq) with the property that
hτ\Mξ) is constant. Let f'~\0) = Y.

Then YaX is a degree one map and is naturally covered by a
bundle map.
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Proof. YdX since Y = hr1 (0-section) c h^{Md = Kx(Mξ) = X-
X = f-\Mξ) is a codimension O-submanifold of Mα+W and the funda-
mental class, [X] e Hn{X) is /* Uζ n [X, 3-X"] where Uς is the Thorn
class of ζq. i*[Y] eHn(X) = hfUξ n [X 3X]. Since h, = f we see
that i J Γ ] = [X] in iJ.(X). Thus 7 c l i s degree + 1

Y W θ ^ I F

Ĵ reif = i*h*E = ΐ*A0*£7 = i*f*E .

Thus we have a natural bundle map

Y

This induces

vY - vFC, f 0 vM\γ

which is the bundle map covering i. This proves the lemma. Applying
this to the situation in Theorem 1.3 we see that W = Y Π S9+% -»>
^ Π Sg+% is a degree one normal map. Thus there is naturally as-
sociated an element in Pn, (the surgery obstruction of this normal
map). We call this element σ(f). We must show that:

(1) σ(f) is well defined depending only on the homotopy class
of / (the homotopy required to be f.h.t. on Sq+n x I) and

(2) if σ(f) = 0, then we may put / f.h.t. relative to f\Sq+n

keeping the preimage of Mξ U E(ζ) x [0, 1/2] constant.
We consider the second question first.

Case n Ξ> 5. By the first lemma we may assume that

%iz n sq+n) = o .
Thus if the surgery obstruction vanishes, we may do surgery until
Wn —» Z n Sq+n is a homotopy equivalence. These surgeries are realized
by shifting /' slightly but may be done so as not to change the
preimage of Mξ or Mξ U E(ξq) x [0, 1/2]. Here we are using the fact
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that surgery is possible in codimension 3. Thus we may assume that
in addition to all the above conditions that W czZ (Ί Sg+n is a homotopy
equivalence. Thus (Z Π Sq+n) U (tubular neighborhood of Y) is a PD
space in M. It is the f.h.t. preimage of a map /' : Dq+n+1-+ T(ξq).
In constructing this map / ' we have shifted / on the boundary Sq+n,
but we have not moved f~~\Mς Π Sq+n) during the homotopy. Thus
the standard collaring trick allows us to work relative to Sq+*. This
verifies the second condition for n ^ 5. For n < 5 we use the same
general argument but we must show that we can do the requisite
surgery.

Case n = 4. Here again we may assume that Z Π Sq+n is simply
connected. Use the fact that in dimension 4 surgery is possible
after sharping enough times with S2 x S2 see for example [24]. It
is always possible to add to Zfl Sq+i a copy of S2 x S2 by performing
a f.h.t. homotopy. Thus if the surgery obstruction vanishes we may
make WczZ f] Sq+4: a homotopy equivalence.

Case n = 3. Here we may assume Z Π Sq+B is homotopy equivalent
to S\ Then we use the fact that any surgery problem with domain
a PL manifold and range S3 may be solved.

Case n = 2. Here we must use the extra hypothesis that Z Π Sq+2

is homotopy equivalent to a 2-manifold, and the fact that for surgery
problems between 2 manifolds surgery is possible (after a bordism
of the range) if and only if the Kervaire obstruction vanishes.

Cases n ^ 1 are trivial.
Using all these special tricks in low dimensions one then pushes

the high dimensional argument through. The details are left to the
reader.

We now turn to the question of the well-definedness of the obstruc-
tion σ(f). We will use the following standard fact from surgery
theory.

(* ) If / : Ln+1 —> Rn+1 is a normal map between PD space then
σ(f\dL) is 0 in Pn. See [2]. Suppose that F: Dq+n+ι x I~-> T(ζq) is
f.h.t. when restricted to Sq+n x I. Let F-\Mζ) n Sq+n x I = X and
Xf]Sq+n x [i] = Xu ί = 0 or 1. Suppose that in Dq+n+1 x [1] we have
a PD pair (Rn+\ d) obtained as follows. Let J l ί | c l f be a smaller
copy of the mapping cylinder. We shift F\D x [1] to G which is
f.h.t. with respect to M[ in such a way that G~ι{Mξ) = f~\Mζ) Π
jjq+n+ι χ j ^ Then dRaXι is a degree one normal map between
PD spaces. (As an example, R could be the tubular neighborhood
of the preimage of the 0-section under some map PL transverse in
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a different PL structure on ζq.) Since the homotopy from F to G
on D x [1] left the preimage of Mξ constant, we may assume that
F\D x[l] = G.

Now put a PL structure on ξ and shift F slightly to F' which
is block PL transverse. Do this keeping F~\Mξ) and F~\Ml) constant.

Let A = ^'"'(O-section), and At == A Π D x [ΐ]. We wish to show
that the surgery obstruction of dA0—>X0 equals that of dR-^X^
This will then prove the well definedness of σ{f). Since Ax —>R is
a degree one normal map, (*) implies that σ(8A1 —>dR) is 0. Also
σ(dA0 —> Xo) = (7(3^! —• Xx) since 3 A —> X is a degree one normal map.

BAt —» Xx is the composite of two surgery problems 3AX — -̂> 372 — ^ Xt.
Thus σ(w2 © nj = σ(3A0 —»Xo) and σ ^ ) = 0. If we knew that σ(n2 o ̂ ) =
^(^2) + o*(̂ i) it would follow that σ(n2) = σ(3A0 —•> X) which is what
we wish to prove.

In the signature case such an additivity formula is obvious. In
the Kervaire invariant case it is not true^in general that σ(n2 o nx) =
σ(n2) + σ(n^). We need additional information.

In this case we may do surgery on dAx — ^ dR until it is a
homotopy equivalence. (In the low dimensions first cross with CP2.)
After doing this the crucial point is that the bundle map covering

dAj. — -̂> dR is dn^ vdAί —> vdRl or equivalently if we use the homotopy
equivalence nι to identify dA1 with dR then the bundle maps given
by n2°nx and n2 are the same. This is clear since F' is homotopic
to F as maps of spherical fiber spaces

F'\ vdR > vz and F: vdAι > vz .

This proves the well definedness of σ(f) and completes the proof
of Theorem 1.3. Once we have this theorem the obstruction theory
now follows by the usual formal type arguments. Setting it up is
the aim of the rest of this section.

Statement of the obstruction theory. Let ξq —> X be a spherical
fiber space. Suppose we are give an open cover {Ua) of X such that
the base point of X,*, is in each Ua, Uai D ΓΊ Uak is connected
and simply connected for all [aιy •••, ak], and such that ξ\Ua admits
a PL structure. Form the open cover {Va} of T(ξq) where Va =
Mξ\Ua\J open cone (E(ξ)). Let M be a triangulated PL manifold,
and suppose / : Mq+n —• Γ(fq) has the property that f{Aί) is contained
in some Va for each J* in the triangulation of M, (i.e., / is small
with respect to the cover {Va}). Then there is an Eilenberg-MacLane
obstruction theory for deforming / inductively over the skeleta of
M until it is strongly f .h.t. such that if / ( ^ ) c Va then Δι stays in
Va during the deformation.
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NOTE. The conditions that all U contain * and that all intersec-
tions are connected and simply connected implies that πx{X) = 0 by
Van Kampen's theorem. The converse is proved in next lemma.

LEMMA 1.5. Any simply connected complex X has a covering
{Ua} satisfying all the above properties and such that for any
spherical fibration ξq —• X, ξ | Ua admits a PL structure for each Ua

in the cover.

Proof. Let X be a simplicial complex. For each vertex a of
X, let Ua be the open star in the second derived subdivision of the
closed set (X(2) U closed st(cή). Then any intersection Uai Π ΓΊ Ua%

deforms to the two skeleton of X which is connected and simply
connected if X is. Also ξ \ Ua admits a PL structure since any spherical
fiber space over a 2 complex does.

DEFINITION. We call covers satisfying all the above properties
good covers. Note that each simplex of X is in one of the open
sets of the cover. We will need this later in the paper.

NOTE. The cover that we constructed in the above lemma is
natural with respect to simplicial maps. F: X—+Y. The condition
that a map be small with respect to an open cover can always be
realized by subdivison. However, it is not clear that if a map is
strongly f.h.t. that the domain can be subdivided and the map shifted
until it is strongly f.h.t. and small with respect to the cover. Philo-
sophically, this smallness condition is related to the fact that PL
transversality can be accomplished by an arbitrarily small shift.

To set up the obstruction theory we need some corollaries of
Theorem 1.3. Let πqΛn+ι{T(ζq), s.f.h.t.) be, as a set, the set of homo-
topy classes of maps Dg+n+1 -^-> T(ζq) such that / is f.h.t. on 3Dq+n+1

and in addition if n = 2, then f'ι{Mξ) is homotopy equivalent to a 2-
manifold. The group structure is given by connected sum along the
boundary where we sum small disks which go to the cone point.

COROLLARY 1.6. If ζq—> X is a spherical fiber space with X
connected and simply connected and such that ζq admits a PL struc-
ture then we have an isomorphism

πq+n+1(T(ζqls.ΐ.h.t.)-^Pn for q^S.

Proof. Theorem 1.3 sets up a well defined function

πq+n+1(T(ξ'), s.f.h t O - ^ P
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which is easily seen to be a group homomorphism. If τ(f) — 0, then
/ is homotopic relative to dD to a f .h.t. map. This, of course means
[/] = 0eπq+n+1(T(ξq), s.f.h.t.). Thus τ is 1-1. To show that τ is
onto let aePn. Then there is a G-framed PD space

v% -Ϊ-+ εq

such that if we make / PL transverse regular to 0 6 eq, say f~\0) =
Yn, then σ(Yn -> Xn) = a. Furthermore, φ: Sq+n — T(vq) -> Sq is homo-
topic to 0. See [10]. Define / : Dq+n+ί T(eq) to be a homotopy from
φ to *. One sees easily that Dq+n+ί —> T(εq) c T(ζq) is a map with
obstruction a. This proves τ is onto.

Definition of the obstruction cochain. Let / : Mq+n —•> Γ(fg) be
small with respect to the good cover as in 1.5, {Va}, and suppose
f\(q + i — l)-skeleton is s.f.h.t. . Let Aq+i be a (q + i)-simplex in
Λf*+*. There is at least one of the open sets UP of X for which
/1 Aq+i: Aq+ί -> Γ(f IC/,) U C(f) and /1 dΔ is s.f.h.t. Since UP is connected
and simply connected and ζ\UP admits a PL structure, we assign to
Aq+\ σ(f\Λq+ί~>T(ξ\UP)). We must show that σ is independent of
UP, i.e., if f\Δq+i is also contained in U'P, then σ(f \ Aq+i -> Γ(f | UP)) =
σ(f I Aq+i -> Γ(f I ^ ) ) . This follows easily from Lemma 1.4. This gives
us a well defined cochain o(f) e Hom (C^

o(/) is a cocycle. To see this we must show that (o(/), 3zf+z+1> = 0.
We have / : z/9+i+1 -> T(f |Z7P) and ί | ^ admits a PL structure. In
dAq+ί+ί = S g + i take a collar neighborhood of the (g + i — l)-skeleton,
C. We may easily shift / to be f.h.t. on this neighborhood. dC
has one component equal to Sq+i~1 for each (g + Ό-simplex of dAq+i+ί.

Shift all of C PL transverse to some PL structure on ζ\ UP. Let
Y = the preimage of the 0-section then 7 c f"ι{Mζ) Π C. is a degree one
normal map. Thus σ{FΠ a C c / " 1 ^ ) n 3C) = 0. On the other hand one
sees that this latter surgery obstruction is Σfio"1 ( — lj)o(jth face).
Where o(jth face) means <o(/), jth face of Aq+i+ί). Thus <o(/),

•if °(f) = 0 as a cochain we may shift f relative to the (q + i — 1)
skeleton of M to f1 which is f.h.t. on the (q + i) skeleton. Further-
more, we can do this in such a way as to keep A5 in Vp whenever

O c Vp.

Proof. We work one (q + ^-simplex at a time. Since f(Aq+ί)ci VP.
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We have all the hypothesis to apply Theorem 1.3. The result follows
easily from it. Note that we may do this keeping the preimage of
Mξ U E x [0, 1/2] constant by Property 3 of 1.3.

By shifting f on the (q + i — 1) skeleton by a homotopy (but
not a transversal homotopy) relative to the (q + i — 2)-skeleton we
may change o(f) by an arbitrary coboundary.

Proof. Here we will use the fact that the base point is in all
of the Up'a, and thus T(εq)aVP for every p. We will change o(f)
by δe^ where (e,_19 At'"1) = a e P^ and (et.lf Δq+i~ι) = 0 ίor all
other Aq+i~\ Given α e P ^ we know there is a map S^*"1 — -̂> T(ε9)
which is homotopic to 0, and which is transversal on Sq+ί~1 obstruction
a to extending the transversality on Dq+ί. Pick a disk a disk
D$+i~ι c ΛJ**-1 missing f~\Mζ) and change / by a homotopy on this
disk relative to its boundary until on the interior of D^1'1 it agrees
with ά. Then use homotopy extension to extend this to all of Mq+n.
One checks easily that this changes o(f) exactly by Se^. This com-
pletes the proof of the obstruction theory.

NOTE. There is one condition that we must verify and that is
in going from the (q + l)-skeleton to the (q + 2)-skeleton that all
(f~\M) n Δq+\ f~\Mζ Π dJq+2) are homotopy equivalent to PL 2-manifolds
with boundary. This, howevery, is easy to arrange. Then for any

\ f~\Mζ) Π dq+3 will be homotopy equivalent to a 2-manifold.

NOTE. If we wish to change o(f) by <5̂ _L where (e^19 A^1'1} = 1
and (et_lf Jq+i~1) = 0 for all other AqJrί~x we may do this keeping

ζE x [0, 1/2]) constant providing only that

UEx[θ, i-]) Π JΓ*-1

contains a small disk Dq+i~1. To see this we use the following lemma

LEMMA 1.8. Given a e Pn9 there is a map g: Dq+n+1 —> T(ξq), which
is f.h.t. on Sq+n with obstruction a with g(Dq+n+1) contained in an
arbitrarily small neighborhood of * e T(ξq) — Sq.

Proof. The argument in 1.6 produces g: Dq+n+1 -> T(εq) f.h.t. on
Sq+n with obstruction a. Let 0 be the image of the base of eq in
T(eq) and 1 the antipodal point on T(εq) = Sq. Leaving g/Sq+n fixed
near 0 we wish to make it miss 1. Since we have g: Sq+n —* Sq the
only obstruction to making g miss the point leSq is the element in



LEVITT'S OBSTRUCTION THEORY 23

framed bordism g~\l) after g has been shifted transverse to 1. But
since g bounds Dq+n+1 this element is 0. Thus we make shift g slightly
near 1 e Sq to make it miss 1 e S9. Once we have g\dDq+n+1 missing 1
by changing the map by an element in πq+n+1(Sq) we may make g on
all of D9+n+1 miss 1.

Now if we wish to change o(f) by δe^ as above and if Δl^"1 Γi
f'^Mς U E x [0, 1/2]) contains a disk DΫ1'1 we may first assume that
this disk is contained in f~ιE x [0, 1/2] and that it maps by / to a
point. Now use the previous lemma to shift / near this disk. Since
g(Dq+n+1) c Mζq c T(Eq) the process never moves any point near Dq

Q

+i~l

outside of Mξ U E x [0, 1/2].

NOTE. Since this theory is "one simplex at a time relative to
its boundary" there is clearly a relative obstruction theory for de-
forming a map /: Mq+n —> T(ζq) relative to a subcomplex K on which
it is already strongly f.h.t. The obstructions lie in Hq+ί(M, K; P*^).

Also note that if L is a subcomplex of M which / sends to the
cone point, then, after / is shifted to / ' which is strongly f.h.t., / '
maps L into T(ξ\U) where U is an arbitrary contractable open set
containing the base point.

NOTE. The obstruction theory is natural with respect to simplicial
maps of bases covered by bundle maps, i.e.,

f

where / is simplicial. The fact that / is simplicial implies that it
respects the chosen covers on Y and X. From this naturality follows
easily. The obstruction theory is also natural with respect to sus-
pensions.

Namely given / : M9+n —> T(ζq) small with respect to the cover we
Σ / °

may suspend to form M x I > T(ζq φ e1) where Σ /1M x I is the
point map. The obstructions for / lie in ίp+*(M*+ίl; P*) and the obs-
tructions for Σ / are in Hq+1+*(Mq+n x /, Mq+n I; P*) = iϊ«+1+*(Σ M; P*).
If we have a deformation of / to be f.h.t. on the (q + ί)-skeleton,
then this gives a deformation of X / on the (q + i + l)-skeleton of
M x /. The obstructions to extending the maps further agree under
the suspension isomorphism.

2* First consequences of the obstruction theory* In this section
we wish to formulate homotopy theoretic consequences of the obstruc-
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tion theory of § 1. Let £*—> X be a spherical fiber space, q ̂  3, π^X) = 0
and {E7,} be the cover of X and {VP} the associated cover of T(ξq) as
in 1.5. (We shall always work with these covers unless otherwise
specified.)

DEFINITION 2.1. W& is the semi-simiplicial complex of all strongly
f.h.t. maps A* —• T(ξ9) which are small with respect to the cover {VP}.
Denote by f(ξq) the total singular complex of T(ξq). Then we have
a natural map Wζq —• T(ξ9). Let FξQ be the homotopy theoretic fiber
of this inclusion. The following is a representative semi-simplicial
complex for F. The i-simplices are maps h: Δί x I —> T(ξq) with
h\Διx {0} strongly f.h.t. and small with respect to the cover and
h\Δι x {l}:zf x {l}->cone point.

We shall construct in this section homomorphisms from bordism
groups of this fiber to the surgery obstruction groups These homo-
morphism will measure the obstruction to global transversality.
We shall show that they satisfy all of the natural compatibility
relations and product formulae analogous to those for surgery obs-
tructions. (In fact the homomorphisms are surgery obstructions.)
Later in this paper we shall use these homomorphisms and the product
formulae that they satisfy to derive further homotopy theoretic
consequences. This is the reason that we state them now. First,
however, we relate the homotopy groups of Fξ to the surgery obs-
truction group.

THEOREM 2.2. π^Fp) = Pt-q provided that q ^ 3.

Proof. We show that there is a natural π^Fξq) =>πi+1(T{ξq)f

strongly f.h.t.). But by the obstruction theory πi+1(T(ζq), strongly

f.h.t.) Hp*-« A n element in π<(Fp) is a map S* x I — T(%9) s u c h

that hlS* x {0} strongly f.h.t. and Si x {0} is triangulated so that
h is small with respect to the cover and h(Si x {1}) = cone point.
Thus we may factor h through S* x I/S* x {1} = Di+ι. This gives
the map π^F^) —> πi+1(T(ζ9), strongly f.h.t.). The proof that it is well
defined and the construction of the the inverse are analogous.

LEMMA 2.3. The PL bordism groups of the geometric realization
of Fζq are naturally isomorphic to the following groups. As repre-
sentative elements we take H: Mn x /—> T(ξq) with H\M x {0} small
with respect to the cover and strongly f.h.t. and H\M x 1: Af x 1—>
cone point. Such an element is equivalent to zero if there is an
H:Wn+1 x /-> T(ζq) with H\W x {0} small with respect to the cover
and strongly f.h.t. and H\ W x {1} —> cone point. And dW = M with
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H\dW=H.

Proof. This follows from the standard arguments in semi-sim-
plicial theory.

THEOREM 2.4. There are natural maps

(9

(Fςq) > Z/2 satisfying

( i ) έ? and the [έ?n] are compatible with the natural maps

> Zjn and Z\n > Z/n-k in dimensions q + 4* + 1.
(ii) έ?, ̂ 2 and $ are compatible with the natural maps

(iii) These maps measure the obstruction to global transversality.
(iv) They satisfy the product formulae as in [15] and [22]
(a) )?* (Fξq) (x) Ύj* (pt) -> η* (F) -> P*_q sends (M, f) <g) N to
, f) χ(N)

(b) ΩζL(Fξ)<g>ΩζL(pt)-+ΩζL(Fe)->P*_q sends (M,f)®Nn to

(c) ΩζL(F; Z/n) (x) ΩζL((pt); z/n) — ΩζL(F; Z/n) -+ P* (x) Z/n for n
odd sends (M, f)§ζ)Nto ^n{M, f) I(N) for n = 2k the map sends

(Mm, f) ®Nι to J

2 f c-^(M, f) d(δNι) mJ

2k-1έ7(f\δM) d(Nι) m = 3(4)

I EE 1(4)

0 otherwise/

Here d(L4k ι) is the de Rham invariant of skew symmetric linking
pairing on a group associated with the homology of L. It is given
by the characteristic number (VSqιV, [L]> e Zj2. See [15]. If M is a
Z/2fe-manifold, 8M means the closed codimension one manifold which
is the singularity set.

TT

Proof. Construction of the homomorphisms. Let Mq+i x / >
T(ξq) with H\M x {0} strongly f.h.t. and small with respect to {VP},
and H\M x {1} the point map to the cone point. Triangulate M x I
relative t o l x {0} so that H is small with repect to {VP). Since
H*{M x /, M x {0}; P*-^) = 0 we may shift H relative t o l x {0}
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to ΈΓ which is strongly f.h.t. Since H(M x {1}) = cone point,
H'(Mx {l})czT(ξ\U)U coneE(ξ) where U is a contractible neighborhood
of the base point. Thus H'~\Mξ) c M x {1} is a PD space with a
G-framed normal bunle in M x {1}. We also have a homotopy of
Mx{l}-+T(vH-i{Mξ)ΓiMX{1))--*T(ζ\U)tozβτo. From this we shall read
off the obstruction o. Let Xn == H~\Mζ) (Ί Λf x {1} and ί: vXCifx{i} ~+β%

be the trivialization. Put £ PL transversal to 0 e εn. This gives

Yn > Xn a degree one normal map. Define έ?{M x /, H) to be the
surgery obstruction of this normal map. If M is closed and oriented,
then it lies in Pn. If M is unoriented, then it lies in 0 if n is odd
and Z/2 if n is even. If M is a closed oriented Z/fc-manifold, then
it lies in Pn(g)Z/k. (See [15] §§1 and 5.)

We now prove that έ? is well defined depending only on the
cobordism class of (M x I, H). Let J: Wq+n+1 x /-> T(ξq) satisfy

(1) J |TFx {0} is small with respect to {VP} and s.f.h.t.
( 2 ) J\ W x {1}: PF x {1} -> cone point
(3) dW=M and J |aTΓx I = H. (i.e., (T7, J) is a bordism of

(H, H) to 0 in Fξq.)
Since jff*(T7 x J, W x {0}, P^.^-i = 0, we may deform J until

it is s.f.h.t. on all of W x I, relative to "FT x {0}. This then gives
a G-framed PD subspace of W x {1}, (Γ*+1, t: vγcwx{1} -»ε%). The
surgery obstruction of ί'^O) Π v3F —> d Yn is then 0. Thus to show
bordism invariance of <̂ , we need only show that this construction
on (M x I, H) gives the same obstruction as any other similar cons-
truction.

To show this, suppose we have H: M x /—> T(ξq) as above and
two deformations of H to ΈΓ and H" both relative t o l x {0} and
both s.f.h.t. on all o f l x l . Let H: Mq+n x / x — T(ξq) be a homo-
topy between H' and H" with H\M x {0} x / = (H\M x {0}) x / and
ΪΓ|ikf x {1} x / contained in T(ξ \U) U cone E(ξ) where U is a contrac-
tible neighborhood of * in X. Then JΪ|Λf x [J x /U {0} x /] is s.f.h.t.
Since ίf*(M x I x I, ΛΓ x [J x / U {0} x I}) is 0 we may shift H to
s.f.h.t. H-\Mξ) n M x {1} x I then is a G-framed PD bordism
between H'-\Mξ) Π Λf x {1} and H"-\Md Π itf x {1}. This shows the
two surgery obstructions agree, and proves ^ is well defined.

We now check that these homomorphisms satisfy (i)-(iv) as
claimed in the theorem.

(i) and (ii). The compatibilities claimed in (i) and (ii) follow
easily from the analogous compatibilities for surgery obstructions,
see [15] §§5 and 6.

(iii) Global transversality. We say that / : Mq+n ~+ T(ξq) is
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globally transversal if it is f.h.t. (but not necessarily f.h.t. on each
simplex). If / is globally transversal, then f"\Mξ) is a PD space
of formal dimension n. We will show here that if &(M x /, H) = 0,
then we may deform H relative to M x I to make it globally trans-
versal and conversely if H may be deformed relative to M x / until
it is globally transversal then έ?(M x I, If) = 0.

If έ?(M x I,H) = 0, we deform if by a f.h.t. map to make
H^(Mξ) ί ] I x ( 0 ) connected and simply connected. Let J be the
homotopy from the cone point to H'\M x {1}. The image of J is
contained in T(ξq\U) where U is a contractible neighborhood of the
base point in X, and J of one end goes to the cone point. Thus we
may shift J to be PL transverse relative to this end: Let Yn be
the preimage.

Mx{0} Mx{l\ Mx{2]

The element έ?(M x I, if) then is by definition the surgery obstruction
of Γ ί l l x {1} c Hf~ι{Mξ) Π M x {1}. If it vanishes then we may do
surgery by further shifts of J until Y Π M x {1} c H'~l{M5) Π M x {1}
is a homotopy equivalence. Then if' U J will be f.h.t. and homotopic
relative to the ends to H.

REMARK 2.5. Note that έ?(M x I, H) is the surgery obstruction
of a surgery problem where the domain bounds and the range is
PD cobordant to ΊΓ\^ξ) Π M x {0}. Note also that if dim (If) =
q + i with i odd, then the obstruction to transversality lives on the
Bockstein of M. That is, the obstruction to global transversality is

Now suppose that H: M x i—> T{ζq) is homotopic rel M x I to a
globally transversal map. We wish to show that ^(M x I, H) — 0.
This will require a brief digression and alternative definition of
<!?{M X I, if).

Roughly, we will deform H: M x I — T(ζq) rel M x {1} (rather
than M x {0}) to a globally transversal map H1 with respect to a
smaller mapping cylinder ^£v c ^f^. We will do this in such a way
that H'H^t) remains setwise fixed. It then follows from a slight
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generalization of Lemma 1.4 that the inclusion {H')~\^ίv) n l x ( 0 H
H~ι{^) ί l l x {0} is a degree one noamal map of PD spaces.

There are theories of surgery on PD spaces ([8], [18]), but for
our applications, it is enough to observe that given a degree one
normal map X-+Y of i-dimensional Z/w-PD spaces, there is defined
homotopy theoretically an obstruction s(X —*Y) eP* (x) Z/n ([3], [4]).
s(X —>Y) an invariant of the normal bordism class of X-+Y and
vanishes if X-^Y is a homotopy equivalence. If X is a PL-manifold,
s(X~>Y) is the usual surgery obstruction.

We will argue that in the situation above, <^(M x I, H) —
s{{HTι{^>) Π M x {0} -+H-\ΛTe) Π M x {0}). It follows that if H
is globally transversal, then ^{M x I, H) = 0, since then (iϊ')"1^^')"-*
H^i^/fξ) is a normal map of PD spaces with boundary equal to
( i ϊ ' Γ U ^ ' ) Π M x {0} - H-'i^ZΪ) f]Mx {0}.

Now return to H: M x I->T(ζq). Let ̂ , c ^ be a slightly
smaller mapping cylinder for ξ. By Theorem 1.3.13 and Note 1.7,
the obstruction theory allows us to deform H rel M x {1} to a globally
transversal map H' with respect to ̂ £ / , such that H~\^%) is kept
setwise fixed throughout the deformation, provided that H~ι(^fξ) Π Λq+j

contains a disc D3 for each cell Jq+j of Λf x I — M x {1}, j ^ 1. So
our first step is to run thickened arcs from H~\^%) to any such
cell Aq+j which does not intersect H~ι(^fξ). This can be interpreted
as a deformation of H with does not change homotopy properties of
the inclusion H~\ξ)c:R~\^/^). In particular, H'1 (^Tξ) f] M x {0}
remains a PD space.

This step provides us with our normal map of PD spaces
(H'YK^v) Π M x {0} — H-'i^) n i x {0}. It is not difficult to use
the obstruction theory in a similar manner to prove that the normal
bordism class of this map is an invariant of the bordism class of
the map M-*Fζq which corresponds to H: M x I -+ T(ξq). Thus
&'(M x I, H) = siiH'Y1^') Π M x {0} — Z Γ 1 ^ ) n M x {0}) is an
invariant of the bordism class of M~+FζQ. To complete the proof
of Theorem 2.4 (iii), we need to prove that έ?'(M x I, H) =
<t?(M x I, H).

Recall that έ?(M x /, H) is defined as follows. Deform iϊrel I x {0}
to a transversal map H":M x [0, 1] -> T(ξq) such that H"(M x {1}) c
T(ξq\u), where U is a contractible neighborhood of the basepoint of
Bζq. Let J: M x [1, 2]-> T{ξq\//) be the homotopy, given by the
deformation of H, from J\MX{1) = H"\MX{1) to J\MX{2} = <*>, oo e T(ζq)

the cone point. Using a PL-structure on ζq\Uf we may assume that
J is PL-transversal to a smaller mapping cylinder ^€J, c ^€^. Then
Γ* = J~ι(Bζq) is a PL-manifold, and dYn = ̂ f f i i n l x {1} —
J~\^^) Π M x {1} = ( i ί " ) " ^ ^ ) ΓΊ Λί x {1} is a degree one normal map.
By definition, <?{M x J, H) = s(3Fw — (iϊ'O-X^Γ,) n M x {1}).
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H" Mx{l] J

29

Mx{2}

Now, H"\MX[1} is transversal with respect to both ^fς and Λ£V.
We may as well assume, just as above, that (H")-~%^ξ) meets all cells
of M x {0, 1} - M x {1}. Then we can deform H" rel M x {1} to if",
which is transversal with respect to ^€J, on all of M x [0, 1], keeping
(H")'^^) setwise fixed. This gives a PD space with boundary,
Zn = {H"')~\^fv) c {H")~\Λtξ)9 with Zn Π M x {1} = dYn. We now
compute

έ?(M x I,H) = s(dYn • (H'T'i^i) Π M x {1})

= s(Zn n Λί x {0} — > (H")-\^f$) n M x {0})

= ^ ' ( M x J, ίί r / U J)

= ^'(Jlf x /, H)

as desired.
Theorem 2.4(iii) is one of the key points of the paper. It is

precisely here that we obtain a global obstruction to transversality
(in a rather specific situation), using a call-by-cell obstruction theory.
The remainder of the paper exploits this global obstruction.

(iv) Product formulae. Suppose we have H: M x I-^T(ξq) as
above, and we deform H relative t o l x {0} to H' which is s.f.h.t.
Let (YnczM x {!}, t:vY(ZMX{1] -> ε«) be the resulting G-framed PD
subspace in M x {1}. If we cross (M x /, H) with Ώ in the bordism
of Fξ, then the new element is represented by

M x L M x I
H

T(ξ)

where we use a product triangulation on M x L. Thus we may
shift Hoπ to Hιoπ which is s.f.h.t. in the product triangulation.
The G-framed PD space in M x L x {1} is (Y x L, t). This shows that
the surgery problem is just crossed with L.

The product formulae in (iv) now follow from those in [15], [22],
and [23] for ordinary surgery problems.

2.6. We have already observed that the open covers which we
are considering are natural with respect to T(f) where / is a map
of spherical fiber spaces which is simplicial on the base. From this
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it follows easily that the homomorphirms on Fξ are also natural with
respect to such maps.

3* The obstructions to global transversality* Let ξq —> βξq be
an oriented spherical fibration, with π^Bξ9) = 0, and let Fξq->Wζq—>
Tξq be the fibration considered in § 2. (We have suppressed the cover
{Vp} of Tζq from the notation.) In §2 we defined homomorphisms
(if Q > 3)

, Z/n) >Pi® Z/n

In this section we will work in the stable range; that is, we
assume i<q — 2. We will use the homomorphisms &, d7M έ? to define
homomorphisms on the bordism of Tξq, which measure exactly the
obstruction to global transversality, up to cobordism, of a map

Mq+ί - ^ - > Tξq .

Thus S(Mq+ί, f) is 0 if and only if (M, /) is cobordant to a globally
f.h.t. map. (See Def. 1.1.)

Stably, the fibration Fξ->Wt-+ Tξq is also a cofibration. Thus,
there is a natural isomorphism of bordism groups π: Ωζ+j(W$f Fζ) —•
ΩζζjiTξ9), j < q — 2. The map π is described geometrically as follows.
A relative bordism element (ikf, dM)—>(Wζ, Fζ) is defined by giving,
first, a strongly fiber homotopy transversal map f:M-^Tξ and,
secondly, a homotopy F: dM x J—> Γf of f\8M to the trivial map.
We obtain a bordism element (D(M), g) of Tζ by doubling M, D(M) =
M\JBM(-M) and defining g:D(M)-> Tζ by setting g\M to be / a n d
setting g\_M to be F on a collar dM x I c ( - i l ί ) and the trivial map
outside this collar dM x Ia( — M) and the trivial map outside this
collar. Isomorphisms πn: Ωζ^(Wξf Fζ, Z/n)^> Ωp

qf.5(Tξq

t Z/n) and

π; VP

qiό{Wζ, Fζ)^ηζ^(Tζq) are similarly defined if j ^ q - 2.
We now define homomorphisms

s: Ωζti+1(Tζ<) >P<
q, Zjn) > Pt (x) Z/n
q) >Pi0Z/2

to be the compositions (i < g-3) s = OSTZΓ1: Ωζ£i+1(Tζq) -
+ Pi and similarly, sΛ = O^TΓ^1 and s = odπ~

LEMMA 3.1. // / : ξq ~+ηq is a map of spherical fibrations, then
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the diagram

commutes, and similarly for sn and s.
(ii) s, sn, and s satisfy the same compatibity relations as

and & (See Theorem 2.4(i), (ii).)
(iii) s, sn and s satisfy the same product formulae as

and fr (See Theorem 2.4(iv).)
( i v ) s , s n , a n d s a r e s t a b l e . T h a t i s , i f i < q — 3

commutes, and similarly for sn and s.

Proof. This is immediate from the definition of s, sn, and s in
terms of έ?, ̂ n, and &

Also, since the homomorphisms o, on and o are defined as surgery
obstructions, the homomorphisms s, sn and s are (indirectly) computed
as surgery obstructions. For example, let / : (M, dM) —> {Wξ, Fξ)
represent an element of Ωζ+ί+1(Wζ, Fξ). This means we have a strongly
transversal map g:M—>Tξ and a homotopy to zero of g\dM. Let
(V, dV)d(M, dM) be the (i + l)-dimensional Poincare pair (g-'iBζ"),
g~ι(Bξq) n dM), defined by the transversal map g. (We assume Bζq

is the mapping cylinder Mξ of ζq.) Then

sπ([M, 3M, /]) = o([dM, f\dM]) e P<

is the surgery obstruction of degree one normal map U —> L, where
L is PD cobordant to 3 7 and U is a PL manifold which is a
boundary. (See Note 2.5.) Thus both the domain and range of the
surgery problem used to compute s(x), xe Ωζ+ί+1(Tζq), are PD boun-
daries. We conclude, for example,

3.2. s: Ωζ£ii+1(Tζq)—> Pu = Z is identically zero. In this case, s
is computed as the difference of indices of two oriented boundaries.

Similarly, both the domain and range of the surgery problem
used to compute sn(y), y eΩζii+1(Tξq, Z/n) or s(z), zeτ)^i+ί(Tζq) are
PD boundaries; in the first case, boundaries as Z/n PD spaces and
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in the second case, boundaries as unoriented PD spaces.

REMARK 3.3. 3.2 could also be established by appealing to the
fact that Ωg+4ι+1(MSGg) is finite and using naturality of s with respect
to bundle maps.

Ω)PL

THEOREM 3.4(i). Suppose f:M—>Tξq represents an element of
ίθ [resp. n%i+1(Tζ*)]. If s([M, /]) = O[resp. s([M, F]) = 0],

f:M—*Tζq is cobordant to a globally transversal map.
(ii) If f:M--*Tξq represents an element of Ωζ£ί+ι(Tζq, Z\n), i

even, [resp. i odd] and sn{[M, /]) = 0 [resp. s([3M, f\δM\) = 0], then
f:M—>Tξq is cobordant to a globally transversal map.

Proof. Choose a relative bordism element g: (N, dN) —>(Wξ, Fξ)
such that π([N, dN, g]) — [M, f] where π is the doubling construction
defined above, g corresponds to a map G: dN x I—> Tξq with G\dNX0

strongly transversal and G|3^χi the trivial map. By assumption
0 = s([M, F]) = έ?{dN x I, G). Thus by Theorem 2.4(iii) we may
assume that G:dNxI—>Tξq is globally transversal. It is then
obvious (see figure below) that the induced map π([N, dN, g]) = g U G:
N{J( — N)-+Tξq is globally transversal. This proves (i).

dNxI

G-\Bξ)

The proof of (ii) is essentially the same. There is the additional
complexity that one must keep track of Z\n manifolds with boundary
in ΩlL(Wξ9 Fξ, Z/n), but we leave the details to the reader.

Our next goal will be to prove the converse of Theorem 3.4. In
the process, we establish,an alternate definition of the homomorphisms
s and sn on the bordism of Tξq, which is of independent interest.

There is a natural Pontrjagin-Thom isomorphism p: Ωζ+ό(Tξq) ̂
π,q+j(TξqΛMSPL2q), j < q - 2. Namely, given / : Mq+j — Tξq, embed
Mq+j Q S*g+i and cover / by a map of bundles
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v% > Tξq x E2q

Tξq x BSPL2

where E2q is the universal PL bundle. Now apply the Thorn con-
struction to obtain S3q+j — Tv2q -»(Tξq)+ΛMSPL2q. Since [M, f] e
Ωp^{Tξq) = kernel (Ω^s(Tξq) ~> Ωp

q£-{pt)), we obtain a well-defined element
of πzq+j(TξqΛMSPL2q).

Now, TξqΛMSPL2q is itself a Thorn space; namely, the Thorn space
of the Whitney sum ζq x E2q-+ξq x BSPL2q. From §2, there is a
fibration ΐ 7 ^ ~+IF ί x i , -> TξqΛMSPL2q and π 3 ? + i ( F ί x i ? ) = P, . We thus
define s' = dp: ΩP£i+i(Tξq) ~-> πsq+i+1(TξqΛMSPL2q) -> πiq+i(FξxE) = P,.

Similarly, there is an isomorphism

pn: Ωζϊs(TF, Z/n) — πzq+j(TζqΛMSPL2q, Z/n)

and we define s'n = Sp,: Ωζq

L

+i+ι(Tξ', Z/n)-+π3q+ί+1(TζqΛMSPL2q, Z/n)~>
7Γ3q+i(FξxEf Z/n). It is easy to see that if n is odd π3q+i(FζxE, Z/n) =
Z/n, 0, 0, 0 as i = 0, 1, 2, 3 (mod 4), respectively, and, if n is even,
ffβj+^xί, Z/w) = Z/w, 0, Z/2, Z/2 as i Ξ 0, 1, 2, 3 (mod 4), respectively.
Moreover

8' = 0: Ω&UT?) >Z

s' = s'2p2: Ωq+^(TP) > Ωq+iUTξ\ Z/2) > Z/2

s'n = s'δ: Ω%<UTξq, Z/n) > ΩP^UTξq) > Z/2 .

THEOREM 3.5 (i). s = s': ΩζiJ+1(Tξ9) > P3.

( i i ) 8n = s'n: ΩPΪJΛλ{Tζq, Z/n) > P5 (g) Z/n, j even.

Proof. Statement (i) is trivial iί j = 0 (mod 4) since s — sr = 0,
and if j = 2 (mod 4), statement (i) follows from (ii).

To prove statement (ii) if j Ξ 0(mod4), we will show that if
f:M->Tξq represents an element of ΩP^i+ι(Tξq) and f\δM:δM->Tξq

is globally transversal, with (/1 ^Γ'CBf9) = LH c (δM)q+iί the associated
PD space of dimension 4i, then s%{[M, /]) and sl([Λί, /]) e Z/n are
determined by the index of LH modulo 8. (By 3.2 and 3.4(i), the
hypothesis that f\δM is globally transversal puts no restriction on
[M, f] e Ωp^ί+j{Tξq).) First, we show that index (L4ί) (mod 8) depends
only on the bordism class of [8M, f\δM].

From the definition of p above, it is clear that a = p([8M, f \ δ M \ ) '
S3q+U -> TξqΛMSPL2q is global transversal: in fact

X 4 ' - a~\Bξq x E2q) c S*q+iί and LH = (f | δM)-ι(Bξq) c (dM)q+H

are equivalent as PD spaces. By 1.3(3) and a slight generalization
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of 1.4, we can homotope a: S39+4ί —> TξqΛMSPL2q to a strongly trans-
versal map β (see Def. 1.2) such that Yu = β'^Bξ9 x E2q) c Xu and
Y4ί —> X4ί is a degree one normal map. In particular, index (Lu) =
index (Xu) = index (Yu) (mod 8). Moreover, it is not difficult to show
using the obstruction theory of § 1 that index (YH) (mod 8) depends
only on the homotopy class of the strongly transversal map β: S*q+iί —>
TξqΛMSPL2q. (In fact, YH is well-defined modulo cobordism of PD
spaces and connected sum with the G-framed Milnor manifold MAn

of index 8.) We conclude from this paragraph the following.

LEMMA 3.6. // g: Nq+U —> Tξq is globally transversal with
g~\Bζq) = K4i c Nq+4i and if [N, g] = 0 e Ωq+4i(Tξ<), then index (Ku) =
0 (mod 8).

Now we return to the Z/n bordism element f:M—+ Tζq, with
(/UΓX^ίΌ = Lu. By definition, sn([M, f])eZ/n is computed as the
surgery obstruction of a normal map of 4i dimensional Z/n PD spaces,
W ~+W, (in fact, W is a PL manifold) where both W and W bound as
Z/n objects. This means that dW'= dV, δW = dV and W Ua (-wΓ) =
dQ', W\Jd(~nV) = dQ, where V\ Q' are PL manifolds with boundary,
V, Q are PD spaces with boundary, dim (V) = dim (V) = 4i, and dim (Q;) =
dim (Q) — 4i + 1. Since the dimension is odd, we may assume that
δW = dV ~» dV = dW is a homotopy equivalence. (There are no low
dimensional problems since we are allowed cobordisms of both the
domain W and the range W of the surgery problem W —> W.)
Moreover, the closed PD space Kiι = V\Jd (— V) can be identified
with (g I s^^Bξq), where g: N—> Tξq is a Z/n bordism element cobordant
to f:M-+Tξq. (Specifically, [N, g] is constructed in terms of the
map πn: Ωq+4ι+1(Wξ, Fξf Z/n)-> Ωq+4i+ι(Tξq, Z/n).) By Lemma 3.6,
index (Lu) Ξ index (Ku) (mod 8). On the other hand, by the Novikov
additivity property of the index, index (Ku) = index (V) — index (V),
and also 0 = index (dQf) = index (W')-n index (V) and 0 - index (dQ) =
index (W) — n index (F). Thus we have the following equation

index (W) — index (W) = n index (V) — n index (V)

= w index (if4ΐ) .

Since sn([M, /]) e Z/n is defined as the mod n reduction of the integer
(1/8) (index (W) — index (FT)), we have proved the following.

LEMMA 3.7. // / : Mq+ii+1 -> Tξq is a Z/n bordism element and
f\δM ^ globally transveral with LH = (f\δMYι(Bξq), let I(L") =
index (LH) (mod 8) e Z/8. Γ/^β^

( i ) i/ n = 2% 8j[M, /]) = 2-Ί(L«) 6 Z/2%
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(ii) if n is odd, sn([M, /]) = 0.
(In 3.7(i), if r < 3, I(LU) e 23~rZ/8Z c Z/SZ. Thus, 2r~U{Lu)e Z/2r

makes sense.)

Finally, s'n([M, /]) is also (indirectly) defined as the surgery obs-
truction of a normal map of Zjn P.D. spaces, via the identification
Ksq+uiFξxE, Z/n) = P 4 i (x) Z/n = Z/n. One can apply the same argument
used in the proof of Lemma 3.7 to deduce that sr

n{[M, /]) e Z/n is
determined by I(X4i) e Z/8, where

X4i = a~ι(Bξq x E*), a = p([5AΓ, / | ί J f ] ) : S3«+4i > TξqΛMSPL

But we already know from the discussion preceding Lemma 3.6 that
index (X4i) = index (L4ί). Thus, s'u([M, /]) = βΛ([Λf, /]) e Z/n. This
proves Theorem 3.5(ii) if j = 0 (mod 4).

If / : M^"" 1 -> Tξq is a Z/2r bordism element, s2r([M, /]) and
«ίr([Λf,/]) e Z/2 depend only on the Z/2 reduction of [M, / ] . That
is, s2r([M, /]) - s2ft([ikf, /]) and s'2r{[M, /]) - s'2p2([M, /]) 6 Z/2. Thus
we assume M is a Z/2 manifold. Let N6 be a Z/2 6-manifold with
^(δiV6) = l 6 Z/2. By Lemma 3.1(iii) and Theorem 2.4(iv), S2([M, f][N]) =
s2([M, f]).d(dN6) = s2([M, f])eZ/2. Also from Theorem 2.4(iv) and
the definition of s[, sϊ([M, f][N] = s't([M, f]) d(δN6) = s[{[M, f])eZ/2.
Thus the case j = 2 (mod 4) of Theorem 3.5(ii) follows from the case
j = 0 (mod 4) considered above. This completes the proof of Theorem
3.5.

We have now developed sufficient machinery to prove the converse
of Theorem 3.4, in most cases.

THEOREM 3.8. (i) // [M, f] e ΩζϊJ+ί(Tξ«)[τesv. <ί i + 1(Γ£*)] and f: Λf—>
Tξg is globally transversal, then s([M, /]) = 0[resp. s([M, /]) = 0).
(ii) If [M,f]eΩ^j+ί(Tξq,Z/n),j even, [resp. j odd] and f:M->Tξ«
is globally tranversal, then sn([M, F]) = 0[resp. s([δM, f\δM\) = 0].

Proof. We will postpone the unoriented case of 3.8(i) until
Chapter IV. The oriented case of 3.8(i) has content only if j =
2 (mod 4), and follows from 3.8(ii) with n = 2, j = 2 (mod 4).

To prove 3.8(ii) with j = 0 (mod 4), we observe that if / : Mq+u+ί-+
Tξq is globally transversal, with f~\Bξq) = Kii+1 c Mq+u+ί, a Z/n PD
space with 3KU+1 = Lu a δM, then 0 •= index (δKu+1) = n index (Lu) e Z,
hence index (Lu) - 0. Thus, by Lemma 3.7, sn([M, /]) = 0. The case
J Ξ 2 (mod 4) is deduced from the case j = 0 (mod 4) by crossing with
N6 where d(δNQ) = leZ/2, just as in the proof of Theorem 3.5. The
case j odd of 3.8(ii) follows from 3.8(i).

REMARK 3.9. Lemmas 3.6 and 3.7, along with the trick of crossing
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with N% d(δN6) = 1 6 Z/2, imply that the homomorphisms

Z/n) Pt (x) Z/n

(and hence also s: Ωζ£i+1(Tζq) —>Pτ) are independent of the cover {VP}
of Tξq which occurs implicity in the original definition of sn. We
will prove in Chapter IV that s: ηq+i+1(Tξ9) —>P< (x) Z/2 is also inde-
pendent of the cover {VP}.

We have shown above that if / : Mq+in —> Tξq is a map, M a closed
oriented manifold, then f:M-+Tξ is cobordant to a globally trans-
versal map g: N"—• Tξ (3.2 and Theorem 3.4) and, moreover, if Un =
g'1{Bζq)aNq+i\ index (L4 ί l)eZ/8 is an invariant of [Λf, /] eΩp

q^n{Tξq)
(Lemma 3.6). However, we have given no indication of how one
might compute index (L4n) e Z/8. Similarly, we have defined

9 Z/n) t (x) Z/n

and proved that sn is exactly the obstruction to global transversality,
up to cobordism (Theorem 3.8). But we have not discussed how
sn(Pq+ί+\ h)ePt®Z/n might be computed if h: Pq+i+1-> Tξq is a Z/n
manifold, although Lemma 3.7 reduces this question to the evaluation
of an index. The following discussion remedies these defects to some
extent, and will prove useful in §9.

Let π:ξq~*Bξq be a spherical fibration. Let MζczTξq be the
mapping cylinder of τr; that is, Mξ = ξq x [0, 1] U*i£χo Bξq. Let M'ζ<z.Mξ

be a "smaller" mapping cylinder. Say M'ξ = ξq x [0, 1/2] \JrΛξ^Bξq.
It makes sense to say that a map is transversal with respect to either
Mξ or M'ξ (see Definition 1.1).

DEFINITION 3.10. Let / : Mq+ί —• T<f9 be a map, M a closed mani-
fold. A partition of f:M~^Tξ consists of two codimension zero
submanifolds U, and U2 of M such that M = Uι \JdU2, dUι = C7Ί Π ί72 =
3 Z72, and such that /1 Vl: Uι —> T<f is transversal with respect to Mζ

and f\U2: U2—+Tξ is transversal with respect to M'ξ.
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Let Lγ = f'Wd n Ulf L2 = f'W'd Π U2, as in the figure. Thus
Lj is an ί-dimensional PD space with boundary, j — 1, 2. By Lemma
1.4, the inclusion dL2 —> dL1 is naturally a degree one normal map of
PD spaces.

Let us assume i = An, f: Mq+An —> Tζq partitioned as above. Then
there is defined an invariant Θ{dL2^dLJeZβ, [15], [4], [13].
Namely, let K2n_γ be the torsion subgroup of kernel (H^^dL^ Z) —>
ίJΓ

2ίl_1(aL1, Z)). The normal bundle map vdLz —> vdLz covering dL2 —> dL1

can be used to define a quadratic function ψ: iζ^-i —* Q/̂ > refining
the natural linking pairing on iζ^-i Let Θ(dL2 —> dL^) = Arf (α/r) G Z/8.

If TF4ίl —> 3LX is any normal cobordism between dL2 —> dL1 and a
homotopy equivalence, then Θ(dL2—>dL^) — index (Win) eZ/8, Thus if
we could do "Poincare surgery" on dL2—>dLί to a homotopy equi-
valence, we could prove that / = /„: M9+4n —> Tξq is homotopic to a
transversal map /,: M9+4% ~-> Tί9, and, if L4w = /f^Bfff)» then index
(IΛ) = index (Lx) + index (L2) - Θ(3L2 — 3LJ e Z/8. We assert that
even without Poincare surgery we can establish this last formula.
That is,

LEMMA 3.11. Let Mq+in = U1 \Jd U2 be a partition as above, Lfa Ut.
If f: Mq+in —> Tξq is bordant to a transversal map g: Nq+in —> Tξq,
with Un = g^iBξ*1) c Nq+in, then index (L4n) = index (LJ + index (L2) -
θ(dL2 -> dL,) e Z/8.

Proof. The idea is the same as that used in the proof of Lemma
3.6. Namely, by a Pontrjagin-Thom construction, we define p =
ί?([Af, /]): S*q+in -> TξqΛMSPL2q. Moreover, we preserve the partition,
that is, we embed (ikP+4%; £Λ, ?72)(S39+4%; D+, J9_), where ΰ ± are upper
and lower hemispheres. It is easy to see that then p: SSq+in —>
TξqΛMSPL2q is partitioned, S3(?+4% = D+ Us ί?-, with the same trans-
versal inverse images L\n c D^+ 4 Λ, L4

2

% c i>L«+4Λ, 3L2 c 3LX c S3^71"1 =
JD+ Π D_. (Strictly speaking, L f and Lf are replaced by their
thickenings.)

But we know that the two transversal maps TξqΛMSPL2l
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defined by dL2 c S 3 ^ - 1 and dL1 c S3^'471'1 are homotopic. Moreover,
there is no obstruction in this dimension to deforming a homotopy,
rel the boundary, to a transversal homotopy, with transversal inverse
image W4n c S3^471'1 x I. (See figure above.) Then index (W4n) =
Θ(dL2 —• 3LX) and the lemma follows since index (L4n) = index (L:) +
index (L2) — index (ΫP).

Lemma 3.11 reduces certain index computations to computation
of a θ-invariant. We state here some product formulae for evaluating*
Θ which will be used in §9. For proofs see [14], [5].

LEMMA 3.12. (i) Let f: Ma —> Na be a degree one normal map of
closed PD spaces, and let Lb be a closed PD space, a + b = 3 (mod 4).
Then Θ(Ma x Lb->Na x Lb) = 0 if a = 0, b = 3 (mod 4) Θ(Ma x L&->iVα x L&) =
4Sk(Ma->Na) d(Lb) if a = 2, 6 = 1 (mod 4). (Here Sfc(Λf* — iVα) e Z/Z
is the Kervaire obstruction, which is defined homotopy theoretically,
d(Lb) 6 Z/2 is the de Rham invariant.)

(ii) Let f:pa-*Qa be a normal map of Z/2r and 4:Z/2-*Z/8
PD spaces, and let Rb be a Z/2r PD space, a + b = 0 (mod 4). Form
the normal map of closed PD spaces δ(P (x) R) = P x δi? U(2δpχ5i2)̂ -P x -β

\J 8QxR.
(2δQxδR)

Then

Θ(δ(Pa (x) Rb) > δ(Qa (g) i?6)) = O i / α Ξ θ , i Ξ θ (mod 4)

θ ( δ ( P β (x) i2δ) > δ(Qα (x) J2δ)) = 0 ί / c Ξ l , i = 3 (mod 4)

Θ(δ(Pa (x) E δ ) > δ(Qa (x) i2δ)) - 4d(δi2)S,(p α > Qa)

if a = 2, 6 Ξ 2 (mod 4)

θ(δ(Pα (x) i2δ) > δ(Qa (x) i?6)) = Ad(Rb)Sk(δP — δQ)

i/ a = 3, 6 Ξ 1 (mod 4) .

Now let / : PQ+ι+1 > Tξq be a Z/n manifold.

DEFINITION 3.13. A Z/n partition of (P, f) consists of two
codimension zero Z/n submanifolds with boundary, U1 and U2aP,
such that P = Uί\JB U2, δP = δU, \JSδδU2, f\ϋ,:U1-* Tξq is transversal
with respect to the mapping cylinder Mξ c Tξ and /1 ϋ2: U2 —> Tξq is
transversal with respect to M'ξ c Mξ.

The transversal inverse images L\+ι = f~\Mξ) Π C/i. and L^1 =
f~x(Ml) Π !72 are also Z/^ manifolds with boundary. Moreover,
5L2 - /"^ΛfO Π D; Π U2 c Z " 1 ^ ) n ί ί i f l t r 2 ^ 3L l f and the inclusion
3L2—>dL1 is a degree one normal map of ί-dimensional, Z/n PD
spaces.



LEVITT'S OBSTRUCTION THEORY 39

Given a normal map Ml —>Nι of Z/n PD spaces, we can define
a "surgery obstruction" Sn(M*-+Ni)ePi<g> Z/n as follows:

Sn(Mih > Nih) = —(index (MAh) - index (Nih) - nθ(3M >δN)) e Z/n
o

Sn(Mih~2 > Nih~2) = Sk(M > N) e Z/2 <g) Z/n .

Thus Sn is defined homotopy theoretically for PD spaces, without
any knowledge of PD surgery. Sn is an invariant of the normal
bordism class of M—+N, and clearly vanishes if M—+ N is a homotopy
equivalence.

THEOREM 3.14. IfP= Ux\JdU2isa Z'/npartition of f:PQ+ι+1^Tζ\
with transversal inverse images Lγι c £7j+'+1, j = 1, 2, as above, then

Sn([P9+i+1, /]) - Sn(dL2 > dLx) eP,® Zln .

Proof. If i = 0(mod4) this follows from Lemma 3.11, the de-
finition of Sn in terms of the index and β, and the proof of Lemma
3.7. We leave the details for the reader.

If ί = 2 (mod 4), cross with [L% where d{8U) = leZ/2 and use
Lemmas 3.1(iii) and 3.12(ii).

We conjecture that given any / : MQ+ι+ί —* Tξq

y M a closed or a
Zjn manifold, partitions always exist. If so, we could then use PD
surgery to prove that S([M, f])ePt or Sn ([M, /]) 6 P< (g) Z/n was
exactly the obstruction to homotoping / : Mq+ί+1 —• Tξq to a transversal
map.

4* Geometric bundle structures and fiber homotopy trans-
versality* Let ξ be a spherical fiber space, T(ξ) the total singular
complex of the Thorn space, Wξ the complex of f.h.t. maps A1 —> T(f).
We have a natural inclusion Wξ Q T(ξ). The geometric realization
of T(ξ) is canonically homotopy equivalent to T(ξ). If X^ f(ξ),
then a lift of / through Wξ is the same thing as a deformation of
/ into the subcomplex Wξ, i.e., F: X x /—+ f(ξ) with Fo = f and
i^X) c TF̂ . Two such lifts (or deformations) are equivalent (concord-
ant) if and only if there is a homotopy between them which is con-
stant on X x {0} and which keeps X x {1} in Wξ. We say two PL
structures are equivalent if they are concordant.

In [11] it is shown that an equivalence class of PL structures
for ξ gives a well defined equivalence class of deformation retracts

of ?(£)into Wξ (i.e., liftings of f(ξ)-^->T(ξ)). These deformations
are given by homotopies of A1 —• T(ξ) to a PL transverse map. If
we do this construction universally we have
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I
MSPL(q).

This same construction works relative to an open cover, and may
be done so that all 2-dimensional preimages are homotopy equivalent
to 2-manifolds. Thus we have

WSG(q) <-— MSG(q)

MSPL(q)

where WSG(q) is the space of strongly f.h.t. maps small with respect
to the cover of BSG(q)ΊPL is again define by PL transversality and
is well defined up to equivalence as a lift. In this section we shall
construct a lifting of

WSG(q) - — MSG(g)
• ^

lτOP ^ " \ .

MSTOP(q)

which will commute with lPL up to equivalence as a lift.
The lack of a topological transversality theorem in dimension 4

prevents us from defining this liftining directly. We use instead an
enhanced version of the "crossing with CP2" trick of Sullivan, [23].

Let Mn be a closed, oriented, connected, simly connected mani-
fold. Define T(ζ)Mn to be a semi-simplical complex whose i-simplices
are maps Δι x Mn —• T(ξ) which are contained in one of the sets in
the open cover constructed in § 1, i.e., all of Ai x Mn is contained
in one of the open sets. Let Wfn be all the above maps which are
globally fiber homotopy transverse on Δi x Mn and on all faces
Δι x M*. In addition we require that whenever the primage has
dimension 2, that the PD space with boundary be the homotopy type
of a 2-manifold with boundary. Let Fξ(M) be the homotopy theoretic
fiber of

Wf > f(ζ)M .

THEOREM 4.1. (a) πi{Fξq{Mn)) = Pi+n^q^ if q ^ 3, q ^ n - 1, and
Mn is closed, oriented, connected and simply connected

(b) if in addition dim M = 0(4), then

Fξ >Fξ(Mn)

induces multiplication by I(Mn), π*(Fξ) —> π*(Fξ(M*)).
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NOTE. Theorem 2.4 is the special case of 4.1 when M* is a point.

Proof, (a) Given a map Δι x Mn -* T{ξq) which is f.h.t. on
dΔ* x Λfn; with ζ9 admitting a PL structure, use PL transversality
to produce a surgery problem of dimension i + n — 1 — q. Taking
its obstruction gives a map π%{Fξq(Mn)) —> P<+n_ff_lβ The same argu-
ments as in 2.1 show that this map is an isomorphism for i Φ 2 and
i + n Φ 3 + n. When i + n — 3 + n we use the fact that the two
dimensional PD space in dΔ1 x Mn is homotopy equivalent to a PL
manifold, to know that if the obstruction in P* vanishes then surgery
to a homotopy equivalence is possible. When i — 2, we have the extra
difficulty that dΔ2 x Mn is not simply connected. Thus our surgery
problem is not necessarily one with trivial fundamental group but
rather one with fundmental group Z. If q ^ n — 1, then the dimen-
sion of the surgery problem in dΔ2 x Mn is n + 1 — q ^ 2. Thus
having fundamental group Z causes no trouble.

(b) Obviously (xMn) induces maps

xM \xM

Fξ{Mn) —

We see easily that the induced map on the fibers crosses the
surgery problems involved with Mn. Thus it multiplies the surgery
obstruction by the signature of Mn. Since π*(Fζ) and π*(Fξ(M)) are
identified by surgery obstructions to P*, this proves part (b).

COROLLARY 4.2. If Mn is closed, oriented, connected, simply
connected and of index 1, then (xMn) induces a homotopy equivalence

Fζ

COROLLARY 4.3. Given X-^MSG and Mn as above, then lifts
of j to WSG are in natural 1-1 correspondence with liftings of

FSG{g)(Mn) —

jxikf

Fsav

-*w%Glq)f—>
jxikf
1

^WsGiq) >

\

\ /•

MSG(q)x

]xM

MSG(q)

/

X
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Now we use topological transversality to give a lifting of
MSTOP(q) ^ MSG(q) ^ MSG(q)CP\ Use topological transversality
inductively on simplies of dimension <£ q + 3 and then cross with CP2.
This gives a lifting on the (q + 3)-skeleton of MSTOP(q). On the
(q + 4)-skeleton we have

Δq+* x CP2, - ^ MSG(q)

Ύ] is topologically transverse on the boundary with preimage of di-
mension 7. Thus we can apply relative topological transversality to
shift f] transverse. Continue in this manner up the skeleta of
MSTOP{q), using only that g + w + 4 > g + 4. This provides the
lift, and a similar argument proves any two such lifts are equivalent.
Thus by corollary 4.3 we have a well defined equivalence class of lifts

WSG{q) <-— MSG(q)

* \ ί
ITOP " ^ |

MSTOP(q) .

THEOREM 4.4. The lift induced on MSPL(q) by the above lift
on MSTOP(q) agrees with any lift produced by PL transversality.

MSPL(q) -?-> MSTOP(q) > MSG(q)

^ \ ^ ITOP ^ . ^

' " ^ WSG(q)

i.e., l>rop°P is equivalent as a lift to lPL.

Proof. To show this we need only show that it is true after
crossing with CP2. After crossing with CP2 compatibility of the lifts
comes from the fact that PL transversality and topological trans-
versality are compatible.

In [11] it is proved that for a spherical fiber space ξq over a
four-connected space X, there is a 1-1 correspondence between
equivalence classes of PL structures on ξq and liftings.

WSG(q) > MSG(q)

The correspondence is as follows. If f:X—*BSPL{q) is a lifting of
/: X—> BSG(q), the classifying map for ξ9, then we form

T(ζ«) Ά MSPL{q) -^ W
smt)
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which is the lifting of Γ(/): T(ξ) -> MSG(q). We now wish to streng-
then this theorem by replacing WSGiq) by WSG.

THEOREM 4.5. If X is a connected, simply connected space,
and ξq—+X is a spherical fiber space which is classified by f:X*->
BSG(q) then there is a natural one-to-one correspondence between
topological structures on ζq and liftings.

I: T(ξ<) > WSG of T(f): T(ζ) > MSG(q) .

The correspondence is given by

{f:X >BSTOP(q) lifting /}

i > {lτoP°T(f): T(ζq) > MSTOP(q) >WSG(q)}

Proof. The argument proceeds exactly like the one in [11],
Namely we work one simplex at a time supposing we have a spherical
fiber space ζq —> Di+ι, a topological structure E—>ζ \dDί+\ and an
extension of strong fiber homotopy transversality over all of ξq.
Using this we show that the topological structure extends in a unique
way so that topological transversality (after we cross with CP2)
agrees with the strong f.h.t. (after crossing with CP2). Essentially
we have shown that the obstruction to extending the f.h.t. over ζ
in all of Dί+1 is naturally identified with an element in Pz and all
such elements occur as obstructions. Of course Pt is naturally iden-
tified with π^GjTOP) and the topological structure on ξ\dD gives
an element in π^G/TOP) which is the obstruction to extending the
PL structure over ξ —• Dt+1. What we show is that that these two
obstructions are the same element just as in [11]. This argument
works in all dimensions since πJJFζq) = Pt — q — 1 in all dimensions;
wheras the argument in [11] only works in dimensions > 4 since the
low homotopy groups of the fiber of Wξq —> T(ξq) are unknown.

CHAPTER II

5* Fξq, G/TOP, and localization at 2. In this section we use
the results of §2 and an argument similar to one in [11] to prove
that Fξq is naturally homotopy equivalent to copy of GjTOP shifted
q dimensions. This result is a slight strengthening of the one in [11]
in that the map constructed here is an isomorphism on all the homo-
topy groups where as the one in [11] is only an isomorphism on the
high (^5) dimensional groups. The argument is the same. The impro-
vement in this version is that by strengthening the notion of fiber
homotopy transversality in dimension 2 we get a hold on the low
dimensional homotopy of Fξq.
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The results in [23] and [9] give a canonical equivalence Ω4(G/TOP)
with G/TOP x Z. Let G/TOPq be the g-connected cover of G/TOP.
Define G/TOP(q) to be Ω4j-q{G/TOP4j) for any j such that Aj > g.
This is independent of j (as long as Aj > q) by the fact that Ω'G/TOP ~
G/TOP x Z. ΩG/TOP(q) = G/TOP(q - 1>, G/TOP(0) = G/TOP and
G/TOP(q) is g-eonnected.

THEOREM 5.1. (a) There exist canonical homomorphisms

(1) £

( 2 ) Ω*(G/TOP(q); Z/k) —

satisfing (a) σ α^ώ crfe are compatible with Z —> Z/A a^ώ Z/& —> Z/&
if* — q = 0 (mod 4).

(b) σ" is multiplicative with respect to the index
(c) °"fc /o^ Λ odd is multiplicative respet to the index

(d)

σJc(M,f) I(N) ^

σ2A:(ikr, f) d(δN) m = n = 2(4)

σ2(f\δM)-d(N) m = 3, n = 1(4)

0 otherwise

(b) G/TOP(q) is universal with respect to these homomorphisms
in the category of g-connected spaces.

NOTE 1. When we say that G/TOP(q} is universal with respect
to these homomorphisms in the category of g-connected spaces we
mean that given X g-connected and homomorphisms

Ω*(X; Z) —* P*_g and Ω*(X; Z/k) — > P*_

satisfying (a) through (d) above, then there is a unique homotopy

class of maps X > G/TOP(q) such that f*σ = τ and f*σk = τk for
all k.

NOTE 2. It follows from the usual universality argument that
the homomorphisms satisfying (a) through (d) above completely deter-
mine G/TOP(q).

Sketch of proof of 5.1 Case I q = 0. The surgery obstruction
maps, S and Sk give the required homomorphisms on Ω*(G/TOP) and
Ω*(G/TOP; Z/k). In [23] and [15] it is proved that they satisfy (a)
through (d) in the theorem and that G/TOP is universal with respect
to them.

Case II g = 4Ϊ. G/TOP(Al) = G/TOP41. Thus we have a map
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GJTOP(Al) - ^ G/TOP. Let σ = π*S and σk = π*Sk. The range of
σ is P* = P*_4z if * > U and the range of σk is P* (x) Z\k = P*_4Z (x) Z/fc
if * > 4Z. Thus in dimensions greater than U, σ and σk have the
correct ranges. In dimension less than or equal to U the bordism
groups of G/TOP(Al) are 0 and thus the ranges of σ and σk are 0
as they are supposed to be. σ and σk clearly satisfy (a)-(d) since S
and Sk do.

To show that {G/T0P<4i>, σ, and σk) are universal let τ and τfc

be given a bordism of X satisfying (a) through (d). Again identifying
P*-ik with P* for * ^ 4Ϊ we use τ and τk to define a unique map, /

G/T0P(4l)

G/TOP

with /*S = τ and /*Sfc = r r. This map factors uniquely through
G/TOP(Al) since X is 4ϊ-connected.

III q arbitrary. In this case we pick Al> q and use the fact
that β«-« G/TOP(Al) = G/TOP(q). We define σ and σ4 on G/TOP(q)
to be

and

; Z/k) >Ω*_q+il(GITOP(U); Z/k)

— P*

where σ' and σk are the maps from case II on G/TOP(£l).
The homomorphisms are easily checked to satisfy (a)-(d) and to

be be universal.
Apply 5.1 to Fξq, q ^ 3, and the homomorphisms of Theorem 2.4

we have a canonical map

Fζq - ^ G/TOP(q)

which is natural with respect to spherical fiber space maps which are
simplicial on the base.

THEOREM 5.2. pξ is a homotopy equivalence.

Proof. We have an isomorphism, ^oh
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For the universal homomorphisms on G/TOP(q) the analogous state-
ment is true. That is, the composition below is an isomorphism

Since (Pς)*p = έ?, we see that pf is an isomorphism on πt for all i.
Now we wish to specialize to the prime 2. According to

[15] the homomorphisms gives cohomology classes in G/TOP, £C e
H4*(G/TOP; Z{2)) and STe H**+2(G/TOP; Z/2). These classes are uniquely
determined by cohomological formulae involving them which deter-
mines the homomorphism S and S2k. The formulae are

( 1 ) Ω4*+2(G/TOP; Z/2) — P4*+2 (x) Z/2 = Z/2 ® Z/2 = Z/2 is given by

s(M, f) = < / * J T V\M), [M]) .

( 2 ) Ω^GITOP) -=-> P4, = Z and ΩAG/TOP; Z/2k) -^-> P4,

are given by S(M, f) = (f*J^ J^M, [M]}

), \M\>

Here £?u is a Z (2) characteristic class of M lifting the rational Hirzebruch
.S^-class, F S Q | 1 F ( M ' ) means the Z/2 characteristic class

and 5* is the Z/2 integral Bockstein. See [23] and [15] for proofs.
There are analogous classes and formulae G/TOP(q). The classes

in G/TOP(4:l) are obtained by pulling back the ones in G/TOP under

the natural map G/TOP(4l) -^-> G/TOP. The classes and homo-
morphisms still satisfy the same formulae by naturality. The classes
in G/TOP(q) are then obtained from those in G/TOP(4j)Aj > q, by
looping. Once again since both the classes and homomorphisms are
obtained in this way the formulae are still satisfied in G/TOP(q).
Using ρξq: Fξq —> G/TOP(q) to pull back the classes to Fζq, we see
that we have classes 3ίT eH^+2+q(Fζq; Z/2) and £f e H^\Fξq) Z(2))
satisfying:

THEOREM 5.3. ( 1 ) The obstruction homomorphism

<?: Ω4*+2+q(Fξq; Z/2)

Z/2 is given by

<ί?(M9 f) = {f*SίT* V\M\ [M]>

( 2 ) The homomorphisms έ?\ Ω4*+q(Fξq; Z{2)) —> Z{2) and
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\ Ω4*+q(F)ξQ; Z/2k) -> Z/2k are given by

, f) = < / * J ^ J*fM, [M]> + <δ*(f*JT VSq*V(M), \M\> .

( 3 ) 3ίΓ and £f e H* (FξQ) are uniquely determined by these
formulae.

Now consider the ίibration Fξq-+Wξq-+ Tξq of §2. In the stable

range, j < q - 2, we have a homomorphism τ: Hq+j(Fξg) -> Hq+j+1(Tξg),

with any coefficients. Thus the cohomology classes ^%^ e H**~2+q(Fξq, Z/2)

and ^ e # 4 * + f f ( F e f f , Z(2)) determine classes τ(^T) e H**-1+q(Tξq, Z/2) and

τ(^^)Giϊ 4 * + 1 + ? (Γ^, Z{2)), if 4* < g - 3. From the cohomology Thorn

isomorphism, we have τ(JΓ) = Φ{3%~\ ^ e H^iBζ9, Z/2) and π(£f) =
Φ(^f), & 6 Hu+1(Bξq, Z (2)). The classes J r and £? are natural with

respect to bundle maps, since 3Γ and £f have this property. More-

over, JίΓ and £? are stable classes, since τ(3Γ) and τ{^f) commute

with the suspension homomorphism Hj+q(Tξq) -^-> Hj+q+1(T(ξq φε 1 )),

j < q — 2. Thus we have universal, stable characteristic classes

jxT e H^iBSG, Z/2) and ^ e £Γ4*+1(5SG, Z (2)).

We can also define ,̂ Γ~ and &? in terms of the homomorphisms
s: Ω%i+1(Tξq) -> P y and s2r: Ω%J+ι(Tξ', Z/2r) ^ P3 (g) Z/2r of § 3. Namely,
s and s2r are defined in terms of έ? and ^r and ^ " e Hq+i*~2{Fξq, Z/2)
and J?f eHq+i*(FξqZ{2)) are defined by a cohomological formula for ^
and ^ 2 ^ (see 5.3). Thus we have in the stable range

THEOREM 5.4. ( 1 ) . The obstruction to global transversality

s2: Ωί£1+q(Tξ', Z/2) > Z/2

is given by

s2([M, /]) - (V\M) f*Φ(,?Γ), [M] > eZ/2.

( 2 ) Tfcβ homomorphisms s2r: Ω^1+q(Tξq, Z/2r)—>Z/2r are given by:

s2r([M, /]) = <βSf(M)./*Φ(j^), [M]>

+ ^FSg^ίδM)-(/ | , , , )**(JT"), [δM]> 6Z/2' ,

where

i: Z/2 > Z/2r

is ίfee inclusion.

( 3 ) JΓ ' αwd .5^ e H*(BSG) are uniquely determined by these
formulae.

6. Geometric bundle structures, localized at 2. In this section
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we continue to focus our attention on information at the prime 2.

We will show that if we use the classes J>Γ and &? defined in §5

to form

BSG{2) -^- X -^> Π K(Z/2, U - 1) x K(Zi2), U + 1)

then the homotopy theoretic fiber admits a natural equivalence with
BSTOP{2) i.e.,

BSTOP{2) A BSG{2) — > i ^ Π K(Z/2, U - 1) x K(Z{2), Ai + 1)

is a fibration where η(2) is the localization at 2 of the natural map
η .BSTOP^ BSG.

The map of BSTOP{2) into the fiber of ( J r X £?) is obtained
from the localization at 2 of the lifting

MSTOP(q) > Wξq

\

constructed in §4 by applying the Thom isomorphism. Thus

> MSG(q)ω > GITOP(q + 1>(2)

\ \
lτop\^ \

MSTOP(q)ω

after applying the Thom isomorphism gives

X > BSG(q)ω > G/ΓOP<1>(

BSTOP{q)ω

That i is a homotopy equivalence is essentially a reformulation (by
applying the Thom isomorphism) of the Theorem 4.5 that a topological
structure for ξ" is equivalent to a section of

Let X be the fiber of 0 T x

X > BSGM > Π K(Z/2, U - 1) x K(Zω, Ai + 1) .

Stabilizing the results of § 4, we have a fibration of spectra

^ >Wsσ >MSG
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Since we are in a stable category, the ίibration is also a cofibration
and extends to the right as follows

FSG > WSG > MSG > ΣFSG .

Localizing at 2 we have

FSG{2) >WSG{2) > MSGω — ΣFSG{2)

\
lτopi2)\

MSTOP{
{2)

From this we shall produce a canonical lifting of BSTOPω —• BSGi2)

to BSTOP{2) —> X, using a stronger version of the Thorn isomophism.

Let 77 be a product of Eilenberg-MacLane spaces, and 77<g>

another product which is g-connected and with ΩqΠ(q} 77.
Then there is a map, well defined up to homotopy,

given by cupping with tq, the fundamental class of K(Z, q). We
may arange this map so that ρ(*xίl) = *.

LEMMA 6.1. Let ξq—+B be an oriented q-dimensional spherical
fiber space. Then we have a natural homotopy equivalence

NOTE. The statement on π0 translates to JT*(JB) >
HQ+*(T(ξq)) is an isomorphism.

Proof. Let UeHq(T(ξq); Z) be the Thorn class.
Let U: (T(ξq), *) —»(K(Z, q), *) be a representative for U. Define

^ , *)<™«>..)f by (f:B->Π)^[(DP), S(ζq))-^->(D(ξq), S(ζq)) x

(D(ζq), S(ξq)) x B - ^ K(Z, q)xΠ-^Π (q)]. We

identify T(ξq) with D(ξq)/S(ξq). Notice also that the base point of

T(ξq) goes to p(*, 77) = *. Thus we have a map 77* -^-> (77<g>,*)(Γ(^)'*).

On 7Γ0 it is just the usual map H*{B) - ^ H^q{T{ξq)) and thus is
an isomorphism. We now show that it is an isomorphism on π%.
Since ΠB and (77<g>, *yτ^>*ϊ are iϊ-spaces it suffices to show that
μ*: [S% Πβ]-+[S\ (77<g>, *)^«'). )] is a bisection.

[S\ ΠB] = πQ(ΠB*sί) = H*(B x SO

[S\ (77<g>, *y™<^] = πo[77<g>, ^
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But

x &)/(* x S*) = T(ζ') A (Si+) = T(ξq) Λ (S* > pt)

x 1*0 ,

where ζq x lSi—> B x S* is the product fiber space. Thus

[S\ (Π(q), *)^>>*)] = H*(T(ζ< x 1,0)

The map induced by μ* from H*{B x Sι) to H*+q{T(ξq x lsi)) is easily
seen to be U(ϊ7(x)l) which is the Thorn class of this bundle. This
proves the lemma.

We now apply this lemma to the fibration

WSG{2) > MSG{2) > ΣFSG{2)

lτθP{2) I Φ(V(2))/ \j I

I / Π K(Z/2, 4i - 1 + «) x K(Z{2), U + l + q).
MSTOP{2) ^

The lifting lTop{2) is equivalent to a deformation of

ΦL9h x Φ(^)oφ(v^) = Φ(^T x J#o79(2)) to * .

The previous lemma applied to πQ and πί of the mapping spaces tells

us that (SΓ x S?)oη2

J^L^JL* γι (z/2, U - 1) x (Z(2), U + 1)

BSTOP{2)

is homotopic to *, and, in fact picks out up to homotopy a homotopy

{3Γ x S>f)oη{2) to *. This is equivalent to a lift of η{2) to the fiber

Xf I TOP'' BOTOP(2) -—> X.

THEOREM 6.2. ΐT0P is a homotopy equivalence.

Proof. Theorem 4.5 says that if B is 1-connected and f:B—>
BSG, then liftings of / to BSTOP.

BSTOP

B <i n

BSG

are in natural 1-1 correspondence with liftings μ of T(f)
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MSG

where ζ is the spherical fiber space over B induced by /. The
correspondence is f^lTop°T(f).

Localizing at 2, we see that liftings

BSTOP,,
J 12) ,

B

are in natural 1-1 correspondence with liftings

WSG(2)

T(f)<^

MSG{2)

The correspondence is given by

J (2) > ^T0Γi2) ° J-\J )

Let Zβ, Ai - 1) x K(Zω, 4i + 1).
The previous lemma gives a lifting

T(ξ)

WSG,.

MSGi

where p is the bundle over Sι induced by j°g. This is equivalent,
by the above discussion, to a lifting

BSTOP{2)

BSG,.
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g is the unique lifting (up to equivalence) for which lTop°T(f): T(p)—*
MSTOP{2) —*WSG{2) is homotopic as a lifting to ω. Applying the
previous lemma again, we see that lTOp°g is homotopic to g for exactly
one homotopy class of maps g: S* —» BSTOP{2). Thus ΐT0P* is an = on
Ui for i > 1. Since X is the fiber of

BSG{2) > Π K(Z/2f U - 1) x K(Zit), U + 1)

the homotopy exact sequence of a fibration implies that X is connected
and simply connected as is BST0P(2). Thus ΊT0P: BSTOP{2) -> X is
a homotopy equivalence.

7* The cohomology suspension of the classes 3ίΓ and j£^ In
§5 we defined classes 3Γ e H^~ι{BSG, Z/2) and & e H**+1(BSG, Z(2))
which are obstructions to transversality in the Thorn space MSG.
Our goal in this section is to study σ(3t") e H**~2(SG, Z/2) and #(=#) e
H*XSG, Zi2)), where the cohomology suspension σ: H*(BSG) —• iP'^SG)
is induced by the natural map ΣSG-+ BSG. We shall show that
0-(JΓ*) and σ(£?) are the classes induced from the surgery classes
in G/TOP by the natural map G -* G/TOP.

There is a fibration

GJTOPq -^ BSTOPq > BSGq .

The bundle over Gq/TOPq is the universal topological ^-bundle together
with a fibre homotopy trivialization t, (t corresponds to a map of Thorn
spaces τ: M(Gq/TOPq) —* S* of degree one on the bottom cell). Moreover,
the following diagram commutes

\ ί

MSTOP Q

where the unnamed maps are the obvious maps of Thorn spaces.
We have constructed natural fiber homotopy transversality struc-

tures on both MSTOPq and Sq, q ̂  3; that is, liftings of MSTOPq

and Sq to WSGq. This provides two liftings, lTOp°J and £e°£ of
M(GJTOPq) to WSGq, as in the diagram follows:
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^ / \
^ / \

>MSG M(GJTOPt)
* \ \ /

\ MSTOPq

If we work in the stable range, or with spectra, we thus obtain a
" d i f f e r e n c e e l e m e n t " d: M(G/TOP)-> F, d = lT0Poj -leot.

Using the homomorphisms of §2, #*: Ω*+q(Fq) —>P* and

t?%: Ω*+q(Fq, Z/n) > P* (x) Z/n ,

we constructed in §5 cohomology classes

ST x £P\ Fq > Π K(Z/2, q + 4i - 2) x ϋΓ(Z(2ϊ, g + 4i) .

Stably, we can form the composition (J%Γ x =^
?)ocZ: M(Gq/TOPq)

2, ff + 4i - 2) x

THEOREM 7.1. ΓAe map (̂ %̂  x c^
7)ocί coincides under the Thorn

isomorphism with the cohomology classes 3ίΓ eH**~2(Gq/TOPg, Z/2)
a^ώ Jϊf e H"(Gq/TOPq, Z{2)), defined by the surgery obstruction homo-
morphisms S: Ω*(Gq/TOPq) -» P # and Sn: Ω^{GqjTOPqj Z/n) -> P*

On the other hand, consider the fibrations

^ x ^ 2, 4i - 2) x ϋΓ(Z(2)> 4i) • X > BSG{

of §6, where

X = Fiber ({BSG{2) _^!2Lii> JJ JSΓ(Z/2, U - 1) x iΓ(Z(2), 4ί + 1)) .

By Theorem 6.2, the two lifts in the diagram

WSG{2) • MSG{2)

Tΐ /
lτθP°j\ yjni.

M(G/TOP)

correspond to two lifts in the d iagram

X • >• BSG(2)

G/TOP
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with a corresponding difference element A: G/TOP—^J\i^ιK(Z/2t 4i —2) x
(Zli)9U). But the lift of 0: G/TOP-> BSGi2), corresponding to the
lift leot on the Thorn space, is the 0 lift, 0:G/TOP-+X. From this
remark and Theorem 7.1 it follows that the difference element Δ is

x «5f and that the following diagram commutes

Π K(Z/2, U - 2) x K(Z{2), U) > X

G/TOP »BSTOP

COROLLARY 7.2. σ{Sf) = i*(.5Γ) e H'-^SG, Zβ) and σ ( . # ) =

Thus we see that the suspensions of the transversality obstruc-

tions StΓ and & in BSG are simply the surgery obstruction classes

in SG. We now return to the proof of Theorem 7.1.

Proof of 7.1. For simplicity, we will prove 7.1 for G/PL rather
than GITOP. This certainly suffices for Corollary 7.2.

The surgery obstruction homomorphisms S: ΩζL(Gq/PLq) —> P* and
Sn\ΩlL(Gq\PLq,Z\ri) -+P%®Z\n have Thorn space analogues Sf\
Ωi%q{M(GqIPLq)) — P* and ^ : Ωζ%q(L(GJPLq), Z\n)-+P*®Z\n defined
by composing S and Sn with the PL bordism Thorn isomorphism

ΩζL

+q(M(GJPLq)) - ^ ΩζL(GJPLq), and similarly with Z/n coeffecients.
The cohomology calasses Φ(3ίΓ) e H^2+q(M(Gq/PLq)f Z/2) and

Φ(j^W*+«(M(GJPLq), Z{2))

are then defined in terms of & and S^n by formulae which are
identical to the formulae defining JίT e H^2+q{Fqy Z/2) and ^f e
H4*+q(Fqf (Z(a)) in terms of #>: Ω*+q(Fq)-+P* and έ?n: Ω*+q(Fq, Z/n)-+
Z/n. (See §5 for these formulae.) Theorem 7.1 then follows from

(7.3) SS = έ?d*: Ω*+q(M(GJPLq)) > Ω*+q(Fq) > P , and

Si = έ?nd*: Ω*+q(M(GJPLq), Z/n) > Ω*+q(Fq, Z/n) > P*®Z/n .

To prove 7.3, we must examine the "difference construction"
d = loj — lot: M(Gq/PLq) —>Fq more closely. Let us picture a cell
a: Aq+i — MSGq by:
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and a cell of WSGq by:

where the band is the PD space given by transversality. We pic-
ture a deformation /}q+i x I-+MSGq of a. to WSGq by

Δ x l

i x O

A cell of Fq is pictured:

where the shaded top face means the map is to the basepoint of
MSGq. We will work in the stable range, i < q, and assume all our
cells have a "suspension coordinate" in the direction of the arrow
below:

\

\ \

Cells of Fq then "act" on deformations of oc by suspension addition,
or juxtaposition:
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followed by the obvious equivalence of

a and a §1
With these definitions one shows for complexes X with dim (X) < 2g
that if f:X—>MSGq can be deformed to WSGq, then equivalence
classes of deformations of / correspond bijectively with [X, Fq\.

Now consider a cell a: Aq+i —> M{GqjPLq). We picture the defor-
mation lPLoj(a) defined by PL transversality by:

\

\

where L% the core of the band on the bottom face, is a PL manifold
and the band is a tubular neighborhood of L\ We picture the
deformation le°t(a) defined by the fibre homotopy trivialization of
M{GqjPLq) followed by transversality for the trivial bundle,
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where ΊJ is a framed submanifold of the tubular neighborhood of L.
The following picture gives a cell, d(ά), of Fq:

(7.4)

where the map on the top half is a canonical homotopy of a — a to
the trivial map. It is easy to see that the deformation le°t(a) + d(a)
is equivalent to lPLoj(a). Thus d(ά) represents the difference construc-
tion lPLoj(a) - lβot(a): Δq+ί-+Fq.

If we have, instead of a single cell, a manifold / : Mq+i-+M(Gq/PLq),
we get d(f):M—*Fq by iterating the construction above over the
cells of M. This produces a PL submanifold V c Mq+ί and a framed
submanifold U of the tubular neighborhood VLCM. It is easy to see
from the definition of £*: Ω*+q(M(Gq/PLq))-+P* above that

and similarly for S^ if M, and hence U and L, are Zjn manifolds.
On the other hand, from §2, έ?([M, d(f)]) is defined as the ob-

struction to making the cells of d(f) pictured in 7.4 globally trans-
versal, keeping the bottom face fixed. We may as well assume that
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f:M—*M(Gq/PLq) is already PL transversal, so that 7.4 simplifies to

Lxl

-L

That is, d(f) is already transversal except in the lower left block,
and in the lower left block, d(f) is the homotopy between the Pon-
trjagin-Thom constructions on the PL normal bundle of L and the
framed normal bundle of L'. Thus

έ?([M, d(f)\) = S(U -> L) = £*([M, F]) e P< and similarly for έ?n.
This proves 7.3 and completes the proof of Theorem 7.1.

REMARK 7.5. If one follows to the letter the prescription of §2
for computing έ?([M, d(f)]ePi9 one acutally gets έ?([M, d(f)]) =
S(U U (~L) —> L U (~L)). Of course, this is the same as S(U -> L).

REMARK 7.6. We leave for the reader the details of the argument
for G/TOP. It is only necessary to carry through the "crossing
with CP(2)" construction used in the definition of lT0P: MSTOPq —>
WSGq.

REMARK 7.7. The results 7.2 and 6.2 suggest that the map S^ x
&\ BSG —* Π ϊsi K(Z/27 An — 1) x K(Z{2), An + 1) is in some sense equiv-
alent to the natural map Bπ: BSG—*B(G/TOP){2). That is, we have identi-
fied the fibre o f X x i with BSTOP{2) (Theorem 6.2) and we have
identified Ω{ST x J#): SG -> Π K(Z/2, An - 2) x K(Z{2), An) with SG ->
(G/ΓOP)(2). I. Madsen and R. J. Milgram have proved that B{GjTOP){2)

is a product of Eilenberg-MacLane spaces, but they have also shown
that there does not exist a commutative diagram

Π K(Z/2, An - 1) x K(Z(i)f An + 1)

B(G/TOP)(2)
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with a a homotopy equivalence.

CHAPTER III

8* A Hirzebruch index class for PD spaces* In previous

sections, we have defined cohomology classes 3ίΓ e H4*~XBSG, Z/2)

and & eH**+1(BSG, Z{2)) which are obstructions to Poincare trans-

versality in the Thorn space MSG. From Lemma 3.7, it follows trivi-

ally that 8 ^ = 0. Thus, there exist classes I e H**(BSG, Zβ) such

that βl = j??, where β is the Bockstein homomorphism of the coef-

ficient sequence 0 —> Z{2) —> Z{2) —• Z/8 —* 0.
In this chapter, we will define a specific class Z = 1 + Zt + Z2 + ••• e

H4*(BSG, Z/8) with βl = &. Our class Z is a kind of Hirzebruch
class, which measures the index modulo 8 for PD spaces. Among
its properties are the following:

8.1. ( i ) If M*n is a Zβ PD space and v: M4n -> BSG classifies the
stable fibration of Min, then

<v*(l), [Min]) = index (M4n) e Zβ .

(ii) plϊ) = F 2 e H4*(BSG, Zβ).
(iii) Z satisfies the Whitney sum formula Z(£ x yj) ~ l(ξ) (x) i(^) +

i (FSg1 F(ί) (x) ^T(77) + .5T(ί) (x) VSq1 V(y)), where i: ϋ * (, Zβ) —
iί*( , Zβ) is induced by the inclusion i: Zβ -> Z/8.

(iv) /9Z = ^ G H**+ί(BSG, Z (2)).
(v ) π*(Z) = /O8(L) 6 H'XBSTOP, Zβ), where π: βSTOP ~> BSG is

the natural map and L e H*(BSTOP, Z{2)) is the topological L-class
of [15].

(vi) pAJL) e H4*(BSG, Z/4) is the Z/4 index class constructed in
[6]. In particular, ρ4(ln) = ^(v2n) + jσn(w2ws , , w4n), where ^ is
the Pontrjagin square, j : H*(BSG, Zβ) -»JΪ*(5SG, Z/4) is the natural
map, and σ% is a polynomial in Stiefel-Whitney classes.

It is not difficult to show that properties 8.1(i), (ii), and (iii)
characterize I uniquely. The existence of a Zβ class satisfying 8.1(i)
was shown by D. Frank, using the same theory of N. Levitt that
we have exploited in this paper. The existence of a Zβ class satis-
fying 8.1(ii) has been known for some time, as it is easy to compute
homotopy-theoretically the obstruction to lifting a square to a Zβ
class. It is surprisingly difficult, however, to construct a single class
which satisfies 8. l(i), (ii), and (iii). Property (iii) is particularly
interesting for historical reasons, and by analogy with other index
classes (the Z(2)-class of [15] and the Z/4 class of [6]). One might
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expect the class I to satisfy the sum formula l(ξ x η) = l(ξ) (x) l(η).
However, we can prove there is no class which satisfies this simpler
formula and which also satisfies 8.1(i).

To construct I e H**(BSG, Z/8), we will define a suitable homomor-
phism on the smooth bordism of MSG, φ: Ω^MSG, Z/8) —> Z/8, and
use Proposition A. l l of the Appendix to obtain Φ(l) e H4\MSG, Zj8),
where Φ: H4*(BSG, Z/8) ~ H*\MSG, Z/8) is the Thorn isomorphism.

Let

Ω[*(MSG, Z/8) = kernel (Ω^MSG, Z/8) -i-> Ω^{MSG) -?-> Z/2) .

We first define <p': Ω[*{MSG, Zj8) ->Z/8. Roughly, given f:Mq+in~+
MSGq with q > An, M a Z/8 manifold, and s([δM, f\δM\) = 0, we use
Theorem 3.4 to cobord / : Mq+An —• MSGq to a globally transversal
map g: Nq+in -* MSGq. Let g-'iBSG,) = L4n a Nq+in be the associated
Z/8 PD space. Set <p'[M, f] = index (L4n) e Z/8. It is not obvious
that φ' is well-defined, since a globally transversal map g: Nq+in —>
MSGq may be cobordant to 0, but not "globally transversally cobordant
to 0." We need a generalization of Lemma 3.6.

LEMMA 8.2. If Nq+4n is a ZJ8 manifold, g: Nq+in -> MSGq a globally
transversal map, with Kin = g'^BSG,), and if [N, g] = 0 e Ωq+in(MSGg,
Z/8), then index (K4n) = 0 (mod 8).

Proof. The proof is analogous to the proof of Lemma 3.6. There

is an isomorphism p: Ωq+j(MSGq, Z/8) ^> π3q+j(MSGq A MS02q, Z/8) if
j < q — 2. Elements of π3q+j(MSGq Λ MS02q, Z/8) are represented by
maps Slq+j —> MSGq Λ MS02q, where Slq+j is the space obtained from
S3q+j by deleting 8 discs, and then identifying the boundary com-
ponents. Slq+j is a Z/8 manifold, and every Z/8 manifold Nq+j embeds
in Slq+j (as Z/8 manifolds) with tubular neighborhood the stable
normal bundle of Nq+j. Such an embedding defines p{[N, g]) e
π3q+j(MSGq A MS02q, Z/8). In particular, if g: Nq+4"-+MSGq is globally
transversal, a = p([N, g]): Slq+4n-> MSGq A MS02q is globally trans-
versal; in fact, g-'iBSG,) - Kin and ar\BSGq x BSO2q) = Xin are
homotopy equivalent Z/8 PD spaces. Thus index (Xin) = index (K4n).

Careful use of the obstruction theory of §1, Chapter I (in par-
ticular, Theorem 1.3(3) and Lemma 1.4) implies that we may homotope
a: Slq+in —> MSGq A MS02q to a strongly transversal map β, with
β-\BSGq x BSO2q) - Y4n c X4n, a degree one normal map of Z/8 mani-
folds, which is homotopy equivalence on the Bockstein δYaδX. Thus
index (Yin) = index (X4n) (mod 8).

On the other hand, another application of the obstruction theory
implies that the Z/8 PD space Y4n, obtained from the strongly
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transversal map β, is determined by homotopy class of β: S3

8

9+*n —>
MSGq A MSO2q, modulo cobordism of Z/8 PD spaces and connected
sum with the Milnor manifold M4n of index 8. The lemma follows.

Now, sd: Ω,n{MSG, Z/S) — Z/2 is nonzero for all n > 0. In fact,
let Kq+i = Sq+S x I/(x, 0) = {-x, 1) be the q + 4-dimensional Klein
bottle. Kq+i is a Z/2 manifold with δKq+i = Sq+\ In Chapter IV,
§10, we will show that there exists a map a: Kq+4 —• MSGq, with:

(8.3) ( i ) sδ[Kq+\ a] = s[Sq+\ a \ SQ+,] = 1 e Z/2 and

(ii) <α*(Φ( F2

2)), [#9+4]> = 0 e Z/2.
By Lemma 3.1(iii), s δ ( [ ^ + 4 , α] [CP(2(u - 1))]) - 1 eZ/2. Thus, on
Ωq+in(MSGq, Z/8), sδ is nonzero on ί [ j ^ + 4 , α] [CP(2(^ - 1))], where

Define r: Ωq+in(MSG, Z/8) — β;+4%(MSG, Z/8) by

r([ikΓ, /]) - [M, /] - i((8δ[M, f])[Kq+\ a] [CP(2(n - 1))]) .

where the coefficient (sδ[M, /]) is 0 or 1. As the difference of two
homomorphisms, r is certainly a homomorphism. We then define

φ" = φΌr: Ω^MSG, Z/8) > Z/8 .

It turns out that φ" does not quite satisfy the product formulae of
Proposition A. 11. We need a correction term on products of the
form [Pq+4a~\ g][Qib+1]e Ωq+iia+b)(MSGq, Z/8). So we finally define
φ: ΩΛMSG, Z/S) — Z/8 by

φ[M, f] = φ"[M, f] - i(VStV{M)-f*{Jr\ [M])eZ/8 ,

where 3t eΉ"-\BSGr, Z/2) is the class of §5 and ί: Z/2—>Z/8 is the
inclusion. In dimensions Ξ£ 0 (mod 4), we set φ = 0.

THEOREM 8.4. (i) <p([M, f] [N]) = φ[M, f] index (N) e Z/S if
[M, f] e Ω*(MSG, Z/S) and [N] e Ω*(pt).

(ii) φ(i[β, f][N]) = φ(i[M, f]) index (N) e Z/2 c Z/8 if [M, f] e
Ω*(MSG, Z/2) α?̂ ĉ  [iV] e Ω*(pt, Z/2).

(iii) ^(ftδ([P, F][Q])) = 9>(ft«[P, F]).index (Q) e Z/2cZ/8 i/ [P, P] e
Ω*(MSG, Z/2) and [Q] e fl+(pί, Z/2).

Before proving 8.4, we establish the main results of this section.
From 8.4 and Proposition A. 11, of the Appendix, we have

THEOREM 8.5. There is a unique class I = 1 + lt + l2 + , , lt e
HU(BSG, Z/S), such that, for any map f: M-+MSG, Ma smooth Z/S
manifold,
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ψ'{r[M, /])

= (L(M) f*(Φ(l)), [M]) + KVStfViMyri.Jr), [M])eZβ .

We next establish properties 8.1(i), (ii), and (iv) for the class I.

Proof of 8.1. (i) Let Stin be the Zβ manifald defined in the
proof of Lemma 8.2. If Min is a Zβ PD space, q > An, we may
embed Min c Sl+4n as Zβ PD spaces, so that the normal bundle Min in
Sl+in is the stable normal fibration v of Min. The Prontrjagin-Thom
construction then gives a globally transversal Zβ bordism element,
p: Sl+in — MSGg, with p-'iBSG,) = Min anάp\M = v: M — BSGt. Then,
by the definitions of ψ' and r, and by 8.5,

index (M4») = ^'[S?+4«, P]

= 9>'r[S£+4», P]

= (P*(Φ(D), [Sl+in])

since L(S?+4») = 1 and FSg1 F(S^+4M) = 0.

Proo/ o/ 8.1. (ii) Let [N, g] e Ω^MSG, Zβ). We will prove, with-
out using 8.4, that

(8.6) φi([N, g\) = i(L(N)• g*Φ(F2), [N] e Z/2 c Z/8 .

On the other hand, it is obvious from 8.5 that

9i([N, g]) = i(L(N)-g*Φ{pJ,), [N]) e Zβ c Zβ .

(That is to say, in the language of PropositionA.il, or A.3, the graded
class Φ{p2(l)) e H*(MSG, Zβ) corresponds to the homomorphism <pi:
Ω*(MSG, Zβ) — Zβ c Zβ.) It follows immediately that pj, = V\

To prove 8.6, let Ω',*(MSG, Zβ) = kernel (sδ: Ωt,(MSG, Zβ) —
* Zβ). There is a commutative diagram

Ωtn(MSG, Zβ) — Ωin(MSG, Zβ)

Ω'in(MSG, Zβ) —^ Ω'ίn(MSG, Zβ)

Zβ > Zβ

where r2[M"+i\ f] = [ikK4*, /] - (s§[M, f])[K*+i, α][CP(2n - 2)], and
where, if g: Ng+in —»MSG, is a globally transversal Z/2 manifold,
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ψ'JίN, g] = index (g'ι(BSGq)) e Z/2. (The fact φUMSG, Z/B) — Z/B is
well-defined implies φ[: Ω'An(MSG, Z/2)->Z/2 is well-defined.) From well-
known properties of V2 and L (namely: (a) V2 is multiplicative, (b)
O*(F 2 ), [ΛT4 ]> - index (Min) e Z/2 if v: M4n ~> BSG is the normal
bundle of a Z/2 PD space ikf4%, and (c) p2(L(N)) = V\N) for smooth
manifolds N), it is easy to see that

φ'JLN, g] = index (g

(8.7) =<VrI(iSΓ).

- (L(N) g*Φ(V2), [N]}eZ/2.

If f:Mq+*n-+MSGp is any Z/2 bordism element, we then have

, f] = ^([M, /] - (sδ[Λf, f])[K«+\ a][CP(2n - 2)])

Φ(F2), [M]> - (sδfΛf, /])<L(iί9 + 4 x CP(2n - 2))
2)) (x) 1), [iί9 + 4 x

[M]) .

The first equality is the definition of r2, the second equality is 8.7, and
the third equality follows from 8.3(ii) and the fact that L(Kq+i) = 1.

Finally, it is obvious that on elements [M, f] e i(φ^(MSG, Z/2)) c
Ω±*{MSG, Z/B), the error term in the definition of φ vanishes; that
is, iiVSqΎW f^Jr), [M]> = 0. Thus we have proved 8.6:

<pi[N, g] = φ'ri[N, g] = iφ'2r2[N, g]

= i{L{N)-g*Φ{V% [N]eZ/2aZ/8 .

Proof of 8.1. (iv) We will prove, without using 8.4, that the
homomorphisms

Ω4*+ι(MSG, Z/2S) -i-> Ω4*(MSG) - ^ > Z/8 ,

with image interpreted in Z/2S, s ^ 1, are exactly the defining homo-

morphisms for the class Φ(j£?) e H**+1(MSG, Z(2)) (see the Appendix,

A.6 and A.7); that is, if [M, f] e Ω*(MSG, Z/2S), we will prove that

φp8d[M, f) = sA\M, /]) - i(VSqίV(δM)'(f\δM)%^\ [8M))eZ/2s ,

where ΐ: Z/2 —> Z/2S. It follows immediately, as in A.13 of the Appen-
dix, that βl = £f.

We obviously have ρ8Ω4*(MSG) c ΩUMSG, Z/B), because δp8 = 0,
hence sδρ8 = 0. Thus φ"ρ8 = 9>Ίo8: Ω4*(MSG) -> Z/8, hence ^ 8 δ :
Ω4n+ι(MSG, Z/2S) — Z/B is computed as follows. Given / :M* + 4 % + 1 —
MSGq, a Z/2S bordism element, assume (after a cobordism) that f\δM

is globally transversal with f-^BSG,) = L4% c δilf. Then
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, f] = index (L4*) - i(VSqιV{δM)-{f\δMY{^), [δM])eZ/8 .

Of course, we interpret this number in Z/2S. By Chapter I, Lemma
3.7, and 5.4(ii) of Chapter II, this exactly the homomorphism

Ω4*+1{MSG, Z/2S) > Z/2S

which defines Φ(£?) e H**+ί(MSG, Z{2)), as desired.
The proof of 8.1(iii) is rather difficult, and will be discussed in

§9. The property 8.1(v) of our class I follows easily from^8.1(i), (ii),
and (iii), and the the discussion in [15] where characterizing properties
of pAL)eH»(BSTOP,Z/S) are listed.

Proof of 8.1. (vi) From the definition of ψ\ Ω^MSG, Z/8) — Z/8
and Theorem 8.5, we see that, if / : Mq+in —• MSGq is a globally trans-
versal Z/4 manifold, with ZΛ = f-^BSGJ c Mq+4n, then

(a) index (Lin) = (L(M) f*Φ(p4(l))> [M]} e Z/4 .

Also from 8.1(ii),

(b) p2p4(l)=V>eH*XBSG,ZI2).

Since any Z/4 manifold / : Mq+An —> MSGq can be made transversal by
subtracting j([Kq+\ a] [CP(2n - 2)]) if necessary, j : Ω*(, Z/2)-^
Ω*(, Z/4), we see that these two properties (a), (b) uniquely characterize
p4(l). But the Z/4 index class of [6] also has these properties, hence
8.1(vi) follows.

We return now to the proof of Theorem 8.4.

Proof of 8.4. (ii) We have already shown in 8.6 that, for any
Z/2 bordism element g:N->MSG,

, g]) - ί(L(N)-g*Φ(V2),[N]

- ί<F2(iV) ^*Φ(^2). [N])eZ/2czZ/S .

8.4(ii) is an easy consequence of this and the multiplicativity of V2.

Proof of 8.4. (iii) We have already shown in the proof of 8.1(iv)
that φρ8S: Ω*(MSG, Z/2) —* Z2 is the homomorphism on a Z/2 bordism
which corresponds to the cohomology class ρ2Φ{^) e H**+ι{MSG, Z/2)
(see Propositions A.3 and A.6 of the Appendix). In particular, <ppβ
is multiplicative with respect to the index, which proves 8.4(iii).

Proof of 8.4. (i) We have four cases, depending on the dimension
of N, namely, dim (N) = 0, 1, 2, 3 (mod 4). We denote these cases 0,
1, 2, and 3, respectively.
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Case 0. We are given a Zβ bordism element / : Mq+ia -> MSGq

and a closed manifold Nib. By definition of φ,

φ([M, f][N]

- i{VSqιV(M x iV)(/*Φ(JT) (x) 1), [ikfx JV]>

3), [M]><V\N), [N]) .

Thus it suffices to prove <p"([M, f[N]) = <p"([M, /])• index (N) eZβ,
since then

Ψ([M, f][N]) = (φ"([M, /]) - i(VSqlV(M)-f*(3r), [M]}) index (iV)

,/]-index [iV] .

Suppose [M, f] e Ω'^MSG, Z/8) = kernel (s<5: Ω4.(MSG, Zβ) -> Z/2).
Then we may assume that / : Mg+ia ~-* MSGq is globally transversal,
with f-^BSG,) = L4a c Mg+i\ By definition of φ",

φ"([M, /]) = Ψ\[M, /]) = index (Lia) e Zβ .

Moreover, it is obvious that fπ^ Mq+ia x Nib —»ikίSG, if globally trans-
versal, with (fπJ-^BSG,) = Lia x ΛΓ46. Necessarily,

( % / ] [ ] ) = 0

and, thus,

φ"([M?+4°, f][Nib]) = φ'{[M"+i% f][Nib])

= index (Lia x iV45)

= index (L4a) index (iV4*)

= 9>"[M, / ] • index (iV) ,

as desired.
Finally, by linearity of φ, it suffices to check the case [M, f]

i([KqJri, a][CP(2a - 2)]). But we have already shown in 8.6 that

, a][CP(2a - 2)])

= i(L(Kq+i x CP(2a - 2)) (a*Φ(V2) 0 1) ,

[Kq+i x CP(2a - 2)]> = 0

by 8.3(ii) and the fact L(Kί+4) = 1 (this is also obvious from the
definition of ψ), and we have shown that

i, a][CP, a][CP(2a -

= i{{K"+i x CP(2a - 2) x iV4δ)

•(α*Φ(F2) (x) 1 (x) 1), [ίC«+4 x CP(2α - 2) x Nίb])

= 0
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by 8.3(ϋ) and the fact L(Kq+i) = 1. This proves Case 0 of 8.4(i).
In all three cases below, it is easy to check that sδ([M, f][N]) = 0.

Thus,

φ([M,

= φ'([M, f)[N]) - iiVSq'ViM x N){f*3t <g> 1), [M x N]) .

Also, in Cases 1, 2, and 3, index (N) = 0, so what we must show is
that φ([M, f][N)) = 0.

Case 2. We have / : M'+ia-2 ~> MSG, and Nih+\ where M is a
Z/8 manifold and N is closed. For dimensional reason,

{VSqW{M x N)(f*JT<g> 1), [Mx N]) = 0.

On the other hand, by Theorem 3.4 we may assume that / : M —• MSGq

is globally transversal, with /-'(BSG,,) = Lia~2 c Mς+ia-\ Then fπ2:
Mx N-^MSG, is globally transversal, with (fπ^iBSG,) = Lla~2 x
Nib+\ Thus <p'([ikf, /][iV]) = index (L4*"2 x iV"+2) = 0, which proves
Case 2.

Case 1. We have / : Mt+"-χ — M5GS and ΛΓ"+1. We know from
the structure of Ω*(pt) that 8[iV] = 0 e Ωib+ι(pt). Thus there is a Z/8
manifold N with δiV = iV. We will now use the fact that the com-
position psδ behaves like a derivation. Thus

, f] [N]) = [M, f]-[N] + [δM, f\SM] [N]eΩg+i(a+h)(MSGg, Z/8) .

The proof of Case 2 above show that φ([δM, f\lM)[N]) = 0. Thus,
by the proof of 8.1(iv),

Ψ([M, f][N]

= φpsδ(\M, f][N\)

= s8([M, /]•[#]) - i(VSqιV{δ{M x N))-{f*Jt (x) 1), [δ(M x #)]>

= ΐ((ββ[Λf, f] d(δN)) - {V\M) f*3t, [M])(VSq'V(δN), [δN]))

= 0 .

This proves Case 1.

Case 3. We have / : Mq+4a+1 ~* MSGq and Nih'\ As in Case 1,
we can find a Zβ manifold N, with δN = N. Then ρ8δ([M, f][N]) =
[M, f][N] + [δM, f\SM] [N], hence

Ψ{[M, f][N]) = φpsδ{[M, f][N]) - φ([δM, f\SM][N])

= φρsδ[M, / ]• index (N) - φps[dM, f\,M] index (N)

= 0 .
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The second equality uses both the proof of 8.4(iii), which implies
that φp8δ is multiplicative with respect to the index, and the proofs
of 8.4(ii) and Case 0 of 8.4(i) above, which imply that φ([Mq+Aa, f][N4h]) =
φ[Mq+i\ / ] • index (JV46), for any Zβ manifolds Mq+ia and Nih. This
proves Case 3, and completes the proof of Theorem 8.4.

REMARK 8.8. The definition of φ: Ω4*(MSG, Zβ)-+Zβ can be
extended directly to PL-bordism, φ: Ω?L(MSG, Zβ) ~-> Zβ. Moreover,
the formula of Theorem 8.5 is true for M any PL Zβ manifold. This
assertion does not follow from the product formulae 8.4, however.
One needs the more delicate formulae

φ(i([M, f][N])) = φ(i[M, /])• index (JV) 6 Z/2r c Zβ

and

φ{pβ{\P, F][Q])) = φ(p8δ[P, #]). index (Q) e Z/2r c Zβ ,

where M, N, P, Q are Z/2r manifolds, r <; 3, dim (M x N) = 0 (mod 4)
and dim (P x Q) = 1 (mod 4). The reason we need stronger formulae
to deduce 8.5 for PL-manifolds is that ΩζL(pt, Zβ) is not generated
by oriented manifolds and Z/2 manifolds. (See the Appendix, Remark
A. 14.) In the next section, we will establish generalizations of these
more difficult product formulae, which will thus prove 8.5 for PL-
manifolds.

9* The Whitney sum formula for the class L In this section,
we will establish Property 8.1(iii) of the class IGH^(BSG, Zβ). That
is, if ξ and Ύ) are two oriented spherical fibrations, we prove

l(ξ XV) = W Θ KV) +
K ' + JTXf) (X) VSq1 V(V)) e H^Bξ x Bη, Zβ) ,

where

i:H*(,Z/2) >H*(,ZI8).

To establish 9.1, we need the Whitney sum formula for the class

, Zβ).

2) ^r(f χv)
{ + V2(ξ) (x) 3T(η) e H*-\Bξ x Bη, Zβ) .

9.2 will be proved in §10 by giving a homotopy theoretic de-
finition of the class ^%Γ in terms of functional cohomology operations,
and then proving a product formula for the relevant functional
operations. A proof of 9.2 could also be given by reducing 9.2 to
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known formula for the Kervaire surgery obstruction.
As a first step in the proof of 9.1, we describe generators of

H*(X x Y, Z/2r).

LEMMA 9.3. H*(X x Y, Z/2r) is generated by the Hurewicz image

of
( i ) "products" j([M, f][N, g]), where M and N are Z^-mani-

folds, s^r,f:M->X,g:N->Y, and j: Ω+{ , Z/28) -> Ω*( , Z/2% and
(ii) Bocksteins of products ρ2rδ([P, f][Q, g]), whese P and Q are

Zj2s-manifolds, s < r, / : P —» X, and g: Q—>Y.

Note in (ii) that, if

s ^ r, p2rδ([P, f][Q, g]) = p2rδ[P, n-pAQ, g] + PAP, f] P*δ[Q, </]

A simple proof of Lemma 9.3 can be given by studying tensor
products of elementary chain complexes

(0 > Z — Z > 0) ® (0 -> Z — Z > 0) ,

since by a classical "standard basis theorem" such complexes account
for the 2-torsion in H*(X, Z) and H*(Y, Z). We leave the details
to the reader.

To prove 9.1, it clearly suffices to prove

Φl(ξ X η)

(9.4) = Φ(l(ξ) (X) l{η) + i{ VSq1 V(ξ) <8) ̂ (3?) + JT(f) (x) TOg1 F()?)))

e H4*(Tξ A Tη, Z/B) = Horn (Jff^Γf Λ Γ)?, Zβ), Zβ) .

By Lemma 9.3, it thus suffices to evaluate both sides of 9.4 on
"products" j([M, f][N, g]), M, N Z/2s-mamfolds, s ^ 3, / : M-+ Tξ,
g: N->Tη, and Bocksteins of products pBδ([P, f][Q, g]\ P, Q ̂ /^-mani-
folds, s < 3, / : P -> Γί, flr: Q -> Γi?.

In §8, we defined a homomorphism φξχΎ}: Ω^{Tζ Λ Γ27, Zβ)—>Zβ,
and the graded class Φ(l(ξ x 57)) = Φ ( Σ ^ 0 h(ξ x ^)) was defined so that

]) - (L(X).h*Φ(l(ξ x )?)

for all Z/8-manifolds h: X—> Tξ A Tη. By induction on n, where
I = Σ ^ o ln> 9.4 follows if we show

, h]) - (L(X).h*Φ(l(ξ) (x) 1(7)),

(9.5) + 4(V2(X)h*Φ(VSqιV(ξ) (g) ^ ( 7 )

for [X, A] - i([ΛΓ, f][N, g]) and for [X, h] = p8d(P, f][Q, g]), M, N, P, Q
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as above, A:ZJ2-*Z/S.
We first dispose of cases [X, h] = j([M, f][N, g\), where M and

N are Z/2- or Z/4-manifolds. The second term on the RHS of (9.5)
vanishes. Thus we must show

{L(M x N)(f x g)*Φ(pt.l(ξ x rj)\ [M x N\>

= (L(M x N)(f x gYΦ{pΛV)) <g> PΛV)\ [M x N]) e Z/2% s = 1, 2.

But we know ρ2l(ξ x η) = ftί(f) (x) ftϊθ?)ι since, by 8.1(ii), p2(l) = V\
Also, we know that ρj,(ζ x η) = |θ4ϊ(f) (x) /)4Ϊ()7), since, by 8.1(vi), ^(ί)
is the Z/4-index class defined in [6].

We will now specialize to Tξ = Tη = MSG. By naturality of the
class I, this is sufficient. We write / : Ma —> MSG instead of / : Mq+a—>
MSGq. Of course, we work in the stable range, a < q — 2. There
should be no confusion if we write La = /^(BSG) c Ma, when / : Ma —>
MSG is globally transversal.

We are left with five cases in 9.5:

Case 1. [X, h] - [M4a+\ f][Nib+\ g], M, N Z/8-manifolds.

Case 2. [X, h] = [Mia, f][Nib, g], M, N Z/8-manifolds.

Case 3. [X, h] = [M4α+1, f][N*h~\ g], M, N Z/8-manifolds.

Case 4. [X, λ] = ftδ(P4β+a, /HQ4 6"1, flf]), P, Q Z/2- or ^/4-manifolds.

Case 5. [X, h] = |θ8δ([P4β+1, /][Q4δ, #]), P, Q Z/2- or Z/4-manifolds.

We will concentrate on evaluating the RHS of 9.5, φ([X, h]), in
these five cases, and leave to the reader the algebraic computation
of the RHS of 9.5.

Proof of Case 1. Recall from §8 the definition of

φ: Ω4*(MSG, Z/S) > Z/S .

If / : X4n -> MSG is globally transversal, X a ^/8-manif old, with Yin =
h~\BSG)(zX, then

(9.6) φ{[X, h]) = index (Y*n) - 4(VSqιV(X)-h*Φ(K), [X]) e Z/8 .

In Case 1, [X, h] = [Mia+\ f][N4b+\ g]. We may assume that both
f:M4a+2-+MSG and g:Nih+2~*MSG are globally transversal, since
there is no obstruction in this dimension. Let Kia+2 = f~1(BSG)cM,

Lu+2 = g-i(BSG) c N. Then / x g: M x iV— MSG A MSG is globally



70 GREGORY W. BRUMFIEL AND JOHN W. MORGAN

transversal, and (/ x g)~ι(BSG x BSG) = K x L. Moreover, by 9.6
and 9.2, and since

VSqιV(M x N) = V\M) ®VSq\N) + VSq1 V(M) (x) V\N) ,

x φ{M^\ f][N"+; g])

= index (K x L) - ±(VSqιV(M x N) (f x #)*

x (Φ(Jr (x)F2 + F 2 (g) ̂ ) ) , [M x N])

= index (iΓ x L) = 0.

The reader can check by dimensional considerations that the RHS
of 9.5 also vanishes in Case 1.

Proof of Case 2. We first argue that we may assume both
f:Mia-+MSG and g: N4b —> MSG are globally transversal. Let a:
K4 -> MSG be the nontransversal Z/2-manifold used in 8.3. ({K\ a]
will be precisely constructed in §10; this is the step where we use
Tζ = Tη = MSG.) In any dimension 4α, we get a nontransversal
manifold aπγ\ K* x CP(2a - 2) -> MSG. If / : M"a -> MSG is not trans-
versal, write

[M4*, f][N*\ g] = [M, f'][N, g] + j(([K\ a][CP(2a - 2)](p*[N, g])) ,

where [M\f\ = [M, /] - j([K\ a][CP(2a - 2)]). Since both sides of
formula 9.5 are additive in [X, h\, this reduces the general Case 2
to the case [X, h] = [M\ f'][N, g], where / ' : M'-+MSG is transversal.
(We have already dealt with the case [X, h] = j(Z/2-manifold).)
Similarly, we may assume that g: N4h —> MSG is transversal.

Now, assuming that / : M4a —> MSG and g: N4b —̂  MSG are trans-
versal, let Kia = f~\BSG)(zM, L4δ = g-\BSG)(zN. Then, by 9.6
and 9.2,

= index (K x L) - 4<FSg1F(M x iV)(/ x g)*

x Φ(JT (x)F2 + F 2 ® ^T), [M x iV]>

= index (X x L) - 4<F2(M) /*Φ(F2), [M]><FSg1F(iV).^*Φ(Jr), [iV]>

- 4<FSg1F(M)./*Φ(JT), [M]><F2(JV)^*Φ(F2), [N])

= (index (Jί) - 4<FSg1F(M) /*Φ(^T), [M]»

x (index (L) - 4<FSg1F(JV) #*Φ(J3Γ), [N\»

(We have used the identities <F2(M) /*Φ(F2), [M]> - (V\K), [K*a]) =
index CRT4*) (mod 2), and similarly, <F2(^) ^*Φ(F2), [N]} = index (L45)
(mod 2).)
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It is easy to see that this agrees with the RHS of (9.5).
Case 3 is very difficult, without making use of the results of

Cases 4 and 5, so we postpone it until the end of the section.
To study Cases 4 and 5, we recall that, if h: X*n+1 —> MSG is a

Z/2s-manifold, then we may always assume h\δy. δX —>MSG is globally
transversal, with Yin = (h\δ>$)-ί(BSG)c: δX. If [%,h] = [P,f][Q,g],
then ptδ[j£, h] = δ[P, f] p2[Q, g] + PAP, f] δ[Q, g\. The formula 9.6
for φp8δ[P, f][Q, g] then becomes (by 9.2)

, f][Q, g]) = index (Y)

(9.7) - 4<7Sg1F(SP x Q)(f x #)*Φ(F2(x) J ^ + J^T(x)F2), [δP x

x δQ)(f x gYΦ{V2® & + 3r ®F2), [P x

Moreover, we proved in Lemma 3.7 that

(9.8) 23-*M[P, /][Q, ί/]) = index (Γ) e Z/S ,

where s2S: Ω±*+ι(MSG, Z/2S) —+ Z/2S is the transversality obstruction of
O.

Proof of Case 4. We may assume that / : P 4 α + 2 —* ΛfSG is globally
transversal, with iΓ4α+2 = fι{BSG) c P, iΓ4α+2 a Z/2S-FΌ space, s = 1
or 2. We consider two subcases for products [P 4 α +

Subcase 1. ^: Q46"1 — MSG transversal, Uh~ι = f~\BSG) c Q , L
and Q Z/2s-manifolds.

Subcase 2. Q46"1 a closed manifold, #: Q46"1 -> MSG.

Since there is a nontransversal example on a closed manifold,
α: S3 — MSG (e.g., [S3, α] = δ[K\ a], where [iί4, a] is as in 8.3), we
see by linearity that Subcases 1 and 2 suffice.

Subcase 1. In this case, f x g: P 4 α + 2 x Q46"1 -> MSG A MSG is
transversal, with (/ x g^iBSG x BSG) = iί4 α + 2 x L46"1. Since
2s3(iί4α+2 x L46"1) is a boundary, index (δ(iΓ4α+2 x L45"1)) = 0. The
hypothesis giQ^-^MSG transversal also implies (F2(Q) ^ Φ ( ί ) ,
[Q]> = 0. We thus conclude from 9.7 that ^^8S([P4α+2, f][Q'h-\ g\) - 0.

To evaluate the first term on the RHS of 9.5, it is helpful to
use the identity

(L{δX)-{h I ,*)*Φ(l(f) (X) l(η)\ [δX])
1 * ) = 2s

where h: X -> Tξ A Tη is a ^/2s-manifold, s ^ 3, and /9: iϊ*( , Z/8)
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f P + 1 ( , Z) is the Bockstein. Thus the first term on the RHS of 9.5
vanishes if [X, h] = [P4 α + 2, f][Qib-\ g]. The second term is easily
calculated, using p2δ[P xQ] = [δP]-ρ2[Q] + p2[P]*[δQ], and also vanishes
in Subcase 1, as desired.

Subcase 2. If Q is closed, δ(Pia+2 x Q46"1) = δP x Q. If g: Q4 6"1-*
lίiSG is not transversal, then the map f x g: δP x Q —> MSG A MSG
is not transversal, although it is bordant to a globally transversal
map. We want to compute index (Y) e Z/8, where Y= h-'iBSG x BSG),

h. Xia+4b _> M S G Λ M S G a transversal map bordant to f x g: δP x
Q-+MSG A MSG.

Let Q'b~ι =U,\JdU2 be a partition of g:Qih~l->MSG (see §3).
That is, U1 and ί72 are codimension O-submanifolds of Q, g\ni: Uι—•>
ΛίSG is globally transversal with respect to the mapping cylinder
Mr a MSG of the universal bundle J-* BSG, and # |^ 2 : U2->MSG is
globally transversal with respect to a smaller mapping cylinder
Mr.cMr.

Let Lx = {g\u)-l{Mr), L2 - (g\UΛ)-\Mr>). Then by Lemma 1.4, the
inclusion 3L2 —> 3LL is a degree one normal map of closed, 46 — 2-dimen-
sional PD spaces. Moreover, the global transversality obstruction
s(Qih'\ g) 6 Z/2 is equal to the Kervaire obstruction S(dL2 —> 3LX) 6 Z/2.

Since f\δP:δP—>MSG is globally transversal, the partition of
[Q, g] induces a partition of [δP x Q, f x g\. Namely,

δP x Q = δP xUλ\JdδP xU2 .

In the intersection, δP x {U1 Π ί72)> we get a normal map of closed,
4α + 4& - 1-dimensional PD spaces δϋΓ x dL2->δK x dLx. (Recall ϋΓ -
f~1(BSG)dPia+2.) This normal map has associated an invariant
θ(δK x 3L2 ->δK x dLλ) 6 Z/S, and, by Lemma 3.11, the index we
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need to compute is given by

index (Y) = index (δK x L,) + index (δK x L2)

- θ(δK x dL2 -+δK x dLλ) e Zβ .

Of course, index (δK x Lx) = index (δK x L2) - 0. By Lemma 3.12,

θ(δK x 3L2 > δK x 3LJ - U(δK)-S(dL2 -> 31,,) .

Since

) + VSqιV(δP)>f*Φ(V2), [δP])eZ/2 ,

and, since StfL^dLJ = s[Q4b~\ g] = (V\Q) g*Φ(Jr), [Q])eZ/2, we
obtain from 9.7

Φ([Pia+\ f][Qib~\ g]) -

It is easy to check that this agrees with the RHS of 9.5.

Proof of Case 5. We deal separately with the following subcases.

Subcase 1. P, Q Z/2s-manifolds, s ^ 3, and g: Qib -> MSG globally
transversal.

Subcase 2. P, ζ) Z/2-manifolds, / : P4 α + 1 --> ikfSG transversal.

3. P, Q Z/2-manifolds, [P, /] - [L6][S3, α], where [S3, a]
δ[K\ a], [K, a] as in 8.3, and U is a Z/2 6-manifold with d(δU)
1 eZ/2. Thus s2[P, /] - d(δL6) s[S3, α] = leZ/2.

The point is, Subcases 2 and 3 imply Case 5 for all Z/2-manifolds
P and Q, by linearity. The fact that the nontransversal example
[L6][S3, a] has dimension 9 rather than 5 is no drawback since both
sides of (9.5) "commute with crossing with CP(2)." Subcase 1 is then
sufficient for all Z/4- and Z/8-manifolds since there is the nontrans-
versal example [Q, g] = j[K\ a], j : Ω*( , Zβ) -> Ω*( , Zβs\ s = 2 or 3,
which reduces the nontransversal Z/2s-case to the ^/2-case.

Subcase 1. Consider /: P4 α + 1 —> MSG. We may assume that there
is a partition Pia+1 = 11,1)11, such that dP aUlf f\ Vl\ Ux -> MSG is
globally transversal with respect to the mapping cylinder Mr, and
/1 u2: U2 —> MSG is globally transversal with respect to M'r c Mr.
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(We may assume that dP c Ulf roughly because there is no obstruction
to transversality on 3P.) Let L, = f~ι(Mr) D Ulf L2 = f'W'r) ΓΊ U2.
We will use the notation δL, = L, (1 <?Pi and 3 ^ = L : Π 17"2. Thus the
inclusion dL2—>dL1 is a degree one normal map of closed, 4α-dimen-
sional PD spaces.

We are assuming that g: Qib ~+ MSG is transversal. Let K*b =
g-'iBSG) c Q. Now, δ(P x Q) = δPxQ \J2BδPxδQ P x δQ. The partition
P = [/"x U ί/2 induces a partition

§(P x Q) = (δp x Q U [/, x δQ) U Ϊ72 x δQ = V, U F 2 .
2sδPxδQ

In the intersection, Vx Π F 2 = (V1 Π Z72) x δQ, we have the degree one
normal map 3L2 x δK—>dLx x &K". On side ^ of the partition, we
have dLx x δK = diδL, x KU^L^KL, X 5iΓ). On side F 2 of the
partition, we have dL2 x δZ" = d(L2 x δif).

We know that f x g\δ:δ(P x Q)->MSG A MSG is bordant to a
globally transversal map h: X—>MSG A MSG. Let

Y = h~ι{BSG x BSG) .

From Lemmas 3.11, 3.12, we know that

index (Y) = index (δL, x K \J L, x δK) + index (L2 x δK)
2sδL1XδK

- θ(dL2 X δK * dh, X

= index (dL, x K) = index (δLJ index

(We have used the Novikov additivity property to compute index

(δL, x ϋΓlWiXJί-ki X δ-^) = index (δLi x ϋΓ).) On the other hand,
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index (δL
4a+\ f] -

and, if s = 3,

index (X) = ?[Q4&, </] -

- (L(Q).g*Φ(l), [Q]) -

, [δP])

, [Q]>

), [Q\> eZ/8 .

(If s < 3, fts(index (#)) = (L(Q) g*Φp2s(l), [Q]) e Z/2S.) Using 9.7, the
reader can check that, for s ^ 3, this gives

4δ, g])

By 9.9, this establishes 9.5 in Subcase 1.

Subcase 2. Let Ua+ί - f~\BSG) c P, where / : P 4 α + 1 -> MSG is
transversal. Choose a ^/2-partition of the ^/2-manifold g: Q4b —> MSG,
say Q = Uι U Ϊ72 Thus Z7X and ?72 are ^/2-manifolds with boundary.
The notation is δU, = ί7, (Ί SQ, Sϋ; = ^ 0 ^ 2 = 3ί72.

Note that δQ = δU.ΌδU^ will be a partition of $r: δQ->MSG.
We have transversal inverse images, Nx = ^"Xilf^) n C/i. and JV2 =

g'^M'γ) Π £72, M^ c t f r . iVΊ and N2 are also ^/2-manifold with boundary.
The inclusion 3N2 —> SJ^ is a normal map of (46 — 2)-dimenional Z/2-
manifolds and sδ[Q4&, βf] e Z/2 is the surgery obstruction Sδ(dN2—>dN1) e
Z/2.

Since δ(P x Q) = δP x Q \J2δPxδQP x δQ, the partition (Q, SQ) =
(U^ U2, δ^lj δU2) induces a partition of the closed manifold δ(P x Q).
Namely,

P1 U P
d P 5 t /

x(δPx

= V1UV2.
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In the intersection, wq get the "Massey product" normal map of closed
4α + 46 — 1-dimensional PD spaces

δL x dN2 U L x δdN2 > δL x dN± \J L x δdN, .
21LX13N2 2dLxS3N1

By Lemma 3.12, the ̂ -invariant of this normal map is given by

)-Sδ(dN2 >dNJ

= 4(V%P) f*Φ(VSqιV) + VSqιV{P) f*Φ(V2),

In Vt, we have

dLx δNi U L x δdNi = d(δL x Nt U Lx δNJ , i = l,2.
2δLxδdN'ί 2δLxδNi

LEMMA 9.10.

index (δL x N, \J L x δNx)
\ 2δLxδN1 I

+ index (δL x N2 \J L x δN2) = 0 (mod 8)
\ 2δLxδN2

Assuming this lemma, we have shown that, if / x g: δ(P x Q) —>
MSG A MSG is bordant to a transversal map h: X-+MSG A MSG,
and Y = h-\BSG x BSG) a X, then

index (Γ)

+VSq1V(P)-f*Φ(V2),

), [δQ]) eZ/8 .

From 9.7, we compute

ia+\ f][Qib, g])

The reader can check that this implies 9.5 in Subcase 2. (It is neces-
sary to use index (<?L4α+1) = 0, which implies 4(L(P)-f*Φp2(βl), [P]> =

Proof of Lemma 9.10. First, because of the computations above,
this lemma is equivalent to 9.5 in our Subcase 2. If g:Q4h—>MSG
is transversal, we know 9.5 holds because of Subcase 1. It thus
suffices to consider a single non-transversal example g: Qih —> MSG.

We can thus assume that the manifolds JVΊ and N2, which arise
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in the decomposition of g: Q4h —> MSG, have a very simple form.
Specifically, we assume N2 = D4 x S3 x J, 3iV2 = S3 x S3 x I, <5iV2 =
Z>4 x S3, and <53iV2 = S3 x S3 (the Kervaire 6-manifold), and we assume
N^D7 x I, 3Ή = S6 x J, δ ^ = Z7, and

REMARK 9.11. The ^/2-manifold 3N2 is obtained from S3 x S3 x I

via the diffeomorphism T: S3 x S3 x {0} -^ S3 x S3 x {1}, T(a>, y, 0) =
(y, a?, 0). If we identify S3 x S3 with d(Z>4 x SB) in such a way that
the diagonal AS3 = {(x, x)} aS3xS3 bound D4 x 1 e D4 x S3 (for example,

via S3x S3^>S3 x S3^>D4 x S3 where /ι(a?, ») - (x, x~ιy)\ then the

orientation-reversing diffeomorphism T: S3 x S3—> S3 x S3 extends to
T: D4 x S3->D4 x S3. This explains how we regard N2 = D4 x S3 x I
as a ^/2-manifold with boundary.

Similarly, Nλ = 27 x I is a Z/2-manifold with boundary, via the

diffeomorphism T: D7 x {0}^D7 x {1}, T(x, 0) = (-&, 1) .
With these assumptions, it is clear that index (δL x Nt) = 0,

i — 1, 2. We will prove now that

index (δL x N, U £ x SNt)
2δLxδNi

= index (δL x i\Q + index (L x δNt), i = 1, 2 .

This will prove Lemma 9.10.
We use the result of Wall on non-additivity of the signature

[24]. Let Y = Y+ U Y- be 4%-manifolds with boundary. Let

Let A, B, C aH^Z, Q)
be the kernels of the maps from H2n^(Z, Q) to i?2%_1(Xf, Q), H2n^(X09 Q),
Hzn-^X-, Q)9 respectively. Then there is a non-singular symmetric
quadratic form σ:V xV->Q, where V=[Af] (B + C)]/[A Π 5 + A n C].
Namely, if a, a! e A Π (B + C), write α + δ + c = 0 and α' + 6' + c' = 0,
where b,b'eB and c, c' 6 C. Then define σ(a, a") = (a U δ', [Z]> 6 Q.
Moreover, index (Y) = index (Y+) + index (Y"_) ± index (y, σ).

In the situation of Lemma 9.10,

X+ = δL x

Xo = 2δL x δNt Z = 2δL x dδN,

X_ = L x
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Thus, if i = 2,

A = £Γ*(δL, Q) (g) kernel (H+(d(S* x S 3 x I), Q) > iϊ*(S3 xSBxI,Q)) ,

B = H*(dL, Q) <g) kernel (iϊ*(S3 x S 3 x 31, Q) > ίZ*φ 4 x S 3 x 31, Q)) ,

C - kernel {H*{dL, Q) > H*{L9 Q)) <g> #*(S 3 x S\ Q) .

Consider the automorphism of iT*(S3 x S\ Q) defined by T{x®y) =
K®a5. It is easy to see that T induces automorphisms of A, B, and
C, h e n c e a l s o a n a u t o m o r p h i s m o ί V = [ A f ] ( B + C)]/[A f ] B + Af]C].
Moreover, the reader can check that σ(a, α') = — σ(Ta, 2V) eQ. It
follows that index (F, σ) — 0 in this case.

If i = 1, it is easy to see directly that index (Vf σ) = 0, since
dN, = S7 x /, δΛ/; = X)7 x {0, 1}, and dδN, = S7 have such simple homo-
logy. This completes the proof of Lemma 9.10 and Subcase 2.

Subcase 3. We have [Pia+\ f\[Qih, g] - [L«][S\ a][Qih, g\.
We first compute the global transversality obstruction

sl\U][S\ a][Q*\ g\)

- d(3U)s2([S\ a][Q'\ g]) by Theorem 2.4(iv)

- d(dLQ)(V2(S* x Qih)(a x gYΦ(3t(g)F2 + F2(g)^T), [S3 x Q4δ]>

by 9.2

3 \ [S3])(V2(Q)'9*Φ(V2), [Q])

x S3)).(αττ2)*Φ(^), [S(L6 x S3)]>

Using 9.7 and 9.8, this implies ^8δ([L6][S3, a][Qih, g]) = 0. On the
other hand, one can easily check that the RHS of 9.5 also vanishes
in this special case. This proves Subcases 3, hence completes the
discussion of Case 5.

Proof of Case 3. We wish to establish 9.5 for

[X, h] - [M^+\ f][N«-\ g], M, N

Z/8-manifolds. It suffices to consider the subcases: (1) [iV4*"1, g] =
[S3, a], and (2) g: N'^1 -* MSG globally transversal. Let [S\ a] =
δ[N, &], iVa ^/8-manifold. Then [M*a+1, f][S3, a] = pBδ([M4a+1, f][N, a]) +
[δM, f\δM][N, a], and 9.5 holds in this case by our proofs of Cases
5 and 2 above. (Note that we did consider Bocksteins of ^/8-products
in Case 5.)

Now assume that g: Q46"1 —> MSG is globally transversal. This
implies that / x g: P4 α + 1 x Q46"1 ~+ MSG A MSG is cobordant to a
globally transversal map h: X-+MSG A MSG. Let k: Rδ — MSG be
a ^/8-manifold with φρ8δ[R\ k] = leZ/S. (For example, the Pontrja-
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gin-Thorn construction applied to CP(2) gives an element of π£MSG) of
order 8. This can be used to produce [R\ k].) Consider the product
([Pia+\ f][Qib~\ g])([B\ k]), which is cobordant to [Xia+ih, h][R\ k]. In
Subcase 1 of Case 5, we proved that

a+i\ h]) = φp8d[R\ k\'Φ\Xia^\ h]

= φ[Xia+4b, h] e Z/8.

On the other hand, let us compute φp8δ by associating differently.
We see

V

ΦPsS(([Qib-\ g])([Pia+1, f\[R\ k])) = o ,

from Subcase 1 of Case 4. Thus we have proved φ([Pia+\ f][Qib~\ g]) = 0
if g: Q^'1 —> MSG is globally transversal. It is easy to check that
the RHS of 9.5 also vanishes in this case.

This completes the proof of all five cases of 9.5, hence we have
established 9.1.

CHAPTER IV

10* Homotopy-theoretic obstructions to global transversality*
Let ξ—>Bξ be a spherical fibration, with Thorn spectrum Tξ. In
Chapter I, § 3, we defined certain homomorphisms (assuming π^Bξ) = 0
and ξ oriented)

sn: ΩF+ί(Tξ, Z/n) > P* (x) Z/n ,

s: yξ>UTξ) > Z/2 ,

using the obstruction theory to Poincare transversality developed in
I, § 1 and § 2. In this chapter, we will give purely homotopy-theoretic
definitions of sn and s. Since s determines JreH*-\BSG, Z/2) and
since s2o= = lim s2s determines £? eH4*+1(BSG, Z(2)), our homotopy-
theoretic definitions of s and s2s give, in some sense, a homotopy-
theoretic definition of the transversality obstructions ^Γ and ^

Among the consequences of the new definition are these. First,
we can formulate homotopy-theoretic conditions which imply that J ^
and £? vanish, and therefore, by Theorem 6.2, we can formulate
conditions that imply a map /: X—> BSG{2) lifts to fT0P: X-+ BST0P{2).
Secondly, we prove that, if [M, /] e ψί(Tξ) and if f:M->Tξ is
globally transversal then s([M, /]) = 0. This proves the converse of
Theorem 3.4 in the one case we did not deal with in §3 (see proof
of Theorem 3.8). It also follows that s: %L

+ι(Tξ) —> Z\2 is independent
of the "good" cover {Va} of Tξ, which occurs implicitly in the original
definition of s in §3. Thirdly, based on the new definition of s, we
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outline a purely homotopic-theoretic proof of the Whitney sum formula
for the class $Γ, namely, JΓ{ξ x η) = ^t(ξ)®V\η) + V2(ξ) (x) JT(η).
Finally, the new definition of s applies to any spherical fiber space
ξ, and the new definition of sn applies to any oriented ξ that is, we
drop the assumptions on π^Bξ). (However, s and sn are only partial
obstructions to global transversality in the nonsimply connected case.)

We will first define 8:ηξ*L1(Tζ)-+Z/2. The main idea is due to
W. Browder ([3]). The homology theory ηζL is represented by the
spectrum MPL (the Thorn spectrum of the universal PL-bundle 7 —*

BPL). Thus, there is an isomorphism p: ηζL(Tξ) ^»π*(Tξ A MPL).
Tζ A MPL is the Thorn spectrum of the Whitney sum ξ x 7-+Bζ x
BPL, and the isomorphism p is easily defined directly as a Pontrjagin-
Thom construction. Following Browder, we will define, for any
spherical fibre space η, a homomorphism φη\ π^^Tη) —> Z/2. Then
we define sξ: ηξίι(Tξ) —> Z/2 as the composition

sξ = φξxΐop: rjςt^Tξ) > π2^(Tζ A MPL) > Z/2 .

To define φv: π2n_x{TΎ]) —> Z/2, we recall some results of [3]. Let
K(Z/2, n - 1) -+ Bη(vn) -> Bη be the fibration which kills the Wu class
vjrj) e Hn(Brj, Z/2). Let Tη(vn) be the Thorn spectrum of the induced
bundle over Bη(vn). Roughly, if a: S2^1 ~-+ Tη, φv(a) will be the
obstruction to lifting a to α: S2n~λ-+ Tη(vn). We regard Bη(vn) as
a subspace of Bη. Let v e Hn(Bη, Bη(vn), Z/2) = Z/2 be the generator.
The composition

Bη, Bη(vn) -^-> Bη X (Bη, Bη(vn}) — Bη X (K(Z/2, n), e) ,

where Δ is the diagonal and β e K(Zj2, n) is a basepoint, induces a
map on the Thorn space level

Tη/Tη(vn) -ΪU Tη A K(Z/2, n)+/Tη = Tη A K(Z/2, n) .

THEOREM 10.1 (Browder). (i) /* : H*(Tη A K(Z/2, n), Z/2) ->
Hι(Tη/Tη(vn), Z/2) is an isomorphism ifi< 2n, and a surjection with
kernel = Z/2 if i — 2n. The generator of kernel (/*) in dimension
2n is the element vjrj)- Uv (x) cn + Uv (x) c\ = Σ?=i Sq'iv*^ (η)Uη (x) cn) e
H2n(Tη A K(Z/2, n), Z/2), where UneH*(Tη, Z/2) is the Thorn class,
and cn 6 H*(K(Z/2, n), Z/2) is the fundamental class.

(ii) Through dimension 2n, Tη A K(Z/2f n) is a product of
K(Zj2)-spectra. Specifically, through dimension 2n,

H*(Tη A K(Z/2, n), Z/2)

is a free module over the Steenrod algebra S$f%, with basis
where {y} e H*(Bη, Z/2) is a Z/2-basis.
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(iii) LetysHUBηtZβ). Then p*f*(yUv(g)cn)=yvn Ur]eHn+ί(Tr},
Z/2), where p: Tη —> TηjTη{vn} is the obvious projection.

Proof. See [3] and [16].
It follows from 10.1(i) and (ii) that, through dimension 2n — 1,

Tη/Tη(vn} is a 2-stage Postnikov system, with ^-invariant

X - g Sq'iv^ Uv <g) O e Ή.2\Tη Λ 2Γ(Z/2, rc), Z/2) .

In particular, there is an exact sequence

0 >Z/2 > π^(TηlTη(v^) - ^ H2n^{TηlTη(vn), Z/2) ,

where h is the Hurewicz homomorphism. Moreover, if β: S271'1 —>
TΎ]ITη{vn) represents an element of kernel (h) = Z/2, then β is eval-
uated as follows. Let xtn_t = f*{v^JJη (x) O e H2n~ι{TηlTη{vn), Z/2),
so that Σ?=si^«i(«2-i) = 0. Let x ^ , e H2n-\TηlTη(vn) \Jβe

2\ Z/2)
be the unique element, 0 < i < τ&, which restricts to

x2n-< e JΓ -^:(Ty/Ty(vn), Z/2) .

Then βeZ/2 is computed as the functional operation

- image (i ί^-^S 2 ^ 1 , Z/2) -^-> H2n(Tη/Tη(vn) \J e2\ Z/2)) .
β

From 10.1, we also deduce the following.

COROLLARY 10.2. The composition p*h: πό(Tη) —> π3 (Tη/Tη(vn)) —>
H3'(Tη/Tη(vn), Z/2) is zero, j < 2n. Hence

p*π2%^Tη) c Z\2 c π^(TηlTη(v%y) .

Proo/. By 10.1(i), (ii), it suffices to show that, for y e H\Bη, Z/2),
i < n, the element p*f*{yU® cn) eHn+i(Tη, Z/2) is decomposable over
the Steenrod algebra. But by lθ.l(iii), and since Sqn(y) = 0,

= y χ(Sq*)Uη

Sq*{y) Uη

(We have used the identity Sq(a χ(Sq)b) = Sq(a)(b).
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We now define φn: πin^(Tη) -> Z'/2 to be

P*: π*n-i(Tη)> π2%^(Tη/Tη(vn}) ,

with image (p*) c Z/2 = kernel (&). Thus, given α: S2n~' —» Γ17,
Z/2 is computed as the functional operation

x2n_z) e Z/2 c H>n(τyITy(vny \J e>\ Zβ) .
\ pa /

REMARK 10.3. It is easy to see that φη commutes with bundle
maps. That is, if / : Tη—> Trf is induced by a bundle map f\η-+ri'f
then φη = φΨoft:πtn-ι(Tη)-+Z/2. It follows that, if g:Tξ-»Tξf is
induced by a bundle map g: ξ-+ζ', then sζ = δ f , o ^ : 7}™(Tζ)-* Z/2.

REMARK 10.4. Suppose that η is oriented, and that n is odd.
Then ^(57) = 0, hence π2n-ι{Tr](vn))—*π2n_ι{Tη) is clearly surjective.
Thus φη = 0: π4k+ί(Tη) -> Z/2. Since ΩζL{Tξ) - ^ ( Γ f Λ MSPL), we see
that, if £ is oriented, s = 0: βf^! —> Z/2. With somewhat more work,
one can prove that s = 0: Ω*k

L

+1 (Tξ, Z/2) —>Z/2. In fact, this will
follow below when we prove that s = s: ηζί^Tξ) -> Z\2. The fact
that s = 0: Ωζk

L

+1(Tξ, Z/2) -> Z/2 follows from the result of Wall ([24)]
that the Kervaire obstruction is zero for a normal map of ^-dimen-
sional Z/2-manifolds.

We now begin the proof that s = s: ηζL{MSG) —> Z/2. It is easy
to see that it suffices to prove kernel (s) c kernel (s) and s ^ 0:

> Z/2, ^ ^ 1.

THEOREM 10.5 (Browder). // α: Sf^2""1 -> Tψ is Poίncare-globally
transversal, then φv(a) = 0.

Proo/. We need to prove that a lifts to a: S9*2"'1 -> Tψ(vn).
By assumption, a factors through the Thorn space of the normal
bundle of a PD space L2»-\ a: S2n~1-*T(vq

L)-* T(ηq). Since vn(vq

L) =
vn(L2*-1) = 0, we see that a lifts to α: S 2 ^ 1 -> T(vl) -> Tηq{vn), as
desired.

As a corollary, we see that, if / : Mq+2n~ι —> T<f? is Poincare

transversal, then s[ikf, /] = φζxr(p[M, /]) = 0, where p: η^n+ι{Tζq)^
^q+2n-i(Tξq A MPL(2q)) is the Pontrjagin-Thom map. For, if / : ikΓ—> Tξ
is transversal, then p[M, / ] : S—• Tf Λ MPL is transversal. In fact,
the transversal inverse images f~\Bζq) c Λf4"2""1 and

x

can be identified as PD spaces, since p[My f] is defined in terms of
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an embedding M^2*"1 c Ssg+2n~\ By Theorem 3.4, we conclude that,
if s[M, f] = 0, then s[M, f] = 0; that is, kernel (?) c kernel (s).

THEOREM 10.6. If n^l, s: ηζ£+ί(MSG)-> Z/2 is nonzero.

Proof. This is essentially due to Browder. Here is the idea.
First, we will show that π,(MSG) = Z/2, and that φ: π3(MSG) -
and is nonzero. It is easy to see that the diagram

yz/2

commutes, hence 10.6 is true if n = 1. Next, there is the natural
action of ηζL(pt) on ηζL(Tζ). We will show that, if [M, f]eηζL(Tζ)
[N]eVζ

L(pt), then

(10.7) s([M, = 8([M, f]) (V2(N), [N]) eZ/2 .

Thus we obtain 10.6 for n > 1 by taking [M, f] to be the generator
of π,(MSG) = Z/2 and [N] to be [ΛP(2w)].

To prove that π,(MSG) = Z/2, we recall ([14])

H^BSG, Z/2) =

'Z/2

0

Z/2

if i = 0 ,

if i = 1 ,

if i = 2; generator = w
2
 = ̂

2
 ,

if i = 3; generator = w
5
 and e

3
 .

Moreover, Sq1^) Φ 0eH\BSG, Z/2). (Here, e3eH3(BSG, Z/2) is the
first exotic class ([7].) This computes H'iMSG, Z/2), i ^ 3, and it is
easy to deduce that

z
0

0

ZI2

if
if

if

if

4 = 0 ,

ΐ = l ,
i = 2,

i = 3 .

(One knows from [17] that MSG is a product of i£(π)-spectra, and
it is easy to prove there is no odd torsion in this range.)

To see now that φ: πz{MSG) —* Zj2 is nonzero, it is obviously
sufficient to prove π3(MSG(v2)) = 0. From the Serre spectral sequence
for K(Z/2,1) -> BSG(v2) -> BSG, one computes
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, Z/2) =

(Z/2 if i = 0 ,

0 if i = 1 ,

0 if i = 2 ,

Z/2 if * = 3; generator = τr*(e3) .

Moreover, Sg1(τr*e8)^0 e H\BSG(v2), Z/2). Consider now the Postnikov
system for MSG(v2). It is clear that it must begin as

K(Z, 0) U K(Z/2, 1) .
Sq*c0

Now

H\K(Z, 0) U K(Z/2, 1), Z/2) =
Sq2c0

Z/2 if i = 0 ,

0 if i = 1 ,

0 if i = 2 ,

2 if i = 3 ,

Moreover, the generator in dimension 3 restricts to

Sq\eH\K(Z/2, l

From the well-known relation between ττ*e3 ?7 and the secondary
operation corresponding to the relation Sq2Sq2c0 = 0 e H\K(Z, 0), Z/2)
([7]), we see that MSG(v) -> JSΓ(Z, 0) U ^ o ίΓ(Z/2, 1) induces an iso-
morphism in cohomology through H3 and an injection in H\ Thus
ττ3(MSG<'y2» = 0.

We will deduce 10.7 from the following product formula for
φ: π*(Tv) — Z/2.

THEOREM 10.8. Let a: S2α~x -> Tξ and β: S2b -> Tη be maps. Con-
sider a Λ β: S2a+2b~ι = S2a~ι A S2b -~> Γf Λ Γ^.

^ x , ( α A β) = ^(α:).</

To derive 10.7 from 10.8, we have isomorphisms y: ηζL(Tξ) —>

π*(Tξ A MPL) and p: ηζL(pt) ^ π*(MPL). MPL is a ring spectrum
with multiplication μ: MPL A MPL —> MPL induced by Whitney sum.
The module structure of ηζL(Tξ) over ηζL(pt) is then induced by
1 Λ μ: Tξ A MPL A MPL -> Tξ A MPL, and we have

, f][N] = fcxr((l Λ μ)*(p[M, f] A
, f] A p[N]) by Remark 10.3

, /]) <(p[ΛΠ)*Φ(7»)[SdlmΊ) by 10.8

The product formula 10.7 implies that there is a graded class
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e H^iBξ, Z/2) such that, for any f:M-> Tξ, s([M, /]) =

{V\M)-f*(Φ3r{ξ)), [M])eZ/2. The argument just above deriving

10.7 from 10.8 generalizes easily to give the following. Let / :

Mq+2a-l ^ Tp9 g . Nq+2b ^ j y b e m a p g β T h e n § β M X N, f Λg]) =

HIM, /]) <<7*0(F2), [N])eZ/2, where fΛg: MxN~*TξxTη~+TξΛTτ].

A simple argument then shows that the characteristic class J2Γ" satis-

fies the Whitney sum formula

^Γ(ξ x
(10.9) ^ ^ ^ γ 2 ^ + γ 2 ^ ^ j ^ ^ e H*'\Bξ x 5^/, 2)

If ^(βf) = 0, then s = s: η*(Tξ)~-+ Z/2. Thus Jt(ξ) is the class

_! 6 H4*-\Bζ, Z/2) defined in II, §5. We have thus used 10.8 to

prove a Whitney sum formula for J^*_ lβ In particular, consider

, Z/2).

THEOREM 10.10. ^ . _ 1 = Γ ί Σ ^ ^ - i ) e H**-ι(BSG, Z/2), where
e2i_1 e Hr~ι{BSG, Z/2) is the unique primitive class with σ(e2i_1) —
i*(,βΓ2i_2)eH2i-χSG, Z/2), ST2i_2eH2i-2(G/TOP, Z/2) the surgery obs-
truction class.

Proof. From 10.9, ^^(VY2 e H^iBSG, Z/2) is primitive.
On the other hand, ^ ^ ^ - ( F ) " 2 ) = σ{^T^ = i*(J^*_2) by 7.2. In
[4], it is shown that i*(J^%_2) = 0 if An Φ 2\ We also have j^iSΓ^) =
0eH"-1(BSO,Z/2),j:BSO->BSG. 10.10 now follows from the fact
the primitives in H*(BSG, Z/2) which vanish in H*{BSOy Z/2) inject
under σ into H*(SG, Z/2)([14]).

We now return to the proof of Theorem 10.8.

Proof of 10.8. Step 1. It suffices to assume vt(ξ) = 0, ί > a, and

Vj(V) = 0, i > 6, hence va+b(ξ x η) = va(ξ) ®Vb(y). For let

Π K(Z/2, a + i) > Bξ > Bξ

be the fibration which kills va+i+1(ξ), i ^ 0. Similarly, define Bη by
killing vb+jil(η), j ^ 0. Let Tξ and Tη be the Thorn spaces over Bξ
and Bη, respectively. It follows from 10.2 that π2a^(Tξ) -»π%a_£Tξ)
and π2h{Tη) ~+ π2b(Tτ}) are surjective. If a: S2^1 -+ Tξ and β: S2b -> Tί?
lift α and /5, respectively, then, by Remark 10.3, ώξxη(a A β) = ̂ ^x^;

(α Λ $)eZ/2, and also ^(α) </S*Φ(F2), [S2δ]> = ^ ^ ( ^ ( ^ ^ ( F 2 ) , [S2&]> e
Z/2.

Step 2. There is a commutative diagram
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(Tξ/Tξ(va)) A (Tη/Tη(vb)) -A_X_Δ_> Tξ Λ K{Z/2f a) A Tη A K(Z/2, b)
I I

g\ \{1 A 1 A ca® cb)oT
i , i

Tξ A Tη/Tξ A Tη(va (x) vb) — ^ — > Tξ A Tη A K(Z/2, a + b)

where the map T switches the factors K(Z/2, a) and Tη. Moreover,
g is constructed so that

(Tξ/Tξ(va)) A (Tη/Ty(vb))
p Λp/

Tξ A Tη g

Tξ A Tη/Tξ A Tη(va (x) vb)

commutes.
To see this, one constructs on the base spaces a commutative

diagram of maps of pairs

Bξ x (K(Z/2, a), e)

(Bξ, Bξ(va)) x (Bη, Bη(vb)) -^-^-^*-?A x Bη X (K(Z/2, 6), e)
I I

(Bξ X Bη, Bξ x Bη(va (x) vb)) ^-^^-> (Bξ x Bη X (K(Z/2, a + b), e) ,

where ve e H'(Bξ, Bξ(va), Z/2), vη e H\Bη, Bη(vb), Z/2), and v(xv e
Ha+h(Bξ x Bη, Bξ x Bη(va (x) v6>, Z/2) are the unique nonzero elements.

Step 3. The functional operation

φίxv(a Λ β)

= Σ S ί f e ^ f x 5?)) e H>°+*h(TξΛ Tη/Tξ A Ty<va®vb) \J e^\ Zβ)
1 = 1 \ P(aΛβ) /

can be computed as

Σ Sq'ί Σ %2a-ΛO®vb_kvbUv)

6 H'+M{TξlTξ{va)) ATη\J e2α+2\ Z/2) .
\ PceΛβ /

This follows easily from the existence of the commutative diagram

(Tξ/Tξ(va)) A Tη
pa A

S2*-1 A S2b <

p(a Aβ)\

Tξ A TηjTξ A Tη(va, vb}
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and computation of the cohomology maps in Diagram 10.11.

Step 4. Finally, we employ the commutative diagram

>) Λ Tη > (TξlTξ(va)) ATη\J e2a+2b

h1 Λ β

S2a-i Λ TΎ} > (Tζ/Tξ(va)) A Tη > (Tξ/Tζ(va) \J e2a) A Tη
pa

to show that

a + b

Σ
= h*ΣSq* Σ

i=l j+k=l

This completes our outline of the proof of 10.8. We leave the details
of Steps 2, 3, and 4 to the reader.

We point out here that, if ξ —+Bξ is a spherical ίibration, πjβζ) = 0,
then we have proved

THEOREM 10.12. The following conditions are equivalent:
(a) Every map f: MqJr2n~ι —> Tξq, q > 2n — 1, Λf α^ unoriented

manifold, is cobordant to a globally transversal map g: N9*2*'1 —> T<f9.

(b) JΓ(f) = 0.
(c) ^: π^Tζ A MO) —• Z/2 vanishes.

(Note that (c) is equivalent to the assertion that

π2n^((Tζ A M0)(vn)) > π2n^(Tξ A MO)

is surjective, n ^ 1. We can replace MPL by MO because the
restricted homomorphism s: η2*^{Tζ) —> Z/2 is sufficient to define

Finally, we construct the map a: KQ+4->MSGq used in 8.2. Recall
K*+i = S ί + 3 x //(x, 0) = (-a?, 1) is a ^/2-manifold with δJSΓff+4 - S^+3.
Since π3(MSG) = ^/2, there is a map α: UL9+4 —> ΛfSG, such that α:|δii:4:
S9 + 3 — MSG, is the generator of πz(MSG). Therefore, sd(Kq+\ a) =
s(Sρ + 3, α|sί+3) ^ 0. This establishes 8.2(i). Now there exist maps
β: Sq+i-+MSGq with (β*Φ(vl), [Sq+i]) Φ 0. (For example, β = p([CP(2)]),
p: Ω*{pt)-+π*(MSG)). Thus, if necessary, we can change a:Kq+i—>
MSGg on a disc Dq+iaKq+i such that <α:*Φ(F2), [Kq+i]} = 0. This
establishes 8.2(ii).
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11* Homotopy definition of sn: Ω4*+1(Tξ, Z/n)—+Z/n. Our next
goal is a homotopy-theoretic definition of sn: ί?f.+i(T£, Z/n)-+ Z/n, ξ
oriented. By Lemma 3.7, we need only consider s2r, r ^ 1. Moreover,
given / : Mq+*n+ί —> Tξq, we can assume f\δM is globally transversal,
and then s2r([Mq+4n+1, /]) is computed as index (L4n) e Z/8 (interpreted
as an element of Z/2r), where L4n = f~\Biq) Π dM is a closed, An-
dimensional PD space.

We will define, for any oriented spherical fibration η, a homomor-
phism v π,n{Tη) — Z/8 with the following property: If a: Sq+4n -> Tψ
is globally Poincare-transversal, with r 1 ^ ) = L k c S ? + k , then
iv{a) = index (L4%)(mod 8). As in the beginning of §10, there is a
natural Pontrjagin-Thom isomorphism p: ΩζL(Tζ)^>π*(Tζ A MSPL).
Moreover, if f:N~*Tζ is globally transversal, then p([N, /]): S—>
Γf Λ MSPL is globally transversal, with (p([TV, Z ] ) ) " 1 ^ x BSPL) =
/-'(Bf) as P.D. spaces. It follows that s2ri Ωf*L

+1(Tξ, Z/2r)-+Z/2r is
equal to the composition

, Z/2r) - ^ βJ L - ^ ττ4*(Tf Λ MSPL) - U Z/8 ,

with image interpreted in Z/2r.
Thus we need to define i: πin(Tη) —> Z/8. The key idea is this:

If Lin is a closed, oriented PD space, then the Wu class v2n(L) e
H2n(L, Z/2) is the reduction of an integral class v e H2n(L, Z), and,
for any such choice of v, (v\ [L4n]) = index {Un) (mod 8). Suppose
the normal fibration of L admits an 77-orientation, v: L —* Bη. Let
K(Z, 2n) —• Bη(βv2n) —> Bη be the fibration with A -invariant βv2n{η) e
H2n+ί(Bη, Z). Then v lifts to v\ L -* Bη(βv2n), and, on the Thorn space
level, a = p[L, v]: S4n -^ ΓvL ^> Tη lifts to α: S4w — ΓvL -
Moreover, if v e H2n(Bη(βv2n), Z) satisfies

n}, Z/2) ,

then index (L4n) = <α*Φ(i;2), [S4%]> (mod 8).

THEOREM 11.1. Givew a: Sin —> Γ57, έfeerβ exist liftings a: S*n —>

Tη(βv2n). Moreover, (ά*Φ(v2), [S4n]) e Z/8 is independent of the choice
of the class v and the lifting ά.

We therefore i: π,n{Tη)->Z/8 by i(a) = <α*Φ(^2), [S4n]) e Z\%. The
point of Theorem 11.1 is that i(a) e Z/8 is now defined for all a: S4n~+
Tη, regardless of whether a is transversal. If a: Sin —> Tη is trans-
versal, i(a) gives the index (mod 8) of the inverse image of Bη because
of the discussion above.

Proof of 11.1. Let z e H2n+1(Bη, Bη(βv2n), Z) = Z be a generator.
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The map on base spaces

Bη, Bη(βv2n) -Λ> Bη X (Bη, By(βv2n)) ^ Bη X (#(£, 2n + 1), β)

induces a map on Thorn spaces

Tη/Tτ](βv2n) -^Tη A K(Z, 2n + 1) .

One can prove the following, just as Theorem 10.1 is proved in [1].

LEMMA 11.2.

( i ) g*: H%Tη A K(Z, 2n + 1), Z) > H\TηlTη{βv2ny, Z)

is an isomorphism if i < An + 2, and is a surjection with kernel =
Z/2 if i = An + 2. The generator of kernel (#*) in dimension An + 2
is the element

βv2nU(g) c2n+1 +U(g) cln+, = β{v2nU® c2n+1 +U(g) Sq2nc2n+1)

= β ( t Sq2i(v2n_2ίU®c2n+ι)) e H'*+χTη A K(Z, 2n + 1), Z) .

(Recall that since η is oriented, v5(η) = 0 if j is odd.)
( i i) If ye H*(Bη, Z/p), p prime, then ρ*g*(v U®ή = βv2n -y Ue

H*(Tη, Z/p), where p: Tη ~-> Tη/Tτj(βv2n).

COROLLARY 11.3. (i) (g^^

is an isomorphism if i <J An.
(ii) (^)*jθ*: πlTη)^πlTη A K(Z, 2n + 1)) is zero, i ^ An.

Proof, (i) is immediate from Lemma 11.2(i). To prove (ii), first
note that Tη A K(Z, 2n + 1) is the Eilenberg-MacLane spectrum
J5Γ(iϊ*_2«_i(T ,̂ Z)), through dimension An. It thus suffices to prove
that, for all y e Hύ(Bη, Z/p), j < 2n, ρ*g?;{yU®c) e H2n+1+j(Trj, Z/p) is
decomposable over the mod p Steenrod algebra. (We assume here
that H*(Tη, Z) is of finite type.) If p is odd, this is obvious from
Lemma 11.2(ii). If p = 2, we have

= Sq\v2n.y. U)+± Sq"(vin_2%.(Sq*v). U) + Sq^Sq'y)- U

= Sq\v2n y U) + ± Stf'iv^iSq'y)- U) + Sqι(y • (Sqιy) U) .

From Corollary 11.3(i) and (ii), we see that

p*: πJTη) > πin(Ty/Ty(βv2n))
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is zero, and the first statement of Theorem 11.1 follows.
We must now prove that, given aeπ4n(Tη), (ά*Φ(v2), [S*n])eZ/8

is independent of v e H2n{Bτ](βv2n), Z) lifting

π iyjyj)) eH2"(BV(βv2n), Z/2) ,

and independent of a: Sin ~+ Tη(βv2n) lifting a: S4n -> Tη. First, v
may be replaced by v + 2y, y e H2n(Bη(βv2n), Z). Then (v + 2yf =
v2 + ivy + iy2. It thus suffices to prove that Φ{p%{vy + y2)) = v2n-
y2U is decomposable over the Steenrod algebra. But

Secondly, a eπin(Tη(βv2n)) may be replaced by a + 3/9, β e
^n+ΛTv/Tv(βv2n)). The result that i(a) = (ά*Φ(v2), [S4*]) e Z/8 is
independent of a follows immediately from

LEMMA 11.4. Given any

β: S4n+1 > TηlTη(βv2n), (β*δΦ(v2), [S4ίl+1]> = 0 (mod 8) ,

where 8: Hin(Tη, Z) -> H4n+1(Tη/Tτ](βv27ί), Z).

Proof. We assert that 3Φ(v2) — Ay, where pz(y) is decomposable
over the Steenrod algebra. Specifically,

+ U(g)Sq2nc)

= Σ Sq2ί(gϊ(v2^2iU® ή) e H^+\Tv/T7](βv2n), Z/2) ,

where gv: TηlTη{βv2n) —> Trj A K(Z/2n + 1) was defined above. The
lemma is immediate, given this assertion.

To see that δΦ(v2) = 0 (mod 4) is easy. If π\ βη(βv2n) -> Bη, we
have τr*(v2Λ) = ρ2(v), hence π*(^(v2n)) = ρ4(v2), where

is the Pontrjagin square of v2n. Thus pβ(v2) = 0eH4n+1(Bη, Bη(βv2n},
Z/4). We need more delicate information about

(^2) e H*+\Bη, BV(βv2n), Z) ,

so we work at the cochain level. Let c 6 C2n{Bη, Z) be a cochain such
that π\c) e Z2n{Br](βv2n), Z) represents v eH2n{Bη(βv2n), Z) and such
that pie) 6 Z2n{BηBηf Z/2) represents v2n e H2n{Bη, Z/2). Consider the
cochain c U e + §c Ui c e Cin(Bη, Z). (This is a Z/4-cocycle which re-
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presents &*(vin) e Hin(Bη, Z/A).) Since

π*(δc) = δ(π*c) = 0, π (c U c + δc \J e) e Z*n(Bη(βv2n), Z)
1

represents v\ Thus δ(v2) eH*n+1(Bη, Bη{βv2n), Z) is represented by
the relative cocycle δ(c U c + δc (Ji c) = 2(δc) \Jc + δc^δc (see [23],
Theorem 5.1 for the coboundary of UrP r °ducts). On the other hand,
δc = 2d, where d eZ2n+1(Bη, Bη(βv2n), Z) represents the generator
zeH2n+1(B7],Bη(βv2n),Z). Thus δ(v2) is represented by the relative
cocycle 4(d U c + d Ui ^) Clearly, jO2(d U c + d Ui ^) represents the
cohomology class v2n*z + Sq2n(z)eH4n+1(Bη, Bη(βv2n), Z/2).

Now consider the maps

, Bτ)(βv2n)) ^ B η x {K{Z, 2n + 1), e) ,

which induce on the level of Thorn spaces the map

gη: Tτ]ITη(βv2n} > Trj A K(Z, 2n + 1) .

Under the "Thorn isomorphism"

H*(Bη, Bτ}(βv2n}, Z/2) - ^ H*(Ty/Tη(βv2ny, Z/2) ,

v2n z corresponds to g*(v2nU(x) c2n+1), and Sq2n(z) corresponds to
gΐ(U(g)Sq2%v+ί). Thus δΦ(v2) = Ay, where

as asserted.
Finally, we point out that, if ξ —•> J5| is an oriented spherical

fibration, ^(Bf) = 0 and if &>(ξ) e H**+1(Bξ, Zω) is the class defined
in §5 (and in this section), then we have proved

THEOREM 11.5. The following conditions are equivalent:
(a) Every map f: Mq+in+1 —• Tξ\ q > An + 1, M a Zβr-manifold,

is cobordant to a globally transversal map g: Nq+4n+1 —> Tξq.

(b) ^(ξ) = 0.
(c) i:π#(Tξ A MS0)—>Z/8 vanishes on the torsion subgroup of

πATξ A MSO).

(Note that (c) is equivalent to the assertion that

id: π4*+1(Tf Λ MSO, Z/22) > π^Tζ A MSO) > Zβ

vanishes. We can replace MSPL by MSO since the restricted homo-

morphisms s2ri Ω4*+1(Tξ, Z/2r)-> Z/2r, r ^ 1, are sufficient to define the

class ^
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APPENDIX. C o n s t r u c t i n g c o h o m o l o g y classes f r o m h.omomor«-
phisms on bordism* In this Appendix, we review the technique used
by Sullivan (and earlier by Thorn in his definition of rational PL-
Pontrjagin classes) of defining cohomology classes of a space Y in
terms of homomorphisms on the smooth bordism of X. We deal
separately with cohomology classes with Z/2-, Q-, Z{2)-, and Z/2r-
coeίϊicients.

Case Z/2. The key fact for the construction is the result of
Thorn, that the Hurewicz homomorphism hn: %ln(X) —> Hn{X, Z/2) is
surjective, and that kernel (hn) is generated over Z/2 by the decom-
posable elements in the image of the natural pairing ϊfl^(X)0ΪH^(pt)^>
9M-3Γ), that is, by elements [Mn~\ /]-[JV€] = [M x N, / π j , where /:
Mn~ι -> X and i > 0.

As an immediate consequence, we have that a cohomology class
z% 6 Hn(X, Z/2), which is the same as a homomorphism Hn(X, Z/2) —>
Z/2, is equivalent to a homomorphism ψn: %ln(X) —* Z/2 such that
φ([M, f]-[N]) = 0 whenever dim (N) > 0.

In practice, the homomorphisms φ*: 5R*(X) —»• Z/2 which arise do
not vanish on decomposables, but satisfy a product formula like

where χ(N) is the Euler characteristic of N, modulo 2. In such a
situation, we obtain a (graded) cohomology class z* = z0 + zx + z2 + ,
zτ e H^X, Z/2), as follows. Perturb the Hurewicz homomorphism h to
K:M*(X)-+H*(X,Z/2) by setting

h(M, f) = fΛV\M) n [M]) G H*(X, Z/2) ,

where F2(M) = 1 + v\(M) + v|(Λf) + is the square of the total
Wu class of M. The homomorphism h is not homogeneous; that is, h is
not degree-preserving. However, h is still surjective, and kernel (h)
is generated over Z/2 by elements [M, /] [iV] - [M, f[(V2(N), [N]},
where (V2(N), [N]) = χ(N)eZ/2. Thus we have

PROPOSITION A.I. Graded classes z* e H*(X, Z/2) correspond bijec-
tively to homomorphisms φ*: yi*(X)—>Z/2 which satisfy φ*([M, f][N]) =
Φ*([M, f]) χ(N) eZ/2. The correspondence is defined by the equation

φ*(M, f) - <V\M)•/*(**), [M])eZ/2 .

Proof. This follows easily from the above properties of h: ?fi*(X) -^
H*(X, Z/2), the relation V\M x N) = V\M) ®V\N) e £Γ*(M, Z/2) (x)
H*(N, Z/2) = H*(M x N, Z/2), and the computation
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*(**), [M] = </*(**), V\M) n [M]> - <z*, MM, /]> .

REMARK A.2. Since V2 = 1 + v? + v\ + is nonzero only in
even dimensions, we have that, if / : Mn —> X is a map, then

That is, the homomorphism 0Λ, n even, is determined by the classes
20, s2, s4, i and the homomorphism 0n, n odd, is determined by the
classes zί9 s3, z5, .

^/2-cohomology classes can also be defined by using the homology
theory "bordism with ^-coefficients," Ω*( , Z/2). Namely, Ω*(X, Z/2)
is a module over Ω*(pt, Z/2), the Hurewicz homomorphism

h: Ω*(X, Z/2) > H*(X, Z/2)

is surjective, and kernel (h) is generated by decomposable elements
[M, f]'[N]. As in Proposition A.I, we deduce

PROPOSITION A. 3. A graded class z*H*{X, Z/2) is equivalent to a
homo7ϊiorphism Φ*: Ω*(X, Z/2)—+Z/2 which satisfies φ*([M, f] [N]) =
Φ*([M, f])-χ(N). The correspondence is defined by

φ*([M, /]) = <F2(ikf)./*(**), [M]) eZ/2 .

REMARK A.4. Since for Z/2-manifolds M, w\(M) = 0, and since
v2ί+ι is always divisible by wlf we have that V\M) = 1 + v\(M) -\-
v\(M) + is nonzero only in dimensions divisible by 4. Thus

φn{M\ f) - ( F W ) / * ( Σ *.-«), [Λf ]) e Z/2 .

Case Q. Another simple case when cohomology classes are directly
constructed from homomorphisms on bordism is the case of rational
coefficients. Specifically, the Hurewicz homomorphism h: Ω*{X) ®Q~+
H*{X, Q) is again surjective and kernel (h) is generated, over Q, by
decomposable elements [M, f]-[N], ]M, f] e Ω*(X), [N] e Ω*(pt), and
dim (N) > 0. Thus homomorphisms φ*\ Ω*(X) (x) Q —> Q which vanish
on decomposables yield rational cohomology classes.

In practice, the homomorphisms φ*: Ω*(X) (x) Q —> Q which arise
satisfy a product formula like φ([M, /] [iV]) = φ*([M, / ]• index (N).
Let LQ{M) = 1 + L,(M) + LΛ(M) + eH**(M, Q) be the (inverse)
Hirzebruch polynomial of the normal bundle of M (so that (LQ(M), [M] =
index (M) e Z). Then we have

PROPOSITION A.5. Graded classes z* eiϊ*(X, Q) correspond bijec-



94 GREGORY W. BRUMFIEL AND JOHN W. MORGAN

tίvely with homomorphisms φ*: 42*(X) (x) Q —• Q which satisfy
Φ*([M, f] [N]) = ψ*([M, /])• index (N). The correspondence is defined
by the equation

φJtM , f) = (LQ(M«).f*(z *„-«), [Mn]) e Q .

Case Z(2). A somewhat more complicated situation arises if we
attempt to define a cohomology class with i> ̂ -coefficients. A complete
discussion is given in [15]. We state here only the final results of
that discussion. Roughly, the idea is that a Z(2)-class determines by
obvious coefficient maps (and is determined by !) a Q-class and a
compatible set of Z/2r-classes, r ^ 1.

Here are the relevant facts.

(1) The evaluation map Hn(X, Z/2r) ^ Horn (Hn(X, Z/2r), Z/2r)
is an isomorphism.

(2) The Hurewicz map h*(2r): β*(X, Z/2r) ~* H*(X, Z/2r) is sur-
jective.

(3) There is a natural module structure

Ω*{X, Z/2r) ® Ώ*(pt9 Z/2r) > Ω*(X, Z/2T)

and, in the limit, kernel (h*(2°°): i2*(X, Z/2°°) ->• H*(X, Z/2™)) is
generated by "products" i([M, f] [N]), where Z/2°° - lim Z/2r, i:
Z\2r -> Z/200. ~*

(4) The rational L-class LQ = 1 + Lγ + L2 + - e H'\BSO, Q), used in
Case Q above, can be refined to a unique class L e H^(BSO, Z{2)) which
satisfies pQ(L) = LQe H"{BSO, Q) and p2(L) = V2e H"(BSO, Z/2). More-
over, L is multiplicative; that is, on Whitney sums of bundles,

Using these facts, the following is proved in [15].

PROPOSITION A.6. Graded classes z* e H*(X, Z{2)) correspond bi~
jectively with commutative diagrams

where p: Q —»Q/Zω — ZjZ* is the projection, which satisfy
( i ) φQ([M, f] [N]) = φQ([M, /]) index (N) e Q,
(ii) φ2(i([P, 9] [Q])) = ΦMIP, 9])) index (Q) e Z\V c Z\2T,
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where P and Q are Z/21'-manifolds, i: Z/2r-+Z/2°°. The correspondence
is defined by the equations

ΦΛM\ /]) = (uM>)'f* ( Σ «„-«), [M] e ZM c Q ,

where [M, f] e Ωn(X), and

ΦMP; Q]) - (w*)-ff*(g *.-«), [P]) e Z/Γ c ZI2T ,

[P , #] e Ωn(X, Z/2r).

REMARK A.7. It is clear that the torsion classes in H*(X, Z{2))
correspond to the diagrams in A.6 with φQ = 0.

Case Zβr. The final result that we need for this paper is a
construction of cohomology classes with Z/2r-coefficients, r > 1 (see
§8). Now, we have the isomorphism

H*(X, Z/2r) -^ Horn (H*(X, Z/2T), Z/2r)

and the surjection h*(2r): Ω*(X, Z/2r) — H*(X, Z/2r), as mentioned in
Case Z{2) above. However, kernel (h*(2r)) is somewhat complicated,
and before we can define ^/2r-cohomology classes, we must study
this kernel.

First, consider h*: Ω*(X)-+H*(X, Z), which is surjective modulo
the class of finite groups of odd order. We know that, since MSO
localized at 2 is an Eilenberg-MacLane spectrum, there is an iso-
morphism Ω*(X) = H*(X, Ω*(pf)) (mod groups of odd order). Thus
there is an exact sequence

0 > H*(X, Z) (x)
- Toτ^iHΛX, Z), Ω*(pt)) > 0

(mod groups of odd order). We choose a subgroup of Ω*(X) iso-
morphic to H*(X, Z) under h, H*(X, Z) c Ω*(X). Then elements in
image (H*(X, Z) (x) Ω*(pt)—*Ω*(X)) are clearly constructed as products
[M, f] - [N], [M, f] e H*(X, Z), [N] e Ω*(pt). Now the torsion in Ω*(pt)
consists of elements of order 2 ([24]). Let f:Pm-+X represent an
element of order 2 in Hm(X, Z), and let Qn e Ωn(pt) have order 2.
We construct an element [P, f]*[Q] eΩm+n+1(X), which hits the torsion
product [P, f]*[Q] e Tor (H*(X, Z), Ω*(pt)), as follows. Let F:P~*X
satisfy dP = 2P, F\dϊ = 2/, and let dQ = 2Q. Form the map

Foπ, U foπ,: P x Q \J P x Q > X .
2PxQ
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This is our desired element of Ωm+n+1(X). Note that this element
belongs to the Massey product <[P, / ] , 2, [Q]). Of course, it is not
well-defined, but depends on the choices P, Ĵ , and Q. The indeter-
minacy is clearly the same as that of the Massey product <[P, / ] , 2,
[Q]>, namely, the products with [P, /] or [Q] as one factor:

[P, / ] (x) Ωn+ί(pt) + Ωm+1(X) (x) [Q] c Ωm+n+1(X) .

We point out that P and Q give Z/2-manifolds in the obvious way,
and the Massey product constructed above is the Bockstein of the
product of the Z/2-manifolds P and Q. That is ([15]),

where d: Ω*+ι(X, Z/2) -> Ω*(X) is the Bockstein.
The description of generators of Ω*(X) given above easily

implies

LEMMA A.8. kernel {h*: Ω*(X)-+ H*(X, Z)) is generated (mod
groups of odd order) by

( i ) Products [M, f] [N], dim(iV) > 0 and
(ii) Bocksteins of products δ([P, F]*[Q]), where P and Q are

Z/2-manifolds and dim (Q) > 0.

Next, we consider the relation between Ω*(X) and ΩJJX, Zj2r).
There is a commutative diagram

0 > kernel (hn) > Ωn{X) > Hn(X, Z) > 0

0 > kernel (hn(2T)) > Ωn(X, Z/2r) > Hn(X, Z/2r) > 0

(A.9) Jd Jδ \δ
0 > kernel (h^) > Ωn^(X) > H^X, Z) > 0

2 r 2 r

0 > kernel (h^) > Ωn^(X) > H^X, Z) > 0

The columns are exact and the rows are exact modulo groups of odd
order.

LEMMA A.IO. kernel (h*(2r): Ω*(X, Z/2r)-^ H*(X, Z/2r)) is gen-
erated by

( i ) products [M, f]-[N],[M, f]sΩ*(X, Z/2r),[N]eΩ*(pt), and
dim (N) > 0.
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(ii) Z/2-products i([M,f] • N], [it, f] e Ω*(X, Z/2), [N] e Ω*(pt, Z/2),
dim (N) > 0, and i = 2r~ι: Ω*(X, Z/2) -> Ω*(X, Z/2r).

(iii) Z/21'-reductions of Bocksteins of products, p2rδ([P, F] [Q])9

[P, F] e Ω*(X, Z/2)f [Q] e Ω*(pt, Z/2), and dim (Q) > 0.

Proof. From Diagram A.9, we see that kernel (ftΛ(2
r)) is generated

by ^(kernel (hn))9 together with a set of elements {xt} such that
5{a?J = kernel (hn^) Π kernel (2r). By Lemma A.8, ^(kernel (/&»)) is
generated by /v([M, /]•[#]) - (^[M, /]) [iV], dim (AT) + dim(iV) =
n, and dim (N) > 0, together with ρ2r3([P, F] [Q])> dim (P) + dim (ζ>) =
n + 1, and dim (Q) > 0. These elements are of types (i) and (iii)
respectively in A. 10. Also, corresponding to the elements of the form
δ([P, F] [Q]) 6 kernel (hn^)9 where P and Q are Z/2-manifolds, we
include the elements i([P, F] [Q]) in the set {xτ} c kernel (hn(2r)). These
elements are of type (ii) in A. 10.

Finally, suppose [M, /] [JSΓ] e kernel (hn^) n (-ff*(X, ^) <g) ΰ
and 2r[M, /] [iV] = 0. We consider two cases: first, 2[N] = 0 e
and, secondly, 2r[M, /] = 0 e H*(-3Γ, Z) c β*(X). It is easy to see
these two cases suffice since Ω*(pt) is a free group plus 2-torsion.
In the first case, choose N a Z/2-manifold with δN = N. Then
[M, f] [N] = δ([M, /] [iV]), hence we can add the elements i([M, /] [iV])
of type (ii) in A. 10 to the set {xz). In the second case, let [M, f] =
δ[M, / ] , where M is a Z/2r-manifold. Then [M, f] [N] - δ(M, f] [N]),
hence we can add the elements [M,f]-[N] of type (i) in A. 10 to the
set {ccj. This completes the proof, since now our set {xt} has the
required property δ{scj = kernel (hn_λ) Π kernel (2r).

PROPOSITION A. 11. Graded Z/2r-cohomology classes z*eH*(X,
Z/2r) correspond bijectively with homomorphisms φ*\ Ω*(X, Z/2r)~>
Z/2r which satisfy

( i ) φ+([M, f][N]) = φ*([M, f])-index (N) c Z/2T, where [M, f] e
Ω*(X, Z/2r) and [N] e Ω*(pt),

(ii) φM\M9 f]'[N])) = φ*(i[M, f])-index (N) e Z/2 c Z\2\ where
[M, f] e Ω*(X, Z\2\ [N] e Ω*(pt, Z/2), and

(iii)_ ΦΛp2rδ([P, F] [Q])) = ^ ^ ( ^ ( [ P , F])) indβα (Q) 6 Z/2 c Z/2%
^Λerβ [P, FjβΩ^X, Z/2) and [Q] e Ω*(pt, Z/2). The defining equa-
tion is

Φ*([M, /]) = (p2rL{M) - / * ( Σ 2.-*,),

Proof. This follows easily from Lemma A. 10, the discussion in
the first paragraph of Case Z\1r, and properties of the class Le
H"(BS0, Zω).
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REMARK A. 12. If r — 1, Proposition A. 11 is simply Proposition
A.3, since p2L =V2 eH**(BSO, Z/2), and since, for Z\2-manifolds,
index {N) = 1(N) e Z/2.

REMARK A.13. Given φ*: Ω*(X, Z\2r) —> Z/2r, consider the homo-
morphisms for s ^ 1,

φ*p2rδ: Ωn+ι(X, Z/2S) > Ωn(X) > Ωn(X, Z/2r) > Z/2r .

If s ^ r, image (φ*ρ2rδ) c Z/2S c Z/2r. If s :> r, we compose φnρ2rδ
with the inclusion Z/2r c Z/2S. It is easy to see that this gives a
commutative diagram

Ω*{X) (x) Q — Q

(A.14)

iJ*\JL, ZJIΔ )

where Z/2°° = lim Z/2S and ^ 2 = lim (φ*p2rδ \ Q*{X,Z/ZS)) If <

s s

Z/2r satisfies the hypothesis of A. 11 (hence gives classes zn 6 Hn{X, Z/2r)9

n^O), then it is not hard to prove that the diagram A. 14 above satisfies
the hypothesis of A.6. The point is, the product formulae A.ll(i)
and (iii) imply the product formula A.6(ii). Thus diagram A. 14 gives
torsion ^/2-classes ^ ι + 1 e H"+ί(X, Z{2)). It is clear that J?ς+1 = βzn

where β is the Bockstein for the coefficient sequence

0 > Z{2) — Z{2) , ZI2Γ > 0 .

REMARK A. 15. In the cases Z/2, Q, and Z{2) above, all the theorems
stated remain true if smooth bordism is replaced by PL-bordism. (In
Case Z{2), one uses the result of [15] that Le H'XBSO, Z{2)) extends
to a canonical class L e H*\BSPL, Z{2)).) The case Zj2r is somewhat
more complicated, since ΩζL(pt) contains torsion of order 2s, all s ^ 1.
Thus kernel (hζL(2r): ΩζL(X, Z/2r) -> H*(X, Z\2r)) is complicated. How-
ever, one can show the following analog of Lemma A. 10.

LEMMA A.IO(PL). kernel (hζL(2r)) a ΩζL(X, Z/2r) is generated by
( i ) images of products ί([M, f] [N]), where [M, f] e ΩζL(X, Zj2s),

[N] e ΩζL(pt, Z/2S), and dim (N) > 0, s ^ r, and i: Z/2S -> Z/2r the
inclusion.

(ii) Z\2r-reductions of Bocksteins of products, pzrδ([P, F] [Q]),
where [P, F] e ΩζL(X, Z/2s)f [Q] e ΩζL(pt, Z/2S), and dim (Q) > 0, and

As a corollary, one obtains the following analog of Proposition



LEVITT'S OBSTRUCTION THEORY 99

A. 11.

PROPOSITION A. 11 (PL). Graded Z/2r-cohomology classes z*e
H*(X, Z/2r) correspond bijectively with homomorphίsms

φ*: ΩζL(X, Z/V) >ZI2T,

which satisfy
( i ) φMW, f] [N])) = φ*(i[M, /]) index (N) e Z/2S c Z\2T, where

[M, /] e ΩζL(X, ZI2% [N] e ΩζL(pt, Z/2% s ^ r.
(ii) φ* (p2rd (\P, F] • [Q])) = φ* (p2rδ [P, F]) • index (Q) e Z\2* c Z/2T,

where [P, F] e ΩζL(X, Z/2S), Q e ΩζL(pt, Zj2°), s ^ r.

The defining equation is
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