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Let G be a real reductive Lie group and n a tempered
invariant eigendistribution on G. Given a natural ordering
on the set of conjugacy classes of Cartan subgroups of G,
= is called extremal if it has a unique maximal element in
its support. T. Hirai has proved for a restricted class of
real simple Lie groups that if = is extremal and satisfies
certain regularity conditions, it is uniquely determined by
its restriction to the maximal element in its support. The
purpose of this paper is to show that Hirai’s theorem is
true without restriction of the type of G.

1. Introduction. Let G be a connected, acceptable, real re-
ductive Lie group with compact center. Let m be a tempered
invariant eigendistribution on G. Then = can be realized as a
locally summable function, #’, analytic on the dense open set G’ of
regular elements of G. [1] This function is uniquely determined
by its restrictions to a complete set of representatives of Car(G),
the set of conjugacy classes of Cartan subgroups of G.

The function 7’ can be quite complicated on the various Cartan
subgroups. However, there is a natural ordering on Car(G@) such
that, if [H] € Car(G) is a maximal element for which 7’|, =0, then
there exist functions e and 49 on H such that k¥ = ef4%7'|, is
analytic on all of H and is given by a simple Weyl character type
formula [5, vol. II, p. 60-62]. Thus it is useful to know when 7 is
uniquely determined by the restrictions of 7’ to maximal Cartan
subgroups in its support.

For example, if 7w is the character of a discrete series represen-
tation of G, then G has a compact Cartan subgroup B which belongs
to the unique maximal conjugacy class in Car(G). Harish-Chandra
proved in [2] that = is the unique tempered invariant eigendistri-
bution with given eigenvalue and given formula on B.

In two recent papers [3, 4], Hirali studies the space of tem-
pered invariant eigendistributions on &, and proves a theorem which
is a natural generalization of the theorem of Harish-Chandra.
However, there is a crucial lemma for this theorem which is only
stated for G a simple real Lie group of classical type or of type G,.
Hirai doesn’t give a proof of this lemma, but claims it is proved
by long but elementary case by case arguments.

The purpose of this paper is to give a general proof of Hirai’s
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lemma valid for any reductive real Lie group. As a consequence,
Hirai’s theorem on uniqueness of tempered invariant eigendistribu-
tions can be proved without restriction of the type of G.

Section 2 of this paper gives the details of Hirai’s results and
their extensions. Most notation and definitions follow [3, 4]. Section
3 gives the proof of Lemma 5 of §2.

2. Uniqueness of tempered invariant eigendistributions. Let
G be as in §1, with Lie algebra 2. Let A;(\) be the set of all
tempered invariant eigendistributions on G with eigenvalue A\. Thus,
an element 7 of A,(\) is a distribution on C2(G) such that:

(i) = is invariant under inner automorphisms of G;

(ii) Zz = MZ)r where Ze 2, the center of the universal
enveloping algebra of the complexification ¥). of 9 and »\ is a homo-
morphism from 2 to C;

(i) 7 extends continuously to a distribution on Z(G), the
Schwartz space of G.

Let Car(G) and Car(®) denote the sets of all conjugacy classes
of Cartan subgroups of G and Cartan subalgebras of ¥ respectively.
Then there is an order on Car(¥)), which can be lifted to an order
of Car(G), given as follows. Let % and B be Cartan subalgebras
of 9. We say [¥] < [¥B] if there is a real root a of U such that
v = B, wWhere v =y, = exp(—7n/dy/ —1 ad(X, + X_,)), and X,
X_. are root vectors for a« and —a in 9 satisfying [X, X_.] =
2H,/|lal’. In this case [¥] # [B], and va is a singular imaginary
root of B. Extending the order < transitively we get an order
on Car[9)] with unique maximal and minimal elements, the Cartan
subalgebras with maximal compact and vector parts respectively.

For any tempered invariant eigendistribution 7, let C(z) be the
subset of Car(G) consisting of conjugacy classes [H] for which
m'|g # 0. Any Cartan subgroup H such that [H] is a maximal
element of C(r) is called a highest Cartan subgroup of =, and the
function k¥ = eZ4%7’ | on H is called one of the highest parts of
w. 7w is called extremal of height [H] if [H] is the unique maximal
element of C(x).

Let N be a homomorphism of 2 into C. Let H be a Cartan
subgroup of G with Lie algebra £, and complexification §,. There
is an isomorphism 7: 2" — I(9.), where I(.) denotes the invariants
of the full Weyl group, W (9., $.), in S(9.), the symmetric algebra
of ©.[5,vol, I, p. 168]. Then A-7"'=\° is a homomorphism of
I(9.) into C and is induced by a linear form g on $.. We denote
this relationship between N and ¢ by A\° = \,. Clearly A, = \,, for
all we W(9., 9.).
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For H and M as above, let B,(H, \) be the set of all analytic
functions £ on H such that:

(1) Di=27\(D)§, Del(9.);

(ii) &(wh)=e(w, h)&(h), we W(G, HY=NJH)/Cs(H), hc H', and
e(w, h) = *1 is defined by eZ(wh)4?(wh) = e(w, h)ei(h)4%(h);

(iil) supsex (1 + o(R))* |&(h)| < + o for some positive number
s, where ¢ is the function on G defined in [5, vol. IL, p. 66].

The following are proved by Hirai in [4].

THEOREM 1. Let we A;(\), and H one of its highest Cartan
subgroups. Then the highest part k¥ of = on H is a monzero ele-
ment of B.(H,\). Conversely, for any nonzero & in By(H, \), there
exists at least one extremal element in Ar(\) with highest part &.
The space Ar(\) is spanned by extremal elements.

COROLLARY 2. Suppose B,(H, \) # {0}. Every extremal element
of A;(\) with height [H] is uniquely determined by its highest part
tf and only if Bi(H',\) = {0} for any [H'’]eCar(G) such that
[H'] < [H].

LEMMA 3. In order that By(H, \) # {0} it is mecessary that:

(i) there exist pelV —19* such that \® = N

(ii) expX —exp (X)) is a well-defined wunitary character of
the conmnected component of the identity in H;

(iii) <y, B> = 0 for any compact root B of H.

Further, in order that By(H, \) # {0} it is sufficient that in
addition to (i) and (ii), we have:

(iii)) p is I-regular; that is, {¢, 8> = 0 for any imaginary root
B of $.

LEvMMA 4. Let [9]eCar(®), [D] not minimal. Assume that
peV —=19*, N, =21% Bi(H,\)#{0}. Then in order that every
extremal element of Ar(\) of height [H] be uniquely determined by
its highest part, it is mecessary that p be I-regular.

Finally, Hirai states the following lemma in the case that ¥ is
a simple real Lie algebra of classical type or of type G..

LemMmA 5. Let 9 be a reductive real Lie algebra, and 9 a
Cartan subalgebra, mot minimal with respect to the ordering on
Car(9). Let pecV —19* be I-regular, and let © be a Cartan subal-
gebra of Y such that [9'] < [D]. Let Vv be any inner automorphism
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of 9. such that v9, = 9. Then vurec (D)* is never pure imaginary
on 9.

The main result of this paper is that the above lemma is true
as stated without restriction on the type of ¥, and can be proved
by a general argument. Using this lemma, together with Corollary
2 and Lemmas 3 and 4, we obtain the following theorem.

THEOREM 6. Let G be a connected, acceptable, real reductive
Lie group with compact center. Let H be a Cartan subgroup of G
with Lie algebra 9, [9] mot minimal in Car(y). Assume that
B.(H, )) # {0}, where \° = \,, eV —19*. Then any extremal ele-
ment © in A, (\) of height [H] is uniquely determined by its highest
part if and only if p is I-regular.

3. Proof of Lemma 5. For any Lie algebra & and Cartan
subalgebra 9, let @ = @(®,, $,) denote the set of roots of the com-
plexification, @5, @;, and @,., the subsets of @ consisting of roots
which are purely real, imaginary, or neither on £ respectively. For
aec®, H, denotes the element of . associated to a by the Killing
form on &, 57 the hyperplane in $* perpendicular to «, and s,
the reflection through 5#,. For Y€ @y, 7° denotes the conjugate
of v, Y(H) = Y(6(H)), He 9., where o is the conjugation of ®, with
respect to @. 7, and 7, denote the imaginary and real parts of 7
respectively.

Let & = £ + B be a Cartan decomposition of ® with & a maxi-
mal compact subalgebra for which @ = (YU R) + (DU DP) = §, + D,.
Set V=197 = {d eV —19*: dls, = 0}, and §; = {0€9*: 0[5, = O}

Lemma 5 is proved by a series of reductions. First, by analyz-
ing the inner automorphism v: . — 9., [9'] <[9], we reduce the
problem to a question just involving the root system &(SQ,, 9.). We
must prove that if pe1 —19; is I-regular, and if wpevV —197
for some we W = W(®,, §.), then wy is also I-regular.

If we W stabilizes @;, then clearly wp is I-regular if and only
if ¢ is. We examine the types of hyperplanes which can separate
¢ and wpy. Since p, wpeel —19f, they cannot be separated by
hyperplanes 57, ac ®,. We show that hyperplanes of the form
%, BED;, S, Y€ Wypx, {¥,7) =0, and certain hyperplanes 57,
{77y <0, can be crossed by elements of W which stabilize @,.
Thus we may as well assume that ¢ and wy are separated only by
hyperplanes 577, <7, 7"y < 0, such that v + 7 = a € @5 is orthogonal
to every other real root.
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This allows us to reduce the problem to a root system @ for
which @, is of type (A4, for some integer r. We then show that
the assumption that wy is not I-regular leads to a contradiction.

Let 1€V —19* be I-regular, and write ¢t = g, + V' —1gt,, i€
V=195, 1, H*. Then p, is also I-regular. For any [§'] < [§] and
inner automorphism y such that v9. = 9., v = y,w for some we W
and some inner automorphism vy, of ®, satisfying v,9. = 9., v.5, is
a real root of § for some singular imaginary root 5, of 9, and
v, C 9.

Suppose for some © and some inner automorphism v = yw as
above, yprelV/ —1%'*. Then vy, eV —19'* also. Since p, €V —197+
%, the real subspace of $* spanned by @, wy,e1V —19F + H¥ also.
But v,9, &', so if wy, is nonzero on 9,, vwp, = vy, takes nonzero
real values on §. Thus wy, €1V —19¢.

Since wp,, B,V —19F, {wp,, B,y is real. But {wy,, B =
wpt(Hs,) = vt(H, 5,) where H, ; €' since v,8, is a real root of 9'.
Thus (wpy, B,) = 0. Thus to prove that vz is never pure imaginary
on &, it is sufficient to prove that wy, is I-regular for any we W
for which wy, eV —19F, and we may as well assume that ¢ = g, ¢
VvV —19:k.

Assume that for we W, wp eV —19¢. We can pick w’ € W, the
subgroup of W generated by s;, 8¢ ®;, such that w'y and wp are
separated by no hyperplanes 5%, 8e®,. Further, w'rel —19;
and is I-regular since W, stabilizes V' —19¢ and @,.

For Y€ ®gpy, {7, 8) = — (7°, 8) for any 61V —18}, so that 5Z
separates w'# and wy if and only if 5% does. If <{v,7) >0,
Y —7e®, and 54 and 5%, separate w'pt and wg if and only if
&% does. Thus w'p and wyt are not separated by hyperplanes
S, {1, 7 > 0.

Suppose they are separated by hyperplanes 57, (v, 7°) = 0. For
such 7, s,8,0 stabilizes 1V —19F and @,. Therefore we can choose
Y+t Ve €Dopxy such that (v,v> =0, ¢=1,---,k and wpg and
8;,8r,7 0 Sy Spew't = w'w'p are separated only by hyperplanes 577,
{7, 7y < 0. Again, w"w'r eV —19F and is I-regular. Thus we may
assume that g and wy are separated only by hyperplanes 27,
o,y < 0.

For such a root v, v+ =aec®, so ¥ =«a/2+ 7, |7I>
l|la|?/4. TUsing the facts that 27, v)/{v,Y) and 2{a, 7)/{7, V) are
integers, we find that ||a||* = ||7|’. Suppose there is @, € @, such
that {(a,a) <0, a,#% —a. Then {(a,7> <0, so ",=a, +7¢0.
If |l # |l 2a, V/{a, a) or 2{a, Y>/{7, 7> is not an integer.
Thus ||| = ||, | so that (7, 7}> =0. For any de1V/ —19%, (v, )=
{7, 6, so that if 2#] separates g and wy, so does £%7,. But this
contradicts the assumption that g and wpg are separated by no
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complex hyperplanes %7, (7,, 7{) = 0. Thus if 5% separates ¢ and
wy, 7p = af2, « is orthogonal to every other positive real root.

Pick 7, ---,7,, a subset of the set of all v such that 5%
separates ¢ and wpy, for which wy = s, ---s,¢t. Let «, ---a, be
the distinct real roots which appear as v, + 7% ¢=1, .-+, k. Then
$, = 2o RH,, + 9, where §, = {He9,:a(H) =0, =1, ---7}.

Let M be the centralizer of . in & Then M is a reductive
Lie algebra with Cartan subalgebra ©, and s, -:-s, stabilizes @' =
o(M,, ). Further, @), = {*a, ---, +a,} and 0; = @,. Let 3 be
the centralizer in M of H,_,.. Then &(3, 9. = ?'(¢) = {ac?”
{a, £y = 0}, and s;---5, (1) = P(wy) = {ac?: (o, wyy =0} If
wye is not I-regular, i.e., {wy, 8) = 0 for some Be @, then ?'(wy)
contains at least » + 1 mutually orthogonal roots, namely «,---, «,,
B, and hence so does @'(y).

A real root system is called o-normal if &« — a°¢ @ for every
ae® [3]. O'(¢) contains + a, --- * «,, some complex roots, but
no imaginary roots since g is I-regular. Since a — a° takes purely
imaginary values on § for any acd®(y), a — a’¢ @ (y), and so
@’(1) is a o-normal real root system.

Write @'(¢) = @*U---U® where @ is simple, 1 =1<s and
s <r. Then each @ is a simple, o-normal real root system with
@ of type (4)% and no imaginary roots. The possible simple o-
normal real root systems are classified, and we see by scanning a
table such as [5, vol I, p. 30-32] that @ can only be a real form
of type 4,,, or A;,_,. In either case, @° contains exactly r; mutually
orthogonal roots, and thus @'(¢) contains only » mutually orthogonal
roots. Therefore, wy must be I-regular.
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