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Let m be a tempered distribution on R". We say m is an
L?, L7 multiplier (more briefly: m € M}) if, for each ¢ € ¥, the
inverse Fourier transform of mé is in L% and there is a constant
C such that || F'(mé)|, = C||¢||, for all such ¢. The basic
problem we shall consider is that of establishing sufficient
conditions that a locally integrable function m € M} in the case
1<p<g<on.

1. Introduction. The primary reference for multipliers is
Hormander [4], where he proves a number of results. Perhaps the best
known of these is his convexity-symmetry theorem: For a given m € &',
the set {(x,y): m € M}}} is a convex subset of [0,1]x[0,1] which is
symmetric about the line x + y = 1. He also proved that when 1<p =
2=q <wand 1/r=1/p — 1/q, M contains the Lorentz space L(r,) and
that only when p =2 =g can a condition |m | = F imply m € M.

Whenever m is a multiplier we have @“‘(md;) = K+¢p where K € &'
and K =m. O'Neil [6] showed that if K€ L(r',) then |K*¢|, =
ClIK|*-|¢ll, for 1<p <q <, 1/p =1/q +1/r. Thus, any hypotheses
which imply 1 € L(r’, ) also imply m € M. Peetre [7] uses this idea
to prove a multiplier theorem in terms of homogeneous Lipschitz spaces.

Our attack on the multiplier problem is based on a method due to
Hahn [1, 2]. We obtain some extensions of his theorem as well as a
refinement of Peetre’s theorem. Our hypotheses include the condition
m € L(r,)but do not, in general, imply i € L(r’,»). Our conclusions
take the form m € M{ for 1/p = 1/q +1/r with 1/p and 1/q sufficiently
close to 1/2.

2. Preliminaries. Let x denote a pointin R". The usual inner
productin R" isdenoted x - y. Lebesgue measure in R" is denoted dx.
The space & consists of those C~ functions on R” which, along with
each derivative, vanish more rapidly at infinity than any rational
function. Its dual, &, is called the space of tempered distributions.
The Fourier transform is defined on & by

$x) = [ exp(=2mix - y)6(y)dy.

The inversion formula is
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$()= F'$(x) = [ exprix - y)b(y)dy.

The Fourier transform is extended to &' by the formula
(@, ¢)=(u, ) for ue L', € .

If either u or 4 is in L', then the appropriate integral formula is also
valid. For a simple exposition of Fourier analysis in & and &’ see Stein
and Weiss [8].

The symbol ||f||, always denotes the L norm for functions on R",
l=p=x. If m e Mj, we set

Mi(m)=sup{| F'(md)|,: ¢ € %o, =1}

L(p, q) denotes the Lorentz space of measurable functions f on R"
whose nonincreasing rearrangement f* on (0, ) satisfies

@ 1/q
I8 = {@m) [ 1 oret ] <o
when p and q are finite and
If15- = sup £ *(¢) <o
when g = .
These spaces are treated in Hunt [5] and Stein and Weiss [8].
For f a function on R" and h € R", the difference operator is given
by
Af(x) = f(x + h)— f(x).

Higher differences are given by
k
AMf(x) = Aw(AT)(x) = 20 G (= D)*7f(x + jh).
=
With our definition of Fourier transform,

(A4f)" = [expmix - h) - 1],

Let k be a fixed positive integer and suppose f is a function such that
Aif € L? for a.e. h €R". For A->0, set
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(A, f,p) = sup [|Af ],

For 0 < a < k, the homogeneous Lipschitz space W2 consists of those
functions f (modulo polynomials of degree at most some sufficiently large
N) such that A w (A, f,p) is in L?((0,°),A"'dA). These are essentially
the same spaces treated in Herz [3]; interpolation properties of these
spaces are given in Peetre [7].

3. Convolution products as multipliers. In this section
we offer some improvements and variants of Hahn’s results [1, 2].

THEOREM 3.1. Suppose m = f+g, where fE L and g € L' with
1=ss=t 1/s+1/t=1. Then m € M? and Mi(m)=c|f|lg|. for all
p, q satisfying

(i) lsp=sgq=sw

@ lp—-1l/g=1s+1/t—-1

(i) 12-1/t=1/q=1/p=1/2+1/t.

Proof. When 1/s + 1/t =1 this is the basic theorem in [1]; we shall
use this to prove other cases. Note that 1/s+ 1/t >1, s =t implies
s <2.

First let us suppose t =2. By the Hausdorff-Young inequality we
have | #7'f[.=(/f[, and [F g =gl Setting

1-1/r=1r"=1/s"+1/t'=2-1/s =1/t

we have F7'(f*g) = (F'f)(¥'g) € L" by Holder’s inequality. Young’s
inequality gives

IF ' (Fxg)d), =l d*F ' (F*2)ll,
=loll, 1 F '+l

forl=p=g=w,1/p+1/r'=1/q+1. The last equation reduces to (ii).
Now we suppose t>2. Fix g€L, o€ and set 1/p,=
1/2+1/t. Define

Tf = F(f*g)é).

First we note | Tf[.= Cllf|.llgll | & - Since.[f+g [l =[lf:lgl.
this follows by applying Plancherel’s theorem, Holder’s inequality, and

the Hausdorff-Young inequality.
Pick s, so that 1/s,+ 1/t =1. Then by the result mentioned above,

I Tf = Clfllullg Nl -
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Now we invoke the Riesz-Thorin theorem [10]. Set 1/s=
(1-6)/1+8/s, and 1/qgo=(1—0)/2+ 6/p,. We obtain

I Tflo=Clifl gl & 1.

with 1/q, = 1/p,— (1/s + 1/t — 1), so that the theorem has been proved for
the smallest value of p and q satisfying (i), (ii), and (iii). Hormander’s
convexity-symmetry theorem [4] completes the proof.

Hahn [2] proved a similar theorem by a more complicated interpola-
tion argument; however, his choice of end points did not yield the full
range of p and q obtained above.

Below we offer a useful variant involving Lorentz spaces.

THEOREM 3.2.  Suppose m = f* g where f € L(s,) and g € L(t, )
with 1<s=t and 1/s+1/t>1. Then m E€M? and Miim)=
Clfl3-lgl*~ for all p,q satisfying

(i) 1<p<qg<wx

i) Up-1l/lg=1/t+1/s—-1

(i) 12-1/t<1l/q<1/p <12+ 1/t

Proof. We apply the Marcinkiewicz interpolation theorem [5] to
each of the three linear operators obtained by fixing two of the arguments
in

T(f g ¢)= F (f+8)d).

For technical reasons it is convenient to set a = min(1/s, 1/¢), drop
the condition s = ¢ and replace 1/t by « in (iii) in both Theorems 3.1 and
3.2.

Because of the strict inequalities in Theorem 3.2, we may select
Sy < s <s, so that if 1/q, = 1/p — 1/s, — 1/t + 1, then all the hypotheses of
Theorem 3.1 are satisfied when s and q are replaced by s and g;
respectively. Regarding p, t, g, and ¢ as fixed, we have

1T 8 )l = ClflMgllloll, — i=1,2.

Thus interpolation yields

1T s o= Clflz-Ngl &l

Fixing p, s, f, and ¢, a similar argument yields

Tlg el

1T, 8 &)i-=Clif
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Finally we fix s,¢,f and g and perform one last interpolation to
obtain

1T, 8 &) =TS, & D)5,
=CllflIx=lglt=l® 7.
= Clfl-lglt=ll

The most obvious application of Theorem 3.2 is to Riesz potentials;
i.e., convolutions with the kernel c,,|x|*™ € L(n/(n — a),»).

When 1/s + 1/t = 1 so that p = q the analogue of Theorem 3.2 fails;
clearly f*g is not a multiplier for f(x)= g(x)=|x|"2. A paper of
Strichartz [9] discusses the failure of the methods above in such a
situation. However, we have a simple proof of a related theorem which
we give below.

THEOREM 3.3. Suppose m = f*g where f € L(s,1) and g € L(t,)
with 1/s+1/t=1. Then m €M%, and M:i(m)=C|f|*.lglt- for
[1/p —1/2] < min(1/s, 1/¢t).

Proof. Set T(f,g, &) =% '((f*g)$). Let E be a measurable set of
finite measure |E| and let x¢ denote its characteristic function. Fix
¢ € ¥ and consider the mapping

Ag = T(XE> g, d’)

We take (<t <t, 1/so+1/t;,=1, and 1/s,+ 1/t, =1 with ¢, and ¢,
sufficiently close to ¢ to give |1/p — 1/2| = min(1/so, 1/s1, 1/4,,1/t,). Then
by Hahn’s theorem [1] we have

lAgl, = Clixe . llg I 1 1l
=C|E["™gll.ll¢l, fori=12.

Now for g € L(t,») we write g = go+ g, where go(x)=g(x) if
|g(x)|>A and vanishes otherwise. Then g,€EL* and g, E€L"
moreover || gollo = CA'™*||g [|*2° and || g, [l. = CA'"4|| g |I*%*.  We thus ob-
tain

IAgll, =l Agll, + 1l Agll,
= ClE["=xs|glrl o,
+ClE["™A g | 6,
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Choosing A = [E || g||*. yields
lAgll, = CLE[" gl 1,
Now we regard g and ¢ as fixed and consider the operator
Bf =T(f. g, ¢).

When f = yz we have | Bf|, = C|E|"™| g|*-ll¢],; hence by a result of
Stein and Weiss [8, Chap. V, Th. 3.13] we have

IBfl, = ClFIT g l*-N &1,
for all f€ L(s,1).

4. Lipschitz functions as multipliers. We begin by de-
riving a representation theorem for Lipschitz functions which is a simple
variant of a theorem of Herz. This theorem expresses Lipschitz func-
tions in terms of convolution products and consequently allows us to use

the results of the previous section.

LEMMA 4.1. Let k be a fixed positive integer. There is a function
¢ € C3(0,) such that

f [expRmix,)—1]*¢ (| x |)| x| "dx = 1.

Proof. Tt suffices to produce ¢ € C5(0,) such that the above
integral is nonzero. Since we can construct ¢, € C5(0,%) such that

tim [ [exp@mix) = 116, x )| x | dx

=f [exp2mix,)— 1] exp(— A7 | x [*) dx,

it suffices to show that this last integral is nonzero. If we expand
[exp(2mix,)— 1]* and recognize some well-known integrals we obtain

(= 1)k "/2[ [expRmix,) — 1] exp(— A | x |*) dx

=3 (= 1YGexp(~ mA)

which approaches 1 as A | 0.
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LEmMMA 4.2. For ¢ as in Lemma 4.1, set

K(xy)= [ exp@mix-2)6(y] |z])dz

Then
(i) K(-,y)EPfory#0and |K(-,y)l,=GCly[""",1=p=c.

() [ lexp@mic- y)= 1R (5 )|y 7dy =1

for x#0, where K denotes the Fourier transform with respect to x.

Proof. For each y € R", the function x — ¢(|y||x|) defines a
function in &; K(-,y) is its inverse Fourier transform. A change of
variable yields

K(x,y)=|y["K(y|'x,e), with |e|=1,
hence

IKC )l =1y

The integral in (ii) is

IR e)

[ Texp@rix <)~ 1160y 1Dy [ ay.

Substituting y = | x |y’ and then rotating coordinates to make y, parallel
to x, we obtain the integral of Lemma 4.1.

THEOREM 4.3. Suppose fE€ L'+ L where 1<r<w and also
fE€ Wi where 0<a <n/p. Then

f0)= [ [ K=z ymiga)ly 1 dydz

with the integral converging absolutely for a.e. x.

~ Proof. First we establish the absolute convergence of the
integral. Set

F@) = [ [ 1K= 2yl 1885(2)| |y [dyde

The simplest case occurs when ¢ = 1. Choose s so that n(1—1/s) =
a and t so that 1/p+1/s=1/t+1. By Minkowski’s and Young’s
inequalities we have
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1Fhs [ [ 1KC =2 11831 dz] 1y ay
= [ IKC )L IaSCl 1y dy

= Cf ly "o (lyl, fp)ly["dy

=f A0 (A, £, p)A " dA.

By definition of W2, the last integral is finite. Thus |F(x)| <~ a.e. and
the original integral defines a function in L. Note p <t <.

The general case is only a little harder. Write F(x)= G(x)+ H(x),
where

Ge)=[ [ 1KG=zy) 18470 |y | dydz.

Choose s, and s, so that 0<1-1/s;<a/n<1-1/s;,<1/p. Setting
1/p + /s, = 1/t, + 1, the arguments of the previous paragraph yield

1
[Gl.=C L AT G (A, f, p)A T A
and
IH|.=C fl T AT G (A, £ p)A A

Since n(1—1/s,)<a <n(1-1/s,), Holder’s inequality bounds both of
these by

/q

CUO [)\“'w(/\,f,p)]")\‘ld/\}l if g <oo

and by CsupAw (A, f,p) if g =x. Set

g)= [ | Ktx= 29821y [dydz

We show f = g by showing the tempered distributions f and § can differ
only by a distribution supported at the origin, and hence f—g is a
polynomial. The integrability properties of f and g require such a
polynomial to be zero identically.
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Let ¢ € 0; i.e., let ¢ be a C” function on R" with compact support
not containing the origin. By absolute convergence,

@ ¢>=<g,<ﬁ>=f<K(-,y)*A';f, )y [ dy.

We have
(K(-,y)=Ak ) = (K(-,y)(A5f)", ¥)
= (f,lexpmix - y) = 1'K (-, y)u).
From the properties of K and ¢ we see easily that the mapping
y = [expQuix - y) = 11*K (%, y)y (x) |y [

defines a continuous mapping from R" into & with compact
support. Thus we may write

(& 0) = [ lexp@mix - y) = 1R ()l [dy)
=(f, ¢) by Lemma 4.2.

Hence § — f is supported at the origin as desired.

At this stage we should remark that the hypotheses of Theorem 4.3
appear to be slightly redundant. However, this redundancy resolves any
ambiguity which might appear in the statement f € W=, elements of
which are equivalence classes modulo polynomials in Peetre’s definition.

THEOREM 4.4. Suppose m € L'+ L where 1<r<« and also
meE W with 0<a/n <1/t =1/2. Thenm € M¢ for all p, q satisfying

@ lUp—-lg=1t—aln

() 12-1t=1/q<1l/p=1/2+1/t.

Proof. It suffices to show [(F'(md), )| =Cl|,|d], for all
¢,y € &, where 1/q'=1-1/q. We have

(F(md), d) = (m, )
= [ m@)dww o) dx

= [[[KCneaimely Fray [ 6w ar
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by Theorem 4.3. We also have absolute convergence of the above
integral; hence

(F(mdb), §) = f (K (-, y)sbim)d, ¥y [dy

f@I(K(  y)<bim) ], By

- dy.
Hence by Holder’s inequality

(Fimd), il = [ 151K, y)aim) N1y .

If we set 1—1/s = a/n then by Lemma 4.2 |[K(-,y)|,=C|y|™;
hence by Theorem 3.1

IF (K, y)A5m)éll, = Cly = [Am | | [l

Thus
(F o), )1 = Cl LI 1 [ 1y 1< 185m L1y dy.
Since | A4 |, = w(ly |, m, t), we have
[ 1y F1aimlllyray = [ Ao mortan <=
for m € W,

THEOREM 4.5. Suppose m € L'+ L' where 1<r<w and also
mE W with 0< a/n <1/t =1/2. Thenm € M forallp, q satisfying

i lp—-1lg=1t—aln

(i) 12-1t<1/q<1l/p<1/2+ 1/t

Proof. We shall see below that

1F7 (m)5= Gl

whenever p and ¢ satisfy (i) with 1/2=1/p =1/2+1/t. Hence the
Marcinkiewicz interpolation theorem [5] yields

1F (mé)l, = Coll 1,
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for all p and ¢ satisfying (i) and 1/2<1/p <1/2+1/t; Hormander’s
convexity-symmetry theorem [4] will then conclude the proof.

We now offer two proofs of the assertion || F (mé)|*.= C,,ll &I,
The first uses real interpolation as found in Peetre [7]; the second is
elementary.

Set Tm = F'(md) for fixed ¢ € ¥ Then |Tm|,=Clm| | o|,
for 1/p —1/qo=1/t, 1/2=1/p =1/2+1/t. 1f we choose B with a/n <
B/n < 1/t, Theorem 4.4 implies

T: W' — L% for 1/q,=1/p+B/n—1t, 12=1/p=1/2+1/t,

with norm bounded by C|/¢|,.
Hence T: [L, W8]y~ [L*%, L%]s- continuously with norm bounded
by C|l¢|,; choosing 8 = a/B gives [L', W#'),..= W= and [L*%, L%],..=

L(g, ).
The second proof uses a combination of the techniques used in
proving 4.3 and 4.4. Fix r >0, and write m = my,+ m, where

mo(x) = ; K(-,y)*Asm(x)|y|™"dy.

lyl=r
Choosing s, and s, so that n(l1—1/s))<a <n(l-—1/s,) and setting
1/q,=1/p +1—1/s, — 1/t we obtain
[ Tmall = Cl b1, [ A0, m, A" dA

and

[Tl = Il [~ A0 m, 0 d,

Since m € W:”“’, w(A, m,t)= CA®; hence

“ ’Tn'l(]“qu = C” d) ”Pra'*nu—l/so)
and
I Tmy|l, = C| & |l,r="0-v=.

By the usual properties of rearrangements and Lorentz space norms
i3], we have
4 (Tm)Y*(1) = vV (Tmo)*(7/2) + v9(Tmy)*(7/2)
= CrVaVao|| Tmy||,, + Cr¥a V4| Tm |,

= C ” ¢ ”p (Tl/q—llqora—n(l—llso) + T”q—l’q‘r"—"(l"”’l))_
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Choosing r = 777" and simplifying the exponents yields
7"(Tm)*(r)= Cl |,
as desired.

By the Sobolev embedding theorem [3, 7], the hypotheses of
Theorem 4.5 imply m € L(r,) where 1/r=1/t+a/n. When =2
Bernstein’s theorem [3, 7] implies m € L(r’,%); this is the case consid-
ered by Peetre [7]. It should be noted that for t>2 and B/n =
1/2—1/t + a/n, W&C W=e and the inclusion is proper; thus we are
offering a genuine refinement of Peetre’s result.

ADDENDUM. After this paper had been accepted for publication,
the author learned that Y. Uno [Lipschitz Functions and Convolution,
Proc. Japan Acad. 50 (1974), 785-788] has published a result similar to
Theorem 3.1.
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