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THEOREM. Assume n >2k. Then every (k —1)-field on
$"7! is skew linear.

1. Introduction. Skew linear vector fields on spheres have
been studied by Strutt [6], Zvengrowski [8] and Milgram and Zven-
growski [4,5]. Extensive calculation of projective homotopy classes in
[5] led Milgram and Zvengrowski to conjecture that every r-field on $"°'
is skew linear. Here we will prove this conjecture in the stable range, as
stated above.

After a reformulation using a construction of L. Woodward [7] and
the results of [1], the theorem will follow from the Kahn-Priddy theorem
[3].

Since proving this theorem I have learned that Milgram and
Zvengrowski had already obtained the result using different methods
[9]. They have also shown that 7 and 8-fields on S are skew linear, the
two remaining cases excluded by the condition n > 2k and not already
dealt with in [8]. L. Woodward has also proved the theorem by methods
similar to those used here.

2. Proof of the theorem. If p: E— B is a fibration let
C(B; E) denote the set of vertical homotopy classes of cross sections to
p. If Z, acts freely on B and E in such a way that p is equivariant let
C,(B; E) denote the set of equivariant vertical homotopy classes of
equivariant cross sections to p.

Let V., denote the Stiefel manifold of k-frames in R" with the
involution [v, - -, u]—=[—~ v, -, —v]. Recall that a skew linear
(k —1)-field on $"7' is a cross section to the bundle V,;, — S"' which is
vertically homotopic to an equivariant cross section. Let L,, denote the
space of equivariant maps $*'— S"'. Fixing x, = (1,0,---,0)€ $* "' as
base point we have a fibration L,, — S"' by evaluating at x, and a
commutative square

Vik——> L,

|

Snw] Sn—l

¥
N
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where o is the natural inclusion. The antipodal map on $””" induces an
involution on L,, such that the maps in the above diagram are
equivariant. As is well known [2], o is a (2(n-—k)—1)
equivalence. Hence

C(8" ", Vu)=C(S"" L)
and
CZz(Snﬁl; Vn,k)z CZz(Sm—l; Ln,k )

Let P, denote (k — 1)-dimensional real projective space and 7, the
Hopf bundle over P,. Let Tr(nn.) (respectively, Trz(nn,)) denote the
set of fiber homotopy classes of fiber preserving maps (respectively,
equivariant fiber homotopy classes of equivariant fiber preserving maps)
P, X §""'— S(n7n, ), whose restriction to the fiber over [x] is the identity
map. Here S(nn,) is the unit sphere bundle of nn.. Define a map

p: C(S" Lug)— Tr (nmy)
by A— A where A([x], y) =[x, A(y)(x)], x €S*™', y € S*"". This map is

a bijection; in fact the underlying function spaces are homeomorphic (see
Woodward [7, Lemma 1,2]). Similarly we have a bijection

Mz,: CZZ(S"—l; L,.,k)—>Trzz(n17k).

Let G(S"') denote the identity component of the space of maps
§*'— 8" and let G =inj. lim. G(S""). Let G, =inj. lim. G,(S"")
where G(S"") is the identity component of the space of equivariant
maps S$"'— S"'. Fixing an equivariant fiber map f: S(nn,)— P, X

S$"' whose restriction to the fiber over [x,] is the identity, we have
equivalences

v: Tr(nn)—[P:; G]
and

VZz: TrZz(nnk)_-‘) [Pk ; GZz]'

Each of these is defined by sending h: P, X $"'— S(nn,) to the adjoint
of

h f
Pk X SnVI_)S(nT’k)_) Pk X Sn—'l___) Sn—l.
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Here [; ] denotes homotopy classes of base point preserving maps.
Summarizing, let

g: C(S™h Vn,k)'_)[Pk;G]

denote the composite
C(S™™; Var) > C(8™; Lu) = Tr (nmi) = [Pi;; G]

and let ¢, denote its equivariant analogue.

LEMMA. Assume n >2k. There is a commutative square
-1 bz,
Co(S""; Vi) —> [Py G

é b,
C(S™"; V) ——[P,; G]

in which ¢ and , are equivalences and ¢ is the forgetful map.
If X is a connected space let Q% X™) denote the o-component of

Q(X")=Q"S*(X"). By the main result of [1] there is a commutative
square

G,,——> Q%(RP™)
Yol T
G —— QYSY)

in which the horizontal maps are homotopy equivalences and 7 is the
transfer map associated with the double cover S*— RP”. In view of this
and the above lemma, our theorem will follow by showing that

7o: [Pe; Q°(RP™)] = [Pi; Q°(S”)]

is epimorphic. This is a consequence of the Kahn-Priddy theorem
[3]. First note that both of these groups are finite and 7, is clearly onto
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the odd primary part. The Kahn-Priddy result states that 7, also maps
onto the 2-primary part. (Although they only consider the morphisms
7.: [S™; Q%(RP™)]—=[S™; Q°(S?)), for all m, their proof is valid with $™
replaced by any finite complex.)
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