Pacific Journal of

Mathematics

TENSOR PRODUCTS OF FUNCTION RINGS UNDER
COMPOSITION

NATHAN JACOB FINE




PACIFIC JOURNAL OF MATHEMATICS
Vol 68, No 1, 1977

TENSOR PRODUCTS OF FUNCTION RINGS
UNDER COMPOSITION

N. J. FINE

Let C(X), C(Y) be the rings of real-valued continuous
functions on the completely regular Hausdorff spaces X, Y and
let T = C(X)&® C(Y) be the subring of C(X X Y') generated by
functions of the form fg, where f€ C(X)and g € C(Y). If P
is a real polynomial, then Pot € T foreveryt€T. I GotET
for all t €T and if G is analytic, then G is a polynomial,
provided that X and Y are both infinite (A. W. Hager, Math.
Zeitschr. 92, (1966), 210-224, Prop. 3.). In this note I remove
the condition of analyticity. Clearly the cardinality condition is
necessary, for if either X or Y is finite, then T = C(X X Y) and
G ot €T for every continuous G and for every r € T.

It is convenient to admit a somewhat wider class of G’s. Let
T* = T +iT, that is, the set of all functions ¢, + it, with ¢, , € T. (T*is
the tensor product of the complex-valued continuous function rings on X
and Y). Define K(X, Y) as the set of all continuous complex-valued
functions G on R (the reals) with the property that Got € T* for all
t € T. Then the result is

THEOREM. If X and Y are infinite completely regular Hausdorff
spaces, then K(X, Y) consists of all the polynomials with complex coeffi-
cients.

It follows from the Theorem thatif Got € T for all t € T, then G is
a polynomial with real coeflicients.

The proof of the Theorem, which is rather lengthy, will be broken up
into a sequence of lemmas.

Lemma 1. Let ¢ and  be continuous mappings of X and Y onto X'
and Y' respectively. Then K(X, Y)CK(X', Y').

Proof. Let GEK(X,Y), t'eT' =C(X)RC(Y").
I must show that Got'€ T'*. Define t by

tx,y)=t'(e(x), ¥(y) (EX yeY)

Clearly ¢ € T, and by hypothesis G ot € T*. That is, there are continu-
ous complex-valued functions u;, - - -, u, on X, v;, - - -, v, on Y, such that
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n

(D) (Got)e(x),¥(y) =2 u(x)v(y) (GEXyEY)

)=1

If yy,y,- -, y, are any elements of Y, then there exist complex
Cy, C1, " "+, ¢, not all 0 such that
) 2 (Geot)(e(x)¥(y)=0 (x€X),

=0

since (1) shows that the y-sections of G ot are contained in an n-
dimensional subspace of C(X)+ iC(X). Letyg, - -, y,beany elements
of Y’, and let x’ be any element of X'. Then, since ¢ and ¢ are onto,
there exist y,, -+, y, and x such that

(,D(X):x', ‘1’()’;)2)’; O=O’l""’n)'

Insert these values in (2) to get

n

2 ¢(Geot)(x',y)=0.

=0

This means that the y'-sections of Get' are contained in an n-
dimensional subspace of C(X')+ iC(X'). By Hager', this implies that
Geot'eT'*. Hence GEK(X',Y').

Lemvma 2. If X'=X, Y'=Y, then K(X', Y)=K(X,Y).
Proof. Immediate from Lemma 1.

LEMMA 3. If the conclusion of the Theorem holds for all infinite
subspaces X', Y' of R then the Theorem holds.

Proof. Every infinite completely regular Hausdorff space can be
mapped continuously onto an infinite subset of R.  Apply Lemma 1 and
the hypothesis.

LEMMA 4. Suppose that X, and Y, are C-embedded in X and Y
respectively. Then K(X, Y)C K(X,, Yy).

Proof. Let GEK(X,Y), t,€ T, = C(X,) Q C(Y,). Then there is
at € T such that t|(X, X Y,) = t,, obtained by extending each component
of t,. By assumption, Got € T*. By restriction, Got,€ Tj. Hence
G € K(X,, Yo).

! Ibid. Prop. 1
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LemMMmA 5. If X is an infinite subset of R, then there is a continuous
mapping ¢ of X into R such that ¢[X] contains the terms of a convergent
infinite sequence and its limit.

Proof. 1f X is unbounded, let p € X and define
_X-pP
e(x)=777: (EX)

Then ¢[X] has the required property. If X is bounded, then it contains
a countably infinite set {x,} such that x, — g (perhaps not in X). Let
p € X and define

e(x)=(x-q)x-p) (xEX)

Clearly ¢(x,)—=0=¢(p). Also theset{¢(x,)}isinfinite. Hence ¢[X]
has the required property.

LEMMA 6. Let X, be any one infinite set {x,},_,, with x, > x,. If
K (X, X,) consists of the complex polynomials, then the Theorem holds.

Proof. Follows from Lemma 3, Lemma 5, Lemma 4, and the fact
that X, is compact, hence C-embedded in ¢[X], and Lemma 2.

LEMMA 7. Let Xo={j/n>> n=1,0=j=M,}, where M, is a se-
quence of positive integers satisfying M, = n (n=1). Let G € K(X,, X)),
with X, CZ(G), the zero-set of G. Then there exists an N such that

M, +1
)

€Z(G) (n>N).

Proof. Define t € T, = C(X,)Q C(X,) by
tx,y)=x+y (x € X, y €Xp).

Let N =rank(G-et), i.e., the dimension of the vector-space of
y-sections of Geot. If n> N, there exist ¢; (j =1,--+, N + 1) (possibly
depending on n) not all 0, such that

N+1 :

7=1

(Note that the arguments



66 N. J. FINE

3

L N+t1l_n _M
2= 2 2=
n n n n

A

are allin X,). Let M be the largest j such that ¢, #0,s0 1= M =N +1
and

3) ﬁ, G (x +7112-> —0  (x€X)

Choose x =(M, +1-M)/n*. Since M=N+1<n+1=M,+1, x>
0. Since M =1, x =M,/n’. Hence x € X,. Therefore, from (3),

n

Since Mn+1—M+j§n+2—M>n+2~(n+l)=1, and
M +1-M+j=M,+1-M+(M-1)=M, for all j such that 1 =j =
M -1, the arguments on the right in (4) are all in X,CZ(G). Since
CM7¥_07

G(M"nfl):o (n> N).

LemMMA 8. Under the hypothesis of Lemma 7, but with M, = n
(n=1), there is an a >0 such that [0,a] CZ(G).

Proof. Define
M, = sup {M: G <71L2>=0 for j=0,1,"',M}‘

Note that M, = n. Suppose that @ =lim(M,/n?)=0. Then there is an
infinite sequence n, < n,<--- such that

Define L, = M, if n = n, for some i, L, = n otherwise. Let
X’={#:O§j§Lm n;l}.

Then (i) X'= X,, (ii)) X'CZ(G), (iii) X' is of the form prescribed in
Lemma 7, since L, 2 n. By (i) and Lemma 2, K(X,, X;) = K(X", X'), so
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G € K(X', X'). Combining this with (ii), (iii), and Lemma 7, one finds
that there is an N such that

Lilezie) wm>n.

In particular, for n = n, > N,

M, +1
n2

€ Z(G).

This contradicts the definition of M,. Hence @ >0 (a = +x, possibly).

Clearly the set B={j/n:0=j=M,n=1} is dense in
[0,&). Since B CZ(G), there exists an «>0 such that
[0,a]CB CZ(G).

LeEMMA 9. Under the hypotheses of Lemma 8, G = 0.

Proof. Let a =sup{a:[0,a]CZ(G)}. By Lemma 8, & >0. Sup-
pose a <. Let £=0. For

tx,y)=a+é(x—-y) (xy€X),

let rank(Got)= M, Define N, =1+ max(M,éM,/a). For n=N,
there exist ¢; (j =0,1,---, M;) not all 0, such that

M,

) > G (a+é(x-L))=0 @ex)
(Note that for 0=j=M,,
o=t <M _N_n
——nZ—nZ n2—n27

so j/nPEXy). If q is the least j such that ¢#0, set x=
(q+1)/n*. Since 0<q+1=M,+1=N,=n, x€X, For j=q+
1,--+,M, one has a + ¢(x —j/n*) = a and

a+§<x~hi§>_2_a+§(gizl-—%>

n
L M M M,
- n*— n - N,
2a__ozN—l -0
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Hence a + £(x — j/n?) € Z(G), and from (5),

G(a-l—%): -1 § ch<a+§<x—“L)>=O.

2
Cq j=q+1 n

Thus it has been proved that for each &£ =0, there is an N; such that
G<a +§)=0 (n=N,).
For each N=1,2,--., define
sN={g;0: n=N> G(a+71§2->=0}.

Clearly Sy is closed and [0,%)= Uy Sx. By the Baire category
theorem, there is an interval [u, v} CSy for some N=1, with 0= u <
v. That is,

6) G(a+i)=o (u=¢=vn=N).

n2

Thus the intervals [a + u/n’ a + v/n?] are contained in Z(G) for all
n = N. For sufficiently large n, these intervals overlap and fill out an
interval (a, 8], with 8 >a. Hence [0, B8] CZ(G). This contradicts the
definition of « and shows that a=o. Hence G(x)=0
(x 2 0). Finally, the function G, defined by G,(x)= G(1—-x) (x ER)
belongs to K(X,, Xo) and Gy(x)=0 (x € X;). By what has just been
proved, Gy(x)=0 (x=0), so G(x)=0 (x=1). Therefore G =
0. (Thereis an alternate proof that avoids the use of Baire category).

LEmMmA 10. Let X,={j/n*:0=j=n,n =1}, and let G € K(X,, X;)
satisfy, for some positive h and complex r,

G(x+h)=rG(x) (x € X)).

Then G is a constant, and r =1 unless that constant is 0.

Proof. The function G, defined by
G(x)=G(x+h)-rG(x) (x ER)

belongs to K(X,, X,), and X,CZ(G,). By Lemma 9, G,=0, so
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G(x+h)=rG(x) (x ER).
Define F(x)= G(hx) (x € R). Then F € K(X,, X,) and
7 F(x +1)=rF(x) (x ER).

Let N =rank(Fet), where t(x,y)=xy (x,y € X;). Then the N+1
y-sections of Feot at y, =27 (j=0,1,---,N) are linearly dependent

(note that 27 =2//(Z7Y € X;). Hence there exist ¢, c;, ", cy not all 0
such that

N .
(8) > F27x)=0 (xE€X,).

j=9

As above, (8) holds for all x € R, by Lemma 9. Let M be the least
nonnegative integer for which an equation of the form (8) holds for all
x € R, with the sum running from 0 to M and the ¢; not all 0. Then
cu#0. If M =0, then F = 0 and therefore G =0. For M >0, let q be
the least j such that ¢,#0. Again, if ¢ =M, then G =0. Hence one
may assume that ¢ <M. Thus

M
) > ¢F27x)=0 (x ER),

i=q

with ¢,#0, cy#0, q <M, and M minimal. Replace x by 2Mx +
2™, Then

M
¢FQRMIx +2M7)=0 (x ER).
)

i=q
By (7),

M
> rFQMIx)=0  (x €R).
i=q

Replacing x by 27¥x, one gets

Mk

(10) r™'F(27x)=0 (x ER).

]

It
£~

Combining (9) and (10), one has

(11) ME_I G(r—r""FQ27x)=0 (x ER).

j=q
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Because of the minimality of M, all the coefficients in (11) must be
0. Since ¢,# 0,

r—r=0.

Now r =0 implies G(x + h)=0 (x € R), that is, G =0. Since g <M,
2M e =2 soif r#0, rm =1 with m =29 —-1=1. It follows that

F(x +m)=r"F(x)= F(x) (x €R).

Thus F is periodic. Either F (hence G) is constant or it has a least
positive period p. From (9),

5: ¢F2"'x)=0 (x € R).

=9

Therefore

F(x)= —— 2 ¢F2¥7x)  (x ER).

Cm j=q

Hence

M-1
¢ FQ2M7x +2"77'p)
1=q
M-1

2 F(@"x)

=4

py_ _1
F<x+2> o
1

M

i

F(x) (x € R).

This contradicts the fact that p is the minimal period. Hence F is a
constant and so is G. If G# 0, then

G(x)= G(x +h)=rG(x)

implies that r = 1.

LemMA 11. Let Xo={j/n*0=j=nnz=1}, and let
G € K(X,, X;). Then G is a polynomial.

Proof. Let N =rank(G °t), where

tx,y)=x+y (x, ¥y € Xp).
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Then, if one reasons as in Lemma 10, there is an M = N and ¢, " * *, Cap
with ¢y = 1, such that

(12) 2 ¢G <x +'1\JF> -0 (xEX).

Equation (12) holds for all x € R, by Lemma 9. Define F(x)=
G(x/N?) (x ER). Then

3 ic,F(x+j)=2c,-G(—I§5+#)=O (x €R).

j=0

One may assume that M is minimal for F in equation (13). Write

M
e(z)= 20 ¢z’
=
Then, using the standard notation

(Ef)(x)=f(x + 1),

one has
(p(E)F)(x)=0  (x €ER).
Let r be any zero of ¢(z), so that ¢(z)=(z — r)¢:(z). Define
J(x)=W(E)F)(x) (x€E€R).
By the minimality of M, J# 0, and

Jx+1)—rJ(x)=(E —r)J(x)
= (E —ry(E)F(x)
=@(E)F(x)=0 (x ER).

Since J € K(X,, X;) and J# 0, Lemma 10 yields r =1. Thus all
zeroes of ¢(z) are 1, and

¢(z)=(z~ 1"
(E-1D"F(x)=0 (x ER).

Note that M = 0 implies F = G =0. Let P(x) be the polynomial of
degree =M —1 which agrees with F at x =0,1,2,---,M —1. Then
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P(0)=F(0)
(E - DP(0)=(E ~ DF(0),

(E-1)"'P(0)=(E - D" 'F(0).
Also, because deg P =M —1,
(E-1)"P(x)=0=(E - 1)"F(x) (x ER).
Now
Gy(x)=(E - D)™ Y(P(x)— F(x)) € K(X,, X,)
and
z(E —1)Gy(x)=0 (x € R).
By Lemma 10, Gy(x) = constant = G,(0)=0. Thus
(E-D"'P(x)=(E - DM 'F(x) (x ER).
Continuing by induction, one obtains
(E-1DM'P(x)=(E - 1D)"7F(x) (x ER)
for j=1,2,---,M. Thus
F(x)= P(x) (x €R).
Therefore F, hence G, is a polynomial.
Combination of Lemma 11 and Lemma 6 completes the proof of the

Theorem.
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