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E. Brown showed that for any map f of a punctured disc B,
with n holes into a 2-manifold M that is an embedding of /B,
there is an embedding g of a punctured disk B, into M such that
g(8By) is a subcollection of f(3B.). In this paper E. Brown’s
approach is extended to show that a similar result holds for maps
of punctured q-balls into certain q-manifolds (q = 3).

Let PC(q) denote the collection of (topological) g-manifolds M?
with the property that if h is an embedding of S?7' X [0, 1] into M that is
null homotopic, then h(S? ' x ;) bounds a topological g-cell in M<,

Note that PC(1) and PC(2) consist of all 1-manifolds and 2-
manifolds, respectively. It is well-known that PC(3) consists of all
3-manifolds provided the Poincaré conjecture is true in dimension
3. Since the generalized Poincaré conjecture holds for dimensions = 5,
[2] we are led to conjecture that PC(q) consists of all (topological)
q-manifolds for g = 5, particularly since, from the proposition below, if
h: 8"'— dM*? is an embedding such that h(S?"") is null-homotopic in
M4 then M‘ is indeed a g-cell (g =5). However, C. McA. Gordon,
whom I would like to thank most sincerely for providing the proof of the
following proposition, informs me that C. T. C. Wall and John Morgan
have counter examples for g > 4.

PropPOSITION. Let C = S be a boundary component of a compact
q-manifold M. If [C] =0 in =,_.,(M), then M is contractible.

Proof. Let q =3. By the Whitehead and Hurewicz Theorems it
suffices to show that = (M)=1 and H,(M)=0. Now dM = C since
otherwise [C] # 0in H,_,(M). Also, M is orientable since otherwise for
the orientation cover M’ of M we have dM’' = C'U C” (copies over C)
and [C'}=0 in 7,_(M’), a contradiction.

There is a map f:(B%S?")—(M,dM) such that f|S*"' is a
homeomorphism. Orient M so that f has degree 1. Then for the
fundamental classes z,, w, in H,(B% S*"), H,(M, dM), resp., we have
f*(z,)=w, and a commutative diagram

Ho (B9, S <~ H* (M, $M)

J]ﬂzq lﬂwq

H.(B) > H(M)
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By Lefschetz duality, the vertical maps are isomorphisms. Therefore
f«(— Nz )f* is an isomorphism. It follows that f, is onto and hence
that H (M) =0. 3

To show that m(M)=1, let p: M—M be the universal
covering. Then f lifts to f: (B% S%")—(M,dM). But 1=deg(f)=
deg(p o f) = (deg p)(deg f), hence degp = =1 and #(M) = 1.

For g =2, n=1, let B be a punctured g-ball with n — 1 holes, i.e.,
B? is obtained from S? by removing the interiors of n mutually disjoint
q-balls.

For a bicollared S?*'CM? let N= S'X [ be a neighborhood of
S and let M'=cl(M— N)UB'U B”, where the boundaries of the
g-balls B', B" are attached to the boundary components $¢' X0 and
S 'x1of cl(M— N). Wesay M'is obtained from M by surgery along
S§47'. Let X be the space obtained from M’ by identifying B’ and B"
under a homeomorphism. Note that X can be obtained from M‘ by
attaching a g-ball B to S%' along its boundary and X-B =
M'—-(B'UB")=M - S

LEMMA. Let S be a (q —1)-sphere in X —B. If $ =0 in X, then
S=0in M.

Proof. Suppose S?' separates M into M, and M,; then M'=
MiUM; where Mi=M,UB’, M;=M,UB". Let X' be obtained
from M, by collapsing $¢7' to a point. The projection p: X — X{v Xjis
a homotopy equivalence which sends S into X, say. Thiscan be seen as
follows: Identify a neighborhood of S¢7! with N = §*"'x [~ 1, 1], where
§7'=89"x{0}. Let w be the ‘“centerpoint” of B and for y € §*!
let r(y) be the “‘radius” in B from y to w. In XivX; we identify
p(N)=(S*'x I)/(S*" x {0}) with the cones over S?"'X{—1} and S¢' x
{1} wedged together at their vertices to a vertex v. Let g: X{v X;— X
be the map that is the identity outside p(N) and which sends the join of x
and v (for x € S'x{-1}, respectively S¢'x{1}) linearly to x X
[—1,00Ur(x x{0}), resp. x X[0,1] U r(x x0). Then itis clear that g is
a homotopy inverse of p. But since X is a retract of X|v X it follows
that $ =0 in X/ already and hence in M= X|.

If S4' does not separate M, let X — X be the infinite cyclic covering
of X determined by B: the g-ball B lifts to g-balls -+ B_, B, B, - -
and each component of X - Uz_.B, maps homeomorphically onto
X —B. Foreach i, let X' be obtained from M’ by collapsing B" and B"
to single points. There is a projection X— V7__.X| that is a homotopy
equivalence and hence 7,-,(X)) injects into - 1(X) foreachj. Let S be
alift of S to X. Then S liesin a component of X — UB; andis mapped
into a factor X’ of v X/. It follows that $ = 0in X/, hence S = 0in M’
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THEOREM. Let f: Bi— M be a map such that f| dB is a bicollared
embedding, f(dB%)=S,U ---US,. Suppose that the manifold M’ ob-
tained from M by surgery along S, (i =2,---, n) belongsto PC(q). Then
some subcollection of {S,,---S,} contains S, and bounds an embedded
punctured q-ball in M.

Proof. By Brown’s result we can assume that ¢ =3. Let X be
obtained from M by attaching g-balls B; to S; (i =2,-- -, n) along their
boundaries. Then X — U",B,=M'-U",B'UU?,B", where B', B"
are the balls used for surgery on S. Now $,=01in X. By the lemma,
S,=0in M’'. Since M'€ PC(q), S, bounds a g-ball B, in M'. Let E
be the component of B,— Ur,(B,UB") which has S, on its
boundary. If for each i =2,---, n only one of B/, dB{ CJE, then E is
the desired punctured ball in M bounded by S, and some of the S;’s. In
fact, this is the only case that can happen. For suppose for some i, B’
and 4B CAE. Then let k be a simple arc in E from a point of 4B’ to a
point on dB" such that k misses the other dB;’s and such that k
corresponds to a simple closed curve in M that intersects S, in one point
and misses the other S,’s. In M, the intersection numbers # (k, S;) =
=1, but #(k,2,.,S,) =0, which is impossible since S, ~ U,..S,.
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