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Let b, ¢ be a system of parameters in a 2-dimensional local
(Noetherian) domain (R,M). For n =0, the chain
(b": 1)C(b": ¢c)C(b": ¢*)C--- becomes stable. Thus define a
function S(b, ¢, — ) by letting S (b, c, n) be the least integer k =0
such that (b": c*)=(b": ¢**"). Ratliff has shown that R is
unmixed if and only if S(b, c,— ) is bounded. This paper shows
that if R is unmixed then for any 0 # d € M there is an integer
*d 2 0 such that for any system of parameters b, ¢ and any
120, S(be,*b+1i)="*c.

Introduction. We consider a 2-dimensional local domain
(R, M) with a system of parameters b, c. (That is, b and c¢ are nonzero
nonunits, and no height 1 prime contains both of them.) For a fixed
n =0, obviously (b": 1) C(b": ¢)C(b": ¢?) C- - -. As this chain eventually
becomes stable, we define a function S(b, ¢, — ) by letting S(b, c, n) be the
least integer k = 0 such that (b": ¢*)=(b": c**')=---. A recent result
of Ratliff shows that R is unmixed if and only if S(bc,—) is
bounded. In this paper we show that if R is unmixed, then for any
0#de€ M there is an integer *d =0 such that for any system of
parameters b, ¢, and for any i 20, S(b,c,*b +i)=*c.

NotaTiON. Throughout this paper, (R, M) will be a 2-dimensional
local domain and b, ¢ will be a system of parameters for R. For d € R,
d’=1.

We consider the following two arrays of ideals, the displayed
inclusions being trivial.

(1: I)C(li C)C(l; CZ)C- ..

U U U
(b:1)C(b:c)C(b:cHC---
U U U
(B> :DHCB* :c)C(b? : )T
U U U
(b :1)c(b® :c)c(d® : cHC---

u U U
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and

(1: hc(1: b)C(1: b>C---

U U U
(c:1)C(c:b)C(c:bH)C---
U U U
(¢’ :1)C(c*:b)C(c? : bHC---
U U U
(¢’ :1)C(c’:b)C(c’ : bHC---

U U U

By A.C.C. it is obvious that the rows in these arrays eventually
become stable. Our first lemma relates the rows of one array to the
columns of the other, and shows that the columns eventually become well
behaved.

LemMmAa 1.  The following are equivalent for n =0 and m =0
@ B :c™)y=@h"c"HY="---

(ii) (c™':b")C(c)

@iii) (c¢™7:b")y=c'(c™:b") for j=1,2,---.

Proof. (i) = (iii): Suppose that a &€ (c™":b"). Write ab" =
c¢"”d. Then d€(b":c"”)=(b":c™) (by 1). Thus we may write
dc™ = b"e where e €(c”: b"). Now ab" =c""d =c'b"e so that a =
c’e giving a € ¢’(c™: b").

(iii) = (ii): Immediate.

(ii) = (i): Suppose that f € (b": ¢™"") and write ¢"*'f = b"g. Then
gE(c™" b")C(c) (byii). We write g =ch. Thenc™"'f=>b"g =b"ch
so that ¢"f=>b"h. Thus f<(b": c™). This shows that (b":c™)=
(b": ¢™"") form which it follows easily that (b": ¢”)=(b": ¢™"') for all
i=0.

For each of the two arrays above we define two
functions. Considering the first array, for n =0, let S(b, ¢, n) be the
least integer k =0 such that (b": c¢*)=(b": c**")=---. (Obviously
S(b,c,0)=0.) For m =0 let C(b,c, m) be the least integer / =1 such
that (b': ¢™)C(b). (Obviously C(b,c,0)=1.) Ofcourse S(c, b,— ) and
C(c, b,—) are defined analogously.

LeEmMMA 2. RisMacaulay if and only if S(b, ¢, — ) isidentically 0.
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Proof. (b: ¢ = (b: 1)=(b), while (b: c) = (b) exactly when b, c is
an R-sequence, i.e., exactly when R is Macaulay. The result is now
obvious.

Lemma 3. C(b,c,—)=S(c,b,— )+ 1.

Proof. For m =0 let C(b,c,m)=1 and S(c,b,m)=1, Since
(0% c™)=(1:c™)=RLZ(b), clearly I,=1. By the definition of these
functions we have (b": ¢™)C(b) and (c™: b2 =(c": b*")=---. By
Lemma 1, (¢™: b" )= (c™: b")=--- and (b*"': ¢™")C(b). By the mini-
mal conditions in the definitions of our functions, it follows that , =1, -1
and /,=0L+1. Thus {,=1L+1.

LemMma 4. C(b,c,—) and S(b,c,—) are both monotonically
increasing.

Proof. By Lemma 3 and symmetry it is enough to show that
C(b, ¢c,—) is monotonically increasing. For this, say that C(b,¢,m + 1)
= [ Then (b': ¢™*')C(b). However (b': ¢™)C(b': ¢™"")C(b) showing
that C(b,c,m)=1= C(b,c,m +1).

We wish to translate a result of Ratliff into our language. Ratliff
uses the ideal (bR)*® = {r € R |there is an s € R with s in no minimal
prime divisor of b, such that sr € (b*)}. We have a preliminary lemma.

LemMA 5. If S(b,c, k)= 1then (bR)® = (b*: ¢').

Proof. If R is Macaulay, both of these ideals are just (b*). If R is
not Macaulay, choose n = | such that ¢" is in an M-primary component
of (b*). Tt is easy to verify that (bR)* = (b*: ¢"). However n=1l=
S(b, ¢, k) says that (b*:c")=(b*:c¢'). Thus (bR)* = (b*: c').

We now treat Ratliff’s result. Recall that R is unmixed means that
in the completion of R, each prime divisor of zero has depth equal to
dim R (=2 in our case).

PROPOSITION 6. The following are equivalent.
(i) R is unmixed

(i) S(b,c,—) is bounded

(i) C(b,c,—) is bounded.

Proof. The equivalence of (i) and (ii) is immediate from [2, 3.6.1 &
3.6.2]and Lemma5. The equivalence of (ii) and (iii) is by Lemma 3.
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RemMARK. Following Theorem 9 we will outline a second proof of
Proposition 6.

CoroLLARY 7. R isunmixed if and only if S(b,c,—) and C(b, c,—)
are eventually constant.

Proof. Immediate from Proposition 6 and Lemma 4.

We now begin showing that if R is unmixed, then the constant which
S (b, ¢, — ) eventually becomes depends only on ¢. To do so we make use
of R”= N R, over all height 1 primes P.

LEmMMmAa 8. RP={a/b"|a € (b": c™) for some n and m}.

Proof. Suppose that x € R™ and let I={rER|rx ER}. As
x € R"= N R, over all height 1 primes P, I is not contained in any
height 1 prime. Since dim R =2, we have rad I = M and so for some n
and m, b"E€I and ¢" €I We write b'’x=a€ R and c"x=
d € R. We see that ac™ =db". Thus x = a/b" with a € (b": c™).

Conversely if a € (b": ¢™) write ac™ =b"d. If x=a/b"=d/c"
then b" and ¢™ are in I={rE R|rx ER}. As b, ¢ is a system of
parameters, no height 1 prime can contain I. Thus x € R".

THEOREM 9. C(b, c,—) is bounded if and only if R" is a finitely
generated R-module. In fact if C(b,c,—) is bounded and eventually
equals k + 1, then k is the least integer such that bR CR.

Proof. Suppose that C(b,c,~) is bounded. By Lemma 4 it is
eventually constant, say at k +1. Of course by Lemma 3, k 20. We
first show that b* 'R®Z R. Since C(b,c,—) is eventually k +1, for
some [ we have C(b,c,])=k+1. That is, (b*':¢')C(b) but
(b*: ¢"YZ(b). Choose a&(b*:c')—(b). By Lemma 8, a/b‘e€
R™. However aZ (b) showing b* '(a/b*)Z R. Thus b*'RVZR.

We now show that b*R”CR. Choose x € R" and write x = a/b"
with a€(b":c¢™) for some n and m. If n=k then clearly
b*x € R. Thus suppose that n = k +j forsome j=1. If C(b,c,m)=
k, then (b*: ¢™)C(b) and since C(b, ¢, — ) monotonically increases to the
eventual constant k+1, k,=k+1. Thus (b*"':c™)C(b“:c™)C
(b). By Lemma 1 (symmetrically) (b":c¢™)=(b*":c")=b'(b*:c™)C
(b’). Therefore a € (b": ¢™)C(b’) and so b*x = b*(a/b")E R since
n=k+j Thus b*RYCR.

The last two paragraphs prove the final statement of the



UNMIXED 2-DIMENSIONAL LOCAL DOMAINS 157

theorem. However if C(b,¢,—) is bounded we now have b*R®CR
with k as above. This shows that R is a finitely generated R-module.

Finally suppose that R is a finitely generated R-module. Let
J={reR|rRYCR}. 1t is easy to see either RadJ = M or (in case
R"=R)J=R. Letk be the least integer such that M* CJ. (IfJ =R
we have k =0.) We claim that C(b, c,— )isbounded by k + 1. For any
mz0 and a €(b*": ¢c™), a/b*"'E R® by Lemma 8. However b* €
M* CJ so that b*R®CR. In particular b*(a/b**')E R giving a €
(b). Thus (b*"': ¢™)C(b) for all m = 0. This shows that C(b,¢c,—)=
k+1.

CorOLLARY 10. R is unmixed if and only if R" is a finitely
generated R -module.

Proof. Immediate from Proposition 6 and Theorem 9.

REMARK. The result in Corollary 10 is reported in [2, 3.4.1 &
3.4.5). However as is noted in the paragraph preceding [2, 3.4] the
result has been known for quite some time. This then allows another
proof of Proposition 6, for the known result in Corollary 10 together with
Theorem 9 immediately yields Proposition 6.

Our major use of Theorem 9 is the following. For R unmixed we
see that C(b, c,—) is eventually k +1 where k is the least integer such
that b*R™ CR. As the definition R’ = N R; over all height 1 primes P
does not involve ¢, the condition b*R™”’ CR involves only b and not
c. Thus the constant which C(b, ¢, —) eventually becomes depends only
on b. By Lemma 3 and symmetry, the constant which S(b,c,—)
eventually becomes depends only on c.

DeriniTiON.  Let (R,M) be a 2-dimensional local unmixed
domain. For 0 # e € M, let *e be the constant which S(d, e, —) eventu-
ally becomes, with d any element such that d, e is a system of
parameters.

CoroLLARY 11. Let R be unmixed. Then S(b,c,—) eventually
equals *c and C(b, c,—) eventually equals *b + 1.

Proof. Immediate from the definitions, Lemma 3, and symmetry.

ReMARK. By Lemma 2, R is Macaulay if and only if S(b,c,—) is
identically 0, or equivalently, C(c, b, —) is identically 1. By Theorem 9
we see that R is Macaulay if and only if R® = R. (This is well known
and easily proved directly.) In this case Theorem 9 also says that *b =0
forall 0#bE M.
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ExampLE. If R is as in [2, 5.2.8] it is easy to verify that MR CR
but R®#R. Thus for 0#b€EM, bRPCR but b’RPZR. By
Theorem 9 and Corollary 11, *b =1 for all 0 # b € M.

Knowing that for R unmixed, S(b, ¢, — ) eventually equals *c, we ask
how long it takes to become that constant. The next result says that
S(b,c,n)=*c by the time n = *b. (We do not claim that this is the least
n for which S(b,c,n)=*c.)

THEOREM 12. For R unmixed, S(b,c,*b)=*c and C(b,c,*c)=
*h +1.

Proof. Suppose that S(b,c,*b)=k. To show that k =*c, the
eventual constant value of S(b, ¢, — ), we must show that S(b,c, *b +j) =
k forallj = 1. Supposenot. As S(b,c,—)is monotonically increasing,
we then have some j =1 with S(b,c,*b+j)=1>k. By Corollary 11,
C(b,c,—) eventually becomes *b+1. Therefore for some m =1
C(b,c,m)="*b+1 giving (b***": ¢™)C(b). Since m=1, (b*"'":¢")C
(b***':¢™)C(b). By Lemma 1, (b**":c'y=b'(b*:c'). However
S(b,c,*b)=k <[ implies that (b*": ¢*)=(b*": ¢'). Thus

(b** ¢ y=b'(b*: c')=b'(b*": c*)T(b**7: )T (b**: '),

the last two inclusions being trivial. As the extremes of this expression
are identical, we conclude that (b*"*: c*)=(b*"":¢'). This clearly
contradicts that S(b,c, *b +j)= 1>k and shows that S(b,c,*b +j)=k
for all j=1. Thus *c=k=5(bc *b). Now by symmetry,
S(c,b,*c)=*b,sothat *b +1=S(c,b,*c)+ 1= C(b,c,*c) by Lemma 3.

For R unmixed we strengthen Lemma 8&.
CoroLLARY 13. Let R be unmixed. Then
RO ={a/b*"|a € (b**:c*)}.

Proof. One inclusion is given by Lemma 8. Therefore take x €
R and write x = a/b" with a € (b": ¢™) for some n and m. We first
show that we may take m = *c. Let S(b,c,n)=1 Then clearly [ = *c,
so that (b":1)C(b":c)C---C(b":c)=(b":c")=---=(b":c¥)=
: Obviously this means (b":c™)C(b":c*) and so a€

— %

(b": ¢*°). Thus we may take m = *c.

Now if n <*b, say *b=n+j for some j=1. Then x =a/b" =
ab’'/h** and ab' € b'(b": c*)C(b"": c*)=(b*": ¢*°), the inclusion
being trivial. In this case we are done. The case n="*b Iis
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immediate. Finally, assume that n>*b and write n=*b+i with
i=1. By Theorem 12, C(b,c,*c)=*b+1, so that (b*"*:c*)C
(b). By Lemma 1, (b***: c*)=b'(b*": ¢c*°). Therefore
ac(b": c*)=(b**":c*) implies that a=b'a with
a' € (b*":c*). Since x =a/b"=b'a'/b*** = a’/b*’, we are done.

CorOLLARY 14. R is unmixed if and only if {S(d,e,—)|d, e is a
system of parameters} is finite.

Proof. Assume that R is unmixed. Then by Corollary 10, R" is a
finitely generated R-module. Let J={r& R|rRYCR}. 1t is clear
from the last sentence of Theorem 9 and Corollary 11 that for 0 # e € M,
*e is the least integer such that e** € J. Aseither RadJ =M orJ = R,
for some k =0, M* CJ. Thus *e isbounded by k. Thatis{*e|0# e €
M} is finite. Now S(d, e, m) only takes values between 0 and *e, and
equals *e for all m = *d. Therefore it is clear that for R unmixed,
{S(d,e,—)|d, e is a system of parameters} is finite.

Conversely suppose that R is not unmixed but that {S(d, e, —)|d, e is
a system of parameters} is finite. We will derive a contradiction. As R
is not unmixed, each S(d, e, — ) is unbounded and monotonically increas-
ing and so has the value 1 at most finitely many times. Thus for some
n=1 we have S(d,e,n)>1 for all of the finitely many functions
S(d,e,—). Let b, ¢ be a system of parameters and let S(b,c,n)=
k. Then (b": c*)=(b": c**")=---. Letd=bande =c* Clearly d,
e is a system of parameters and (d":e)=(d":e’)=---. Thus
S(d, e, n)= 1, contradicting our choice of n.

Question. If R is unmixed, Theorem 12 says that S(b, ¢, *b) = *¢
and S(c,b,*c)="*b. We ask if the converse holds? That is, if n=1,
mz=1 and S(b,c,n)=m and S(c,b,m)=n, is R unmixed (recall
S(b,c,0)=0 always so we disallow n =m =0). Our next result is a
little too weak for this, but is strong enough to have interesting
corollaries.

THEOREM 15. If for some n and m, S(b,c,n)=m and S(c, b,m)<
n, then R is unmixed, S(b,c,n)= *c and S(c,b,m)=*b.

Proof. Let S(c,b,m)=1<n. Then (c™:b')=(c":b")=-- =
(cm:b"Yy=(c":b")=---. By Lemma 1, (b":c™)C(b). However
S(bye,n)=m gives (b":c™)=(b":c"")=---. Thus (b":c"")=
(b": ¢™)C(b) for all i=0. Therefore C(b,c,m +i)=n for all i=
0. By Theorem 6, R is unmixed, and by Corollary 11 we also have
*b+1=n. By the fact that S(b, ¢, —) is monotonically increasing and
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by Theorem 12, m = S(b,c,n)= S(b,c, *b)=*c. On the other hand
m=S(b,c,n) clearly implies that m=%*c Thus *c=m-=
S(b,c,n). Finally by Theorem 12, *b = S(c, b, *c)= S(c, b, m).

COROLLARY 16. Suppose that R is not unmixed. If S(b,c,n)=m
then S(c,bm)=Znand S(c,b,m +1)=2n+1. IfalsoS(c,b,m)= nthen
S, c,n)=m.

Proof. Let S(b,c,n)=m,=m. We first show that S(c,b,m)=
n. If not, since S(c, b,—) is monotonically increasing we would have
S(c,b,m,)=S(c,bm)<n. Applying Theorem 15 to n and m, would
give that R is unmixed, a contradiction. Thus S(c,b,m)=n. We now
get S(¢, b,m +1)= n + 1 since if S(c, b, m + 1) = n, by what we have just
done we would have S(b,c,n)=Zm+1 contradicting our
assumption. Finally, if S(c, b, m) = n by what we have already done, we
have S(b,c,n)= m. Combining this with the hypothesis gives
S(b,c,n)=m.

RemARK. Consider the question asked before Theorem 15. If its
answer is affirmative then the final sentence in the statement of Corollary
16 is inapplicable. For n >0 and m >0 it would be impossible to have
S(¢c,b,m)=n, S(b,c,n)=m and R not unmixed. Thus if the question
has an affirmative answer, then the first conclusion of Corollary 16 can be
strengthened to read ‘S(c,b,m)=n+1 for m >0’

Corollary 16 represents all this author knows concerning these
functions when R is not unmixed. However there is another class of
rings as yet unmentioned in this paper. Recall that R is quasi-unmixed
if in the completion of R each minimal prime of zero-divisors has depth
equal to dimR. Ferrand and Raymond have constructed a 2-
dimensional local domain (R, M) which is quasi-unmixed but not un-
mixed [1, Proposition 3.3]. It is known in our case that (R, M) (2-
dimensional) is quasi-unmixed if and only if R® is integral over R. One
wonders if quasi-unmixed can be characterized in terms of the functions
S, c,—)?
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