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Suppose 7, i =1,2 are principal K-bundles which are
C’-isomorphic in the sense that there exists a K-equivariant
C’-diffeomorphism f: #,— %,. I h belongs to the gauge
group H, of %, then hof lies in H, and we have a group
isomorphism H,— H, which is C”. It is the purpose of this
paper to investigate the converse in the case where K is a simple
Lie group. (If K is abelian the gauge group of every K bundle
over X is C'(X, K) so there is no hope of a converse. However
for simple groups the situation is much better).

0. Introduction. Let K be a compact connected Lie group
with Lie algebra #. Let w:  — X be a principal K-bundle of class C*
where X is a compact, connected C”-manifold.

Throughout this paper r will be a positive integer which is chosen at
this time and remains unchanged from here on.

We denote by H the subgroup of C'(%, K) consisting of all those h
for which h(pk)=k'h(p)k for all p in ? and k € K. H is naturally
isomorphic to the group of all C’-bundle automorphisms of ? which
cover the identity on X [1, 2]. The group H will be called the gauge
group of =7 the terminology being motivated by current usage in
theoretical physics. C'(%,K) is a Banach Lie group and H is a
sub-manifold and so H is a Banach Lie group [2]. The Lie algebra of H
can be identified as ¥ ={h: P —> ¥ |h is C" and h(pk)= Ad(k ")h(p)
for p € #, k € K}.

The bracket in ¥ and the exponential map exp: # — H are the
natural pointwise operations.

1. Ideals in . Suppose $CH is an ideal. For p€ 2P
e,: # — X is defined by e,(h)=h(p) for h € #. e, is a Lie algebra
epimorphism so e,(#) is an ideal in ¥.

LemMma 1.1. If p € P and k € K then ¢,($) = e (F).

Proof. eu(h)= h(pk)= Ad(k Yh(p)= Ad(k ')e,(h). Thus
ex(F)=Ad(k")e,(¥). But e, (F)is an ideal in ¥ so Ad(k")e,(F)=
e, (F).

DEerINITION 1.2, If x € X let ¥, = ¢,(¥) where p € 77'(x).
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DerFiNITION 1.3, If $ is an ideal in # we say $ has property s if
[, %)= 4.

We recall that [#, #] is the Lie subalgebra of # generated by all
elements of the form [a, b] where a € $, b € H. [F, ] consists exactly
of all finite sums Z,[a, b}, a, € 4, b € ¥.

We denote by F(X) the algebra of C’, real valued functions on
X. ¥ is a module over ¥(X) for if f€ #(X) and h € ¥ define
fh: P -3 by (fh)(p)=f(m(p))h(p). One easily sees fh lies in ¥ so
we have a module.

LeMMA 1.4. If the ideal $ C ¥ has property s then $ is a F(X)-
submodule of .

Proof. Leth € ¥, ¢ € F(X). Weshow ¢h € . J has property
s so we may write h =X, [h, f.] where h, € $ and f, € #. Then ¢h =
2. élh, f]= 2. [h, ¢f.] € $ where we used the pointwise nature of the
bracket to get the last equation.

LemMma 1.5. If #, and ¥, correspond to bundles w, and m, and
Y. H,— ¥, is a Lie algebra isomorphism then if $ has praperty s in ¥, then
Y (F) has property s in ¥,.

Before proving the final lemma of this section we make a prelimi-
nary construction. Suppose U is open in X and ¢ is a section of 7 over
U. Suppose h € ¥ and h has support in 7w '(U). Define h: X > ¥

by,

h(é(x)) xeU
h(x)= {
0 x & U.

h € C'(X, %) has support in U. Conversely if we start with h: X — %
having support in U we can define h € ¥ as follows. There is a unique
C”-map 0: 7w '(U)— ¥ such that £(w(p))0(p)=p forp E v '(U). We
define

Ad(6(p) Yr(m(p)) peE = '(U)
h(p)= {

0 p &« '(U).

It is easily checked that h € .
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If x,€ X we have:

H,={f€EH|f(p)=e forall pe&m'(x)}.
H,={h€X|h(p)=0 forall p€& 7 '(xy)}.

LEMMA 1.6. Assume ¥ is semisimple. Then ¥, has property s.

Proof. Let (¢,); be a finite partition of unity on X subordinate to an
open cover (U,); such that = is trivial over each U. Thenif h € ¥,, we
have h = Z,¢h and each ¢ph € #,. Therefore the problem is reduced
to proving the following: If U C X is open such that 7 has a local section
¢ defined on U and if h € #,, has support in 7 '(U) then h can be
written as h =23, [g,, ¢,] where g, € #,,, ¢, € X.

Let h: X — ) correspond to h using the section £ as above. Let
(E.); be a basis for #. Write h = ,h'E, where h* are real valued. Since
J is semisimple we may write E, =3, [Fj, G;] where F;, G; are in
%. Therefore h =32,h'[F,G}]=2, [h' i Gil=2,[8,®.] where g,
and ¢,: X = ¥ are C’ with g,(x,)=0. We can easily arrange that g,
and ¢, have support in U. Then let g, ¢, be the corresponding
functions on ?. Then if p € ? with w(p)= x we have,

h() = Ad@(R) i () = AdE) ) (S (8.6, 6.0 )
= 2 [Ad(6(p))g.(x), Ad(0(p) ). (x)]
= Z (8.(p). &.(p)] = (2 (8. ¢>»]>(p)~

2. A classification theorem. In this section, in addition to
the assumptions made in the introduction, we assume K is a simple Lie
group with trivial center. We first make some observations.

Given a principal K-bundle 7: ? — X we construct the associated
fiber bundle &/ — X with fiber ¥ where K acts on ¥ via the adjoint
representation of K. Each p&€ ® with w(p)=x gives a linear
isomorphism ¢,: ¥ — o,. Since Ad: K — Lis(¥) actually takes values
in Aut(¥) we see  is a bundle of Lie algebras. Therefore ["(«), the
space of C’-sections of &, is a Lie algebra with pointwise
bracket. There is a natural isomorphism % — I () given by h > h
where h(x)= ¢,(h(p)) for each x € X where p € w“(x) [3]. This
isomorphism is an isomorphism of %(X)-modules and is a homeomor-
phism with respect to the C’-topologies.

Now suppose m,: #— X are principal K-bundles, i =1,2, with
gauge groups H; and %, the Lie algebra of H. For x,E€ X the ideal #,,
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is closed. Let ¢: H,— H, be a C'-group isomorphism. There is an
induced Lie algebra isomorphism ¢ ,: #,— ¥, given by

1) =5 | [Wexp ()

Y« 1s a topological isomorphism and so for each x, € X ¢ ,(¥.,) is a
closed ideal having property s in #,. If we write $ = ¢ ,(¥,,,) and refer
to the discussion of section 1 we have ideals ¥, C¥ for each x €
X. There are apparently two possible cases.

Case 1. H, =X for all x € X.

We argue this cannot occur. Since £ is an ideal with property s # is
an F(X)-submodule. If %, =% for all x in X we shall show $ = &,
which is impossible since #,,, # #,. To show $ = ¥, we regard $ as a
closed #(X)-submodule of I'"(«/,). Then for x € X, v € «,, there is
h € $ for which h(x)=v. One now uses the %(X)-module structure to
show for any x € X and for any r-jet ¢ € j ., there is an h € # for which
jih = ¢ Since $ is a closed submodule we conclude $ =TI"(«,) by
applying a ‘“‘global” version of a well-known theorem of Whitney. We
refer to [5], Corollary 1.6, p. 25.

Case 2. H, =X for some x.

In this case there is some x, for which ¥, =(0) since K is
simple. We claim there cannot be an x, # x,, for which %,=0. For if
there were then we would have ¥ C #,,, N ¥,,,. But the codimension of
$ in ¥, equals the codimension of #,, in %, which equals the
codimension of #,,, in ¥, so $ C¥,, N ¥,, is not possible. Therefore
in the present case we see there is a unique x, € X for which # = #,,,.

Thus we see that a C' isomorphism ¢: H,— H, gives rise to a
bijection ¢: X = X defined by

‘p*(%u) = %zﬁ(x)'

Now let h € #,, f€ #(X). We have ¥: X — X and we write i .(f) =
fed™"

Lemma 2.1 u(fh) = §u(f)y«(h).

Proof. Let p,€ P,, let A = ¢ 4(f)(x). Then

Ua(fh)(p2) = Yra(fh = AR) (p2) + ¥ (AR ) (p2)
= U((f = V) (P) + A« (h) ().
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Let x' = ¢~'(x) and let pPE P... Then(f—A)h(p)=(f(x')—A)h(p)=
0 by choice of A. Thus (f—A)h € ¥, and so ¢.((f —A)h)E ¥,. so
U«((f = A)h)(p) =0. Thus

a(fh)(p2) = A () () = (P u(f) - ¥ £(h)) (p2)

as desired.
LEmMMA 2.2. The map ¢: X — X is a C'-diffeomorphism.

Proof. We need only show ¥ 'is C". It is enough to show that if
fe F(X)then foy'is C'. Choose x,€ X, U a neighborhood of x, %,
trivial over U. Then let V be a neighborhood of x, with VCU. Letk
be a section of &, over U which in the local trivialization has constant
principal part. We can then cut k down to get a new section, again
called k, defined on all of X and agreeing with the original k on
V. Then choose h € I'"(«,) such that ¢ .(h)= k. (We are identifying
9 and I'(sf)). Now by Lemma we have ¢.(fh)=(foy Ws(h)=
(fo ¢ )k. When we view the C'-section (f° ¢ ")k in our local trivializa-
tion we conclude fo¢ ' is C" on V. So we conclude fe¢'is C' and
hence ¢ ' is C".

We now define a bundle isomorphism ¢ such that the following
commutes:

A~ o,

L]

¢

X— X

Let @, € &,,. Choose a section h € I'" () such that h(x) = a,. Define
¥(a) by ¥(a,)= ¢4(h)(¥(x)). This is independent of the choice of h
for if h, were another section with h,(x)= «, then h — h, vanishes at
x. Hence ¢(h—h,) vanishes at §(x) so ¢(h)(W(x))=
¥4(h)(@(x)). It is clear that the diagram commutes and that ¢ map-
ping &, to #,; is a Lie algebra isomorphism.

LEMMA 2.3. ¢ is C".

Proof. We work locally trivializing &,. Let U be open in X,
V CU also open, y: UXR™— o, |U be a trivialization of s/, over
U. Using this we see there are C'-sections h, - - -, h,, € I'"(«,) such that
for each x in the subset V, h,(x), - - - h,,(x) give a basis for the fiber over x
which corresponds to the standard basis of R™ under y. We claim
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poy: VXR™— o, is given by
oy (8,8 = 3 £ (h) ).

If so then ¢ is C'. But given ¢',---,¢™ choose f'€E F(X),
f'(x)=¢'. Then by Lemma 2.1 we see

I g, e =82 en) = (2 ) )

b (2 £ ) ()
TGN () G ()

Il
i

S £ua(h)(F(x)).

Let p € ?,.. Then ¢, ¥ — &,, is a Lie algebra isomorphism. If
q € A5, then we have a Lie algebra isomorphism
b2 H — Ay (Note the superscripts tell which bundle is being used).

Now (¢2) "o yodl: H — I liesin Aut(¥). Let €={(p,q)|p € P.,
and q € P,;, forsome x € X}. & is the total space of the fiber product
of ? and ¢*P,, We have a map p: E€— Aut(¥), p(p,q)=
(¢ 'odiodl. p is continuous and € is connected so p takes values in
one of the connected components of Aut(J). Since K is a simple group
the identity component of Aut(¥) is Aut’(¥#)= Ad(K). Suppose
o € Aut(¥) and that p(E)CAut’(¥)o= Ad(K)o. Let q€ P,
k€ K. Then ¢ = ¢pi0oAd(k). So p(p,gk)= Ad(k)ep(p,q). We
conclude that for each p € ?,, there is a unique u(p) in P,;,, for which
p(p,u(p))=0. We then have a map u: P, — P, covering . K acts
freely on the right of both ?, and ?,. We now show there is an
automorphism ¢ of K, induced by o, such that if a new action of K on %,
is defined by q * k = q(k), (the right side being the original action) then
w becomes K-equivariant. We have o € Aut(¥). 7—oro™' is an
automorphism of Aut(¥) and hence restricts to an automorphism of
Aut’(¥)= Ad(K). Using the isomorphism Ad: K — Ad(K) we see a
unique automorphism ¢ is induced. ¢ satisfies the equation
Ad(a(k))=o0Ad(k)o™'. Now we show u(pk)= pu(p)*k for p € 2,
k € K. We need only show p(pk,u(p)*k)= 0. But

p(pk, n(p)* k)= p(pk, n(p)G(k)) = Ad(G(k)) " e p(p,n(p))°Ad(k)
= Ad(6(k)) oo Ad(k)= cAd(k)' o 'cAd(k)= o

so we are done.
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DEFINITION 2.4. Let 7: ?— X be a principal K-bundle, 7 an
automorphism of K. The principal K-bundle 7": ™ — X is defined by
introducing the new action *: » X K— P, pxk = pr(k). Wesay 7" is
conjugate to w by 7.

Considering the previous discussion we have now proved

THEOREM 2.5. Under the assumptions made above if §: H— H, is
a C' isomorphism then there is a C’-diffeomorphism : X — X and an
automorphism & of K such that m, = ¢y *(w3).

REMARK. Of course if & is an inner automorphism we get 75 = 7,
and ¢ can be dropped.

3. Classical groups. We apply the results of §2 to the groups
SO@2n+1)n=1,U(n) n=2,and SO(2n) n=3. Since the center of
SO(2n +1) is trivial and the automorphism group of its Lie algebra is
connected [6, pages 285-6] we get

THEOREM 3.1. Let m,: P, — X be principal SO(2n +1) bundles
with gauge groups H, i=1,2. Suppose : H— H, is a C' (local)
isomorphism. Then there is a C’-diffeomorphism : X — X so that

= §*(m).

Now let K be SO(2n) n =3 or U(n) n =2, m;: P, — X be principal
K bundles with gauge groups H, and ¢:H,—H, a C' local
isomorphism. Let Z denote the center of K. Now P = P1Z is a
principal K/Z bundle over X. Let H, be the gauge group of #. In
both cases (SO(2n) and U(n)) one can show that the Lie algebra
isomorphism ¢ ,: #,— ¥, gives Lie algebra isomorphism 1[/* % > %,
and also that the center of K/Z is trivial. Thus the results of §2 give a
C' diffeomorphism ¢: X — X and an automorphism o of K/Z so that
= ¢*(75). Note that if o is an inner automorphism #5= 7, so that o
can be dropped. The form of o not inner is given in [6, page 287]. It
can be seen that o liftsto o: K — K and that (?,/Z)” = P¢/Z. We thus
get

THEOREM 3.2. Let K be SO2n)n=3orU(n)nz2, m: P —>X
be principal K bundles with gauge groups H, i=1,2. Suppose
¢: Hi— H, is a (local) C" isomorphism. Then there is a C' diffeomor-
phism ¢: X —> X and automorphism o:K—K, so that P/Z =
U*(P,| Z) = §*(P3)| Z where Z is the center of K.

One can show that 2, is a ‘“‘tensor product” of 117*(?/’5’) with a
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principal Z-bundle over X. One way to see this is to use the classifica-
tion for bundles as given in [4]. We state the result in terms of
associated vector bundles.

THEOREM 3.3. Let m: P, — X be principal SO(2n) n=3 (U(n)
n = 2) bundles with gauge groups H, i = 1,2. Let £ be the real (complex)
vector bundle associated with P, using the usual representation of
SO@2n)(U(n)). Suppose : Hi— H, is a (local) C'-isomorphism then
there is a C' diffeomorphism §: X — X, o an automorphism of
SO(2n)(U(n)), and n a real (complex) line bundle so that &, is
SO(2n)(U(n)) isomorphic to y*(£5) & 7.

Final remark. We need not have assumed that ?, and P, were
bundles over the same manifold X. We could have considered
m: P, — X and 7,: P,— Y. Ifthe gauge groups H, and H, are (locally)
C! isomorphic we get a C’-diffeomorphism ¢: X — Y.
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