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Let n be a positive integer, let p be a positive continuous
function on [0, =), and consider the 2nth order linear differential

equation

(N u®—p(x)u =0.

It is well known that this equation has a solution w = w(x)
satisfying

2) (- D*w®(x)>0, k=0,1,---,2n—1,

on [0,«), and it is clear that w is positive and bounded. The
purpose of this paper is to investigate the essential uniqueness of
the solution w, where the statement “w is essentially unique”
means that if y is any other solution of (1) which satisfies (2),
then y = kw for some nonzero constant k.

In addition to having solutions which satisfy (2), it is easy to show
that equation (1) has solutions z = z(x) satisfying

(3) 2®(x)>0, k=0,1,---2n—1,

on [a,©) for some a =0. For some recent results concerning the
behavior of solutions of (1) satisfying either (2) or (3), the reader is
referred to the work of D. L. Lovelady [6], and T. T. Read [7].

A solution of (1) which satisfies (2) is said to be strongly decreasing,
and a solution satisfying (3) is said to be strongly increasing. If y is a
nontrivial solution of (1), then y is oscillatory if it has infinitely many
zeros on [0,). Equivalently, y is oscillatory if the set of zeros of y is
not bounded above. The differential equation (1) is oscillatory if it has
at least one nontrivial oscillatory solution. Hereafter, the term “solu-
tion of (1)” shall be interpreted to mean ‘“‘nontrivial solution.” A
solution of (1) which is not oscillatory is called nonoscillatory. Clearly,
any solution satisfying either (2) or (3) is nonoscillatory. We shall say
that equation (1) has property (H) if every nonoscillatory, eventually
positive solution satisfies either (2) or (3).

S. Ahmad [1] has studied (1) in the case n = 2, and he has shown that
(1) is oscillatory if and only if it has property (H). While this result is
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340 G.J.ETGEN AND W.E. TAYLOR, Jr.

not known in general, Lovelady [6, Theorem 2] has shown that property
(H) implies the oscillation of (1). Read [7] and G. W. Johnson [4] have
obtained some results on the asymptotic properties of solutions of
(1). In particular, they have obtained criteria which imply that any
solution w satisfying (2) has the property lim,_. w(x)=0. Finally, we
refer to the work of G. D. Jones and S. M. Rankin [5] where the problem
of the essential uniqueness of a solution w satisfying (2) was considered
for the case n =2.

2. Preliminary results. Let & denote the 2n-dimensional
vector space of solutions of equation (1). Our first result is essential in
the work which follows. Since the proof is straightforward, using well
known techniques, it will be omitted.

LEmMa 2.1. Ify & Fandy“(a)z0,k =0,1,---,2n — 1, for some
a =0, with at least one inequality being strict, then y*(x)>0, k =
0,1,---,2n—1, on (a,*) and

lim y®(x) = o, k=0,1,---,2n-2.
If z € Fand (—1)z%(b)=0,k =0,1,---,2n — 1, for some b >0, with at
least one inequality being strict, then (—1)*2%(x)>0 on [0, b).

Let J be the function defined on ¥ X & by

2n—1

4) J(u,0)(x)= 2 (= D o®0)ut*"(x)

k=0
For any pair of functions u, v € ¥, it is easy to verify by differentiating
J(u,v) that J'(u, v)(x) = 0 for all x € [0, ). Thus J(u, v) = c, a constant
on [0,%). The case where J(u,v)=0 shall be denoted by u L v. Fix
y € & Following the ideas introduced by J. M. Dolan in [2], we define
the subset #(y) of & by

Fy)={zeFly Lz}

Let wu,, uy, -+, uy,-; be 2n —1 solutions of equation (1), and let
W(uy, u,, - -+, uy,-) denote their Wronskian. It is well known that W is
a solution of (1), and that W is nontrivial if and only if the solutions are
linearly independent. Let y €% and let Ty, u,, us, "+, uy,-,] denote
the Wronskian of the 2n solutions. Then, by expanding T along its first
column, we get the following relationship between T, W and the
function J

(5) T[Y5 u17 uZ) Y u2n71] = J[ya W(ula u27 B u2n~1)]
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THEOREM 2.2. Let y €. Then the following hold.

i) L(y) is a 2n —1)-dimensional subspace of ¥ and y € F(y).

(i) IfzeP(y), and y and z are linearly independent, then there
exists a solution u € ¥(y) such that J(u, z) # 0.

(i) If {uy,uy - Uy} is a basis  for F(y), then
W(uy, Uy, -+, Uyy—1) = ky for some nonzero constant k.

(iv) Ifv €, then (y)N F(v) has dimension 2n — 1 if and only if
y and v are linearly dependent; otherwise ¥(y)N F(v) has dimension
2n —2.

Proof. Part (i) is easy to verify using (4) and the definition of ¥(y).

(i) Let z € #(y) be independent of y. Suppose z has a zero of
multiplicity k, 1=k =2n—1, at some point ¢ Z0. Since ¥(y) has
dimension 2n — 1 we can construct a solution u € ¥(y) such that

M(C) — u;(c): - u(2n—k~2)(c) — O — u(2n—k+1)(c) R u(2n—l)(c)= 0’
u(zn—k—l)(c)= 1, u(zn—k)(c) =,

where y is some constant. Then, from (4), J(u,z)=z%(c)#0. If
z#0 on [0,%), then choose a point ¢ such that y(c)#0, and choose
m#0 such that y(c)—mz(c)=0. Let v =y—mz. Then v € ¥(y)
and v#0 since y and z are independent. Now, we can repeat the
argument above to determine a solution u € ¥(y) such that
J(u,v)#0. SinceJ(u,v)=J(u,y — mz)= —mJ(u,z),we conclude that
J(u,z) # 0. .

(i) Let {uy, uy, -+, us1} be a basis for F(y). Since y € L(y),
y = 227" cu; and thus

0= T[)’, U, Uy, 0y u2n—1] = J[Y> Wup, us, -+, u2n~1)]

Hence the solution W(uy, u,, - - -, u,-,) is an element of #(y). The same
reasoning shows that

J[Z’ W(ul’ u27 Y u2n—1)] = O

for all z€ %(y), and we can conclude, from (i), that
W(uy, uy, -+ -, Use—y) = ky.

Part (iv) is an immediate consequence of either (ii) or (iii). This
completes the proof of the theorem.

We now consider the properties of the subspace ¥(w) in the case
where w satisfies (2).

THEOREM 2.3. Assume that equation (1) has property (H), and
suppose w € & satisfies (2). Then:
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(i) Ify€ P(w), then either y satisfies (2), or y is oscillatory

(i) Ifye€ P(w)andy®(a)=0 for some a =0 and some nonnega-
tive integer k, 0=k =2n — 1, then y is oscillatory

(i) If z € ¥ and z & F(w), then z is unbounded.

Proof. (i) Let y € ¥(w) and assume that y is nonoscillatory with
y >0on [a,®), a=0. Supposey does not satisfy (2). Then y satisfies
(3) and there is a number b = a such that y*(x)>0,k =0,1,---,2n — 1,
on [b,»). By evaluating J(w, y) at any x = b, we have that J(w,y) # 0,
contradicting the fact that y € £(w).

Part (ii) follows immediately from (i).

(i) Let z€ ¥ and suppose z & F(w). Fix any point a =
0. Since ¥(w) has dimension 2n — 1 we can construct a basis for £(w)

consisting of w and 2n — 2 solutions u,, u,, - * *, U,,-, such that u, has a
zero of multiplicity k at x =a, k =1,2,---,2n —2. By (ii) every linear
combination of the solutions u,, u,, - - *, u,,, is oscillatory. Let y be the

solution of (1) determined by the initial conditions y(a)=y'(a)="---=
y® a)=0, y*P(a)=1. Then y satisfies (3) on [b, ) for every
bz=a Thus y & ¥(w) and the set {y, w, u;, u,, - -, u»,_,} is a basis for
&. Now

2n—-2

=cy +dw + z cl;,

i=1

where ¢#0. Since w is bounded, and 2I27% cu; is oscillatory, we can

conclude that z is unbounded.
Our next result has appeared in [5, Lemma 4] for the case n =
2. The proof is straightforward and, consequently, it will be omitted.

LeEmMMA 2.4. Let {uy, Uy, - -, U,,} be a basis for . Then there exists
a basis {z,,z,,** *, 22,} for ¥ and 2n nonzero constants k,, k,, - - +, k,,, such
that

U; = k,'W(Z], 22, AR z,'_l, ZH.], AR ZZn), l = 1,2, ct 2n.

3. Main results. It is easy to see that equation (1) has no
oscillatory solutions when n =1. Also, it is easy to show that the
nonoscillatory solution w satisfying (2) is essentially unique in this
case. Our first result shows that this situation holds in general.

THEOREM 3.1. If equation (1) has no oscillatory solutions, then the
nonoscillatory solution w satisfying (2) is essentially unique.

Proof. Suppose that (1) has two linearly independent solutions w
and v satisfying (2). Fix any a=0 and choose k such that
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w(a)— kv(a)=0. Let y be the solution given by y(x)=
w(x)— kv(x). Since y is nonoscillatory, we shall assume that y >0, and
that I y®# 0 on [b,®), b >a. Then y®’=py >0. Since each of w
and v is bounded on [0, ), y is bounded and we can conclude that no two
consecutive derivatives y*), y**" 1=k =2n — 2, can have the same sign
on [b,%). But this implies

@2n—1)

sgny = sgny” = --- =sgny®’ #£ sgny’' = sgny” = --- = sgny

on [b,%0) and, with Lemma 2.1, contradicts the fact that y(a)=0.

We now consider the case where equation (1) is oscillatory. The
next result gives a connection between the essential uniqueness of the
solution w satisfying (2) and the maximum number of linearly indepen-
dent oscillatory solutions in .

THEOREM 3.2. Assume that equation (1) has property (H). The
following two statements are equivalent:

(a) The solution w of (1) satisfying (2) is essentially unique.

(b) Equation (1) has at most 2n — 1 linearly independent oscillatory
solutions.

Proof. To show that (a) implies (b) we use a simple extension of the
proof of the corresponding result for the case n =2 in [5, Theorem
4]. In particular, assume that w is essentially unique, and suppose &

has a basis consisiting of 2n oscillatory solutions u,, u,, - - -,u,,. Using
Lemma 2.4, let {z,, z,,- "+, 2,,} be a basis for & such that for each i,
1=i=2n,

W(zla Y, Zl*l? Z|+]7 Ty Zln) = klul'

Consider the solution u, = k,W(z,, z5,- - -, 2z,,). Since u, is oscillatory,
there is an increasing sequence {x;};=, such that lim,_. x, =« and u,(x,) =
0 for all i. Therefore, for each positive integer i there are 2n — 1
constants ¢, €3, * * *, C2,, sSuch that 77, ¢%=1 and the solution v,

2n

Ul: = 2 CjiZ/a

j=2

has a zero of order 2n—1 at x =x. Because the sequences {c;},
j=2,3,--+,2n, are bounded, we can assume, without loss of generality,
that lim,_..c; = ¢,j =2,3,---,2n,and 272, c?= 1. By using an argument
similar to the one used in [1, Theorem 1],

hm vl, = vl = C222+ C3Z3+ st CZnZZn

11—
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is a bounded nonoscillatory solution of (1) satisfying (2). Repeating this
process 2n — 1 more times with the solutions u,, u,, - - -, u,,, we obtain the
bounded nonoscillatory solutions

2n
— 2 _
v, =dyuz tdpzyto+ dz,znzzm Z d2j_ s
<~
i
2n
_ 2 _
U3 = d3121 + d3222+ d34z4+ st d3,2nz2m 2 d3j_ ’
j=1
j#3

2n-1

_ 2
Usn = d2m121 + dzmzzz +oeet d2n,2n—122n—17 z d2n,j" 1
j=1

The solution v, must be independent of at least one of the other v,’s,
because, if not, then it is easy to show that ¢, = ¢; =+ - = ¢,, = 0 which
contradicts 2%, ¢c3=1. Thus & cannot have more than 2n — 1 linearly
independent oscillatory solutions.

Now assume that & contains at most 2n — 1 linearly independent
oscillatory solutions. Let w € & satisfy (2). As seen in the proof of
Theorem 2.3 (iii), we can construct a solution basis for ¥(w) consisting of
w and 2n — 2 oscillatory solutions uy, u,, - - -, U,,-, such that u, has a zero
of multiplicity k at x =a, k =1,2,---,2n -2, a 20 fixed. Choose a
point b > a such that u,(b)# 0 and let m be chosen such that u,(b)—
mw(b)=0. Then y=u,—-mweF(w), y is oscillatory, and
Yy, Uy, Uz, * * +, Usa— are linearly independent. Suppose there exists a solu-
tion v satisfying (2) such that w and v are linearly independent. Then,
from Theorem 2.2 (iv) ¥(w) # $(v) and there exists a solution z € ¥(v)
such that z € ¥(w). Since z € $(v) and v satisfies (2), z cannot satisfy
(3). Since z & ¥(w), z must be unbounded. Therefore z is an un-
bounded oscillatory solution and it, together with the 2n — 1 independent
oscillatory solutions in &#(w) found above, constitute a solution basis for
&. This contradicts the hypothesis that & has at most 2n — 1 linearly
independent oscillatory solutions, and completes the proof of the
theorem.

COROLLARY 3.3. Assume that equation (1) has property (H). Ifall
the oscillatory solutions of (1) are bounded, then the solution w of (1)
satisfying (2) is essentially unique.

Proof. As seen in the proof of the theorem, if w is not essentially
unique, then there exists an unbounded oscillatory solution z & ¥(w).

Our final result requires the concept introduced by Dolan and
Klaasen in [3]. In particular, if # and 2 are subsets of ¥, then R is said
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to dominate 2, denoted # > 2, if foreachyE R andz € Q,y+Xz €ER
for all real numbers A.

Let % denote the unbounded nonoscillatory solutions of equation
(1), B the set of bounded nonoscillatory solutions, and @ the set of
oscillatory solutions. When equation (1) has property (H), the sets U
and A are easy to describe since z € U implies either z or —z is
strongly increasing and w € # implies either w or —w is strongly
decreasing.

THEOREM 3.4. Assume that equation (1) has property (H). The
following statements are equivalent

(a) >0

(b) O>R

(c) The solution w of (1) satisfying (2) is essentially unique.

Proof. Suppose (a) holds and suppose there is a number k # 0 such
that y + kw is nonoscillatory where y € 0 and w € 3, i.e., w satisfies
(2). It is clear that the solution v = y + kw does not satisfy (3), and so,
by property (H), v satisfies (2). Obviously w and v are linearly
independent. Fixany a=0. Letu;, u,, - -, u.-, be the 2n — 2 linearly
independent oscillatory solutions in &(w) such that w, has a zero of
multiplicity k, k =1,2,---,2n -2, at x =a. Let z € ¥(v) such that
z & $(w). We may assume that z(a) =0 (which implies z oscillates),
for if z(a)# 0, then choose m # 0 such that z,= z — mw has a zero at
a. Clearly z,€ ¥(v) and z, & ¥(w). Let y be the solution of (1)
determined by the initial conditions y(a)=y'(a)="--=y*?(a)=0,
y*Na)=1. From Lemma 2.1, y € U. The set {uy, us, -, Uz, 2, y}
forms a basis for the set of solutions of (1) having a zero at a. Therefore

2n—-2

z= 2 cu, +cy =u+cy.
i=1

Since u(a)=0 and u € F(w), u is oscillatory. Also, since z & ¥(w),
c#0. Thus Z = (1)c)z =y +(1/c)u is oscillatory and contradicts the
fact that U > 0.

Suppose (b) holds and w is not essentially unique. Then there
exists a solution v of (1) satisfying (2) which is independent of w. Let
Uy, Uy, "+ *, Uy, De the 2n — 2 linearly independent oscillatory solutions in
F(w) such that u, has a zero of multiplicity k, k =1,2,---,2n -2, at
x=a, a=0 fixed. Then {w, u, u,, -, u,_,} is a basis for ¥(w), and
every linear combination of u,, u,, - - -, u,,-, is oscillatory. Since v is
bounded, we must have v € ¥(w) by Theorem 2.3 (iii). Thus

2n-2

v= 2 CU; +cw
i=1
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where not all the ¢;’s are zero, that is, v = u + cw is nonoscillatory where
u€ 0 and w € B. This contradicts (b).

Finally, assume that (c) holds and suppose that % does not dominate
0. Then there exists z € U, y € 0 and a nonzero number k such that
z + ky is oscillatory. It follows from Theorem 3.2 that & contains at
most 2n — 1 linearly independent oscillatory solutions. Since ¥(w) has
a basis consisting of 2n — 1 oscillatory solutions (see the proof of
Theorem 3.2), we can conclude that both y and z +ky are in
&(w). But this implies z € ¥(w) which is impossible since either z or
— z is strongly increasing. This completes the proof of the theorem.
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