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We single out a special subclass of the invariant subspaces
which we call the inner invariant (i.i.) subspaces. A closed
subspace K of a Hubert space H is said to be /./. for a linear
operator T (with domain D) if: (1) T(KΠD)CK,
(2) {T(K ΠD) + (KΠ D)}- = K, and (3) JC G D\K φ Tx £ K.
This generalizes subspaces invariant for both T and T~ι when
the latter exists.

Some of the results in this paper are:
1. Let λ E C. If IΛ I < 1 then K is i.i. for U - λ where U

is the shift on Hardy space Hp iff K = gHp where g is inner and
g(Λ) ^ 0. If I λ I ^ 1, then K is LL for U - Λ iff K = gHp where
g is inner. 2. There is an isometry J from H2 onto L2(0, °°)

such that the i.i. subspaces of V + 1 (where Vf(x) = f(y)dy)
Jo

are precisely the subspaces J(gH2) for g an inner
function. 3. Any skew-symmetric simple operator with defect
indices (0,1) is isomorphic with V and V~\

1. Introduction. In §2 below we present the definitions of
invariance and inner invariance for (not necessarily bounded)
operators. Then their fundamental properties are analyzed.

In §3 we calculate the inner invariant subspaces of the shift operator
in several settings. In one setting we describe the inner invariant
subspaces of the shift on the Hardy space Hp. Then we generalize this
result.

In §4 we consider the unbounded Volterra operator V. We first
characterize this operator abstractly and then use this to get the result
that on L2(0, oo) integration and differentiation (i.e., V and V"1) are
isometrically isomorphic.

Finally, in §5, we describe the inner invariant subspace structure of
the unbounded operator V + l..

2. Definitions and basic properties. We make the fol-
lowing conventions. We work in a Hubert space H and closed linear
subspaces K. A linear, though not necessarily bounded, operator on H
will be denoted by T with linear domain D = D(T). If T~ι exists, we
write D'1 for D{T1)^ T(D(T)).

If R and S are linear subspaces of H then R + S is the linear
subspace generated by the elements of JR and S. The closure of R in H
is denoted by .R or {R}~.
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DEFINITION 2.1. A closed subspace K of H is invariant for T if:
(i) T(KΠD)CK;
(ii) {T(K ΠD) + (K

This definition allows for the extreme that neither T(K Π D) nor
K ΠD alone is dense in K yet K is still an invariant subspace for Γ.

DEFINITION 2.2. A closed subspace K is inner invariant for T if it
is invariant for T and in addition it satisfies the following property:

(iii) x<ΞD\Kd> TxfέK.

The following example shows that an invariant subspace is not
necessarily inner invariant and hence that invariance and inner in-
variance are different.

EXAMPLE 2.3. Consider the shift operator s on I2 where
s([ao9aι,a2> -]) = [O,ao,aua2,- ]. Let K = { [ α n ] : = 0 | ao = 0}; then it is a

straightforward matter to show that K is an invariant subspace for s but
is not inner invariant for s.

LEMMA 2.4. If a subspace K is inner invariant for T then
T(KΠD) = KΠT(D).

Proof. By the invariance of K we get trivially that T(KΠD)C
K IΊ T(D). To show K Π T(D) C T(K Π D) let y G K Π T(D) so that
y = Tx for some x in D. If x E D\K and Tx E K then we are
contradicting (iii) in Definition 2.2.

THEOREM 2.5. IfTis one-to-one then the following are equivalent:

(i) K is inner invariant for T;

(ii) K is inner invariant for T'ι\

(iii) K is invariant for both T and T1.

Proof. We will just prove (i) φ (ii), the other cases being
clear. Since K is invariant, Lemma 2.4 implies that T(K Π D) =
K Π Γ(D). Since T is one-to-one, T1 exists and D~ι= T(D). Also
D = T-'φ1).

Thus we have the following equalities:

(1) T(K Γ)D) = KΠ T(D) = KΓ)Dι

and

(2) KΠD = τ\κ n r(D)) = τ\κ n D 1 )
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and

(3) K Π T\D -1) = Tι(K ΠD'1).

Now, by the inner invariance of K with respect to T we have, by
using (1) and (2), that

K = {τ(κ n D) + (K n D)}-

W = {(K Π D " 1 ) ! Tι(K Π D"1)}-.

Hence condition (ii) in the definition of inner invariance (for T~ι) is
satisfied.

We now use (3) and (4) to show K is inner invariant for T~\ First,
from (4) we get (automatically)

T\KΠDι)QK

so that (i) of the definition of invariance is satisfied for T~\
Assume x E D1 and T~ιx E K. In order for condition (iii) in the

definition of inner invariance to hold for T~λ we must show x E K. If x
did not belong to K, then this, with the assumptions that x E D"1 and
T~ιx E X, would be a contradiction to condition (iii) and therefore to
inner invariance.

Now T'xEK and T'ιx E T\Dι) since xED'\ Therefore
Tιx EKΠ T~ι{Dι) = T\K Π Dι) by (3). The operator T1 is one-
to-one so that x must belong to K Π D1 and hence is in K. Thus K is
inner invariant for T~\

The next two examples exhibit (1) operators, all of whose invariant
subspaces are inner invariant and (2) operators without inner invariant
subspaces. The latter settles the inner invariant subspace problem
easily in contradistinction with the long standing but recently solved
problem concerning the existence of invariant subspaces of bounded
operators. (At the August, 1976 meeting of the American Mathemati-
cal Society in Toronto, Per Enflo announced that he had solved the
invariant subspace problem.)

EXAMPLE 2.6. Consider the bounded Volterra operator V on

L2(0,l) defined by Vf(x)= Γ/(y)dy. Kalisch [10] proved that the
Jo

proper invariant subspaces of this operator are of the form L2(α, 1) for
0< a < 1. We show that these subspaces are also inner invariant for
V. Since L2(a, 1) is invariant, we need only demonstrate the last
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condition in the definition of inner invariance. Thus let a be fixed and
assume that 0^/EL 2 (0,1) with f£L2(a,l). We must show that
Vf& L2(a, 1) but this is obvious since / must have some of its support on

(0, a) and therefore Vf(x)= I f(y)dy must also have support on

(0,α). Thus V/£L2(α,l).

EXAMPLE 2.7. Consider the Hardy space H2 in the unit disk (i.e.,
{z E C I I z I < 1}). On this space we will be concerned with the weighted
shift operator 5 defined by Sf{z) = zf(z/2) for fe H2. Donoghue [3]
showed that the proper invariant subspaces of 5 are of the form z nH2 for
n = 1,2,3, . It is then trivial to show that none of these subspaces is
inner invariant.

DEFINITION 2.8. The closed subspace K of H is said to be reducing
for T if:

(i) D(T) = (DΠ K)φ(D Π K1-);
(ii) T(KΠD)CK and T(KLΠD)CKL;
(iii) {T(KnD) + (KΠD)}- = K or {T^Π D) + (K±Π D)}~ =

K\
This definition is a natural extension of the definition of invariance

(Definition 2.1) to the concept of reducing, but it is not the standard
definition used for unbounded operators. In Akhiezer and Glazman [1],
page 82, a closed subspace K is said to reduce a linear operator T if only
conditions (i) and (ii) of Definition 2.8 hold. In this case we will say that
K is A-reducing for T.

PROPOSITION 2.9. Let D(T)=H. Then K reduces T iff it A-
reduces T.

Proof. Straightforward.

REMARK. In general, A-reducing (in the absence of the density
assumption) does not imply reducing.

PROPOSITION 2.10. Let The one-to-one with D(T) = H. Then ifK
reduces Γ, both K and K1 are inner invariant for T

Proof. Since D(T) = H we get trivially that {K ΓΊ D}~ = K and
{K1 Π D}~ = K±. Hence both statements in condition (iii) of the defini-
tion of reducing are true so that we can conclude that both K and KL are
invariant for T. To prove inner invariance, let XELD\K SO that
x = k + k1 with k(ΞKΠD and k1EK±ΠD. Then Tx = Tk + TkL

where Tk E K and Tk1EK± since K reduces Γ. We know x & K so
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that kL ϊ 0. If Tx G K then we must have Tk1 = 0 which would imply
k1 = 0, a contradiction. Hence ΓJC £ 1C A similar argument works for
K\

REM ARK. If D(T) were not dense in H then only one of the two
conditions in (iii) of Definition 2.8 might hold, in which case only one of
K or K1 would be inner invariant.

PROPOSITION 2.11. Let The one-to-one with D{T) = H. Then ifK
reduces T, K is inner invariant for T and so is invariant for
T Furthermore, in general, these implications do not hold in the other
direction.

Proof Proposition 2.10 states that the first implication is true and
the second one is a simple consequence of the definition of inner
invariance. To see that the implications do not hold in the other
direction, consider Examples 2.6 and 2.3. In Example 2.6 we saw that
the subspaces L2(a, 1) for 0 < a < 1 are inner invariant for the Volterra
operator V, but they do not reduce it since L2(α, I) 1 = L2(0, α) is not
invariant for V. In Example 2.3, we exhibited an operator with an
invariant subspace that was not inner invariant.

EXAMPLE 2.12. We show that if T is not one-to-one then Proposi-
tions 2.10 and 2.11 may actually be false. Let TΊ be a linear operator on
a finite dimensional Hilbert space Hλ with nonzero kernel. Let T2 be a
nonsingular linear operator on a finite dimensional Hilbert space
H2. Form the Hilbert space H = HλQ)H2 and the operator Γ =
7^0 T2. The operator T is not one-to-one since Tλ is singular. The
subspace H2 clearly reduces T but is not inner invariant for Γ. To see
this consider x = hλ + h2 with hλ G Hu h2 G H2 and 0 ̂  hx G kernel of Ύx\
then x <£ H2 but Tx = Tλhx + T2h2 = T2h2 G H2 so that H2 is invariant but
not inner invariant for T

EXAMPLE 2.13. We show several things here. First we exhibit an
operator that has inner invariant and (non inner) invariant
subspaces. Second, the inner invariant subspaces will be totally
ordered. Third, the (non inner) invariant subspaces are examples of
subspaces for which condition (ii) in the definition of invariance holds
nontrivially. This example extends Example 2.6 and so we use the same
notation.

Since the point spectrum of V is empty, V~ι exists. We write L2 for
L2(0,l). Since D(V) = L2 we conclude that D(Vι) = {/G L21 / is
absolutely continuous, f'E L2, and /(0) = 0} and V~1f(x) =
d/dxf(x). The operator V'1 is a closed unbounded operator (Stone
[15], Theorem 10.7, Page 428).



460 GARY S. ITZKOWITZ

As was shown in Example 2.6, the inner invariant subspaces of V
and V'1 are the subspaces L2(a, 1) for 0 < a < 1 and they are totally
ordered. These do not constitute all the invariant subspaces for
V"1. It is straightforward to show that the spaces Pn, where Pn is the set
of all polynomials of degree less than or equal to the positive integer n,
are invariant. As a matter of fact Pn ΠD^'1) which is the linear
subspace generated by {x, x2, , JC"} is properly contained in Pn, and
V1(PnΠD(V1)) = Pn.1 is also properly contained in Pn but {(Pn Π
D J ) + V\Pn ΠD'1)} = Pn so that condition (ii) in the definition of
invariance is indeed satisfied nontrivially.

We close this section with some propositions giving us certain
conditions under which some or all of the concepts of invariance, inner
invariance, and reducing coincide. In the following propositions the
linear operator A is assumed to be a bounded operator defined
everywhere on the Hubert space H.

PROPOSITION 2.14. If A is self-adjoint and one-to-one then the
following three conditions are equivalent:

(i) K is inner invariant for A
(ii) K is reducing for A
(iii) K is invariant for A.

Proof By Proposition 2.11 all we need do is show that K being
invariant for A implies K is reducing for A.

If x E K and y E K1 then 0 = (Ax, y) since K is invariant. But
(Ax, y) = (JC, Ay) since A = A*. Thus Ay is perpendicular to x. Since
x is arbitrary in K we conclude that Ay E K1 so that K1 is also invariant
for A and thus reduces A.

PROPOSITION 2.15. Let A be a unitary operator on H. Then K is
inner invariant for A iff K is reducing for A.

Proof ( Φ ). Trivial.

( Φ ). Theorem 2.5 tells us that if K is inner invariant for A then it
is invariant for both A and A"1 and conversely. Let x E K and
y E K1. Then since K is invariant for A ~\ and A is unitary, we get the
following:

Thus Ay is perpendicular to K, i.e., Ay E K1 so that KL is invariant for
A. Since both K and K1 are invariant for A, the subspace K reduces A.
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PROPOSITION 2.16. If A is bounded and A -I is generalized nilpo-
tent then A and A ~ι have the same closed invariant subspaces. Thus the
inner invariant subspaces of A (and A'1) coincide with the invariant
subspaces of A.

Proof Consider the infinite series Σ^ = 0 ( l -A) n ; this series con-
verges if Σ* = 0 | | ( l- A)n\\ converges and this series does converge since
A - 1 is generalized nilpotent. Since Σ~=o (1 — A)n = (1 - (1 - A))'1 =
A'1 we conclude that A'1 exists and is bounded.

Hence if K is invariant for A then it is invariant for 1 - A and
therefore for (1 - A)n for all positive integers n. Thus K is invariant for

In the other direction we have

A = (A -1)"1 = (1 - (1 - A -1))'1 = Σ (1 - Λ -1)".
n=0

This is a valid expression for A since

(1 - A -1)" = [A ~\A - l)]n = A "" (A - iγ

and thus the generalized nilpotency of A - 1 insures the convergence of

Thus, if K is invariant for A - 1 then K is invariant for (1 - A "1)n for all n,
so that K is invariant for A.

3. The shift operator. In this section we describe the inner
invariant subspace structure of the shift operator in several settings. In
the first setting, the spaces considered are the Hardy spaces Hp for
1 ^ p ^ oo. For background on Hardy spaces, the reader is referrred to
Hoffman [9].

Briefly, the Hardy spaces are the Banach spaces of p-integrable
analytic functions in the unit disk {z \ \ z \ < 1}, or equivalently, the
subspace of If of the unit circumference with no negative Fourier
coefficients.

DEFINITION 3.1. The shift operator U on Hp is defined by Uf{z) =
zf{z) for f(ΞHp.

LEMMA 3.2. The function z - a (a E C) is an outer function for all a
of modulus 1.

Proof. We show that z - a is outer by showing that log | eiθ - a \ is
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integrable and that

- α | = ™ Γ log\eiθ-a\dθ.

It is clear that z - a belongs to Hι since it is bounded and analytic in
the unit disk. Thus log|e'* - a \ must be integrable.

Let a = 1 and set F{z) = z - 1 so that log |F(0)| = 0. With a little
calculation we get

=±f^ log[2(l-cos0)]d0

= 0 = log|F(0)|.

Thus z - 1 is outer. The case F(z)= z - a ( |α| = l) may then be
reduced to the case a = 1 by a simple change of variable and thus yields
the same result.

We now describe the inner invariant subspaces of translates of the
shift, i.e., inner invariant subspaces of U- a for a EC.

THEOREM 3.3. The nonzero closed inner invariant subspaces S of
U - a on Hp (1 ̂  p ̂  oo) are the following:

(i) If \a\<l then S is inner invariant for U' — a iff S = gHp where g
is an inner function and g ( α ) ^ 0.

(ii) // I a I g 1 then S is inner invariant forU-aiffS- gHp where g
is an inner function; i.e., S is inner invariant iff S is invariant.

Proof. Since Beurling [2] showed that the invariant subspaces of U
(and therefore of U - a) are of the form gHp for g inner, all we need do
is test which of these satisfy condition (iii) in the definition of inner
invariance. We divide this into several cases.

Case 1. Let | a | < 1 and assume g(a) / 0. Given / in Hp\gHp we
must show that (U - a)f& gHp in order for gHp to be inner invariant for
U - a. Equivalently, if (U - a)f E gHp we must show that / E
gHp. Thus assume that there is a function h EHP such that
(U-a)f(z) = g(z)h(z), i.e.,

(5) (z-a)f(z) = g(z)h(z).
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Therefore

(6) = g(z)h(z)/z-a.

Now the left hand side of (5) is zero when z = a so that g(a)h(a) =
0, but g ( α ) ^ 0 by assumption, hence h(a) = 0. In other words
h(z)/z - a is analytic. Then, by using (6), in order for / to belong to
gHp we need only show

limΓ h(reiβ)
reiβ-a dθ

Now, the inequality

re1 a\ r- a

implies that

and therefore

. - \a\

1

since ft EHP. From this we conclude that h/z - a is in //p so that
/ = gh is in g/F. This means g ίP is inner invariant for U - a provided

Case 2. Let | a | < l and assume g(α) = 0. Since g(α) = 0 and
g E JFfp, the proof in Case 1 above (with Λ replaced by g) shows that
g/z - a is in Hp. At the same time g/z - a is not in gHp since 1/z - α
is not in Hp. Thus g/z - a is in Hp\gHp and (1/ - a)g(z)/z -a = g(z)
is in g//p which contradicts the definition of inner
invariance. Therefore gHp cannot be inner invariant for U - a when
g(α) = 0.

These first two cases prove part (i).

Case 3. Let | α | > l . In this case it is obvious that all invariant
§ubspaces of U - a are inner invariant.
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Case 4. Let | a \ = 1. We assume that (z - a)f E gHp or

(7) (z-a)f(z) = g(z)h(z)

for some h in //p. Since / and h are in /fp which is contained in H\ we
know that there is a decomposition of / and h unique up to constants of
modulus 1 such that

(8) / = g1F1 and h = g2F2

where g1 and g2 are inner functions and F1 and F2 are outer functions
in Hp.

Substituting (8) into (7) we get

(9) (z - a)gιF1 = gg2F2.

Then since z - a is outer (Lemma 3.2) and bounded we can
conclude that (z - a)F1 is outer. Since the decomposition of an Hp

function is unique up to constants of modulus 1, we can conclude from (9)
that gi = cgg2 and (z - a)Fλ = bF2 for some c, b in C with \c | = 1 =
ft |. Therefore F2 = ftF2/z - α G / P and this implies that F2/z - a E

JF/P. Hence h/z — a = g2F2/z - a E // p so that f = gh/z - a is in
g//p. This means that g/P is inner invariant for U - a.

PROPOSITION 3.4. (i) // | a \ < 1 Λβn {(z - a)H2}^H2.
(ii) // I α I = 1 then {(z - α)/ί2}" = H2.
(iii) // I α j > 1 ίΛen (z - a)H2 = H 2 .

Proo/. If I α I > 1 then 1/z - a is in H 2 so that / = (z - α)//z - α is
in (z - a)H2, i.e., (z - α)/f2 = H2. If | α | = 1 then z - a is an outer
function (Lemma 3.2). We know that (z - a)H2D {(z - α)z"}:= 0 but it
is also true that this sequence spans H2 since z - α is outer. Therefore
{(z - a)H2Y = H2, If I a | < 1 then the function

is an inner function and

a z — a
\a\'\-az

1-αz

is analytic in the unit disk. Therefore (z - a)H2 = g(z)H2 and g(z)H2

is a closed proper subspace of /ί2.
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So far we have discussed the unilateral shift operator, i.e., the shift
on Hp. Now we investigate the inner invariant subspace structure of the
bilateral shift on L\K) where K is itself a Hubert space.

We start by considering the special case where K = C so that
L2(K) = L2 of the unit circumference, which we will abbreviate simply as
L\ Then the bilateral shift U on either V or L\K) is defined by
Uf(θ) = eiθf(θ). We use χA to denote the characteristic function of a
subset A of the unit circumference.

First, we present the following lemma.

LEMMA 3.5. Let 1 ̂  p % o°, let c > 0 and let g E Hp. A necessary

and sufficient condition that the function

(with \a\ = 1) be in Hp is that h (eiθ) belong to Lp of the unit circumference.

Proof This is a slight generalization of a well known result and we
leave the straightforward calculation to the interested reader.

THEOREM 3.6. The closed nonzero inner invariant subspaces S of
U- a (a EC) on L2 are of the following form:

(i) // I a I < 1, then S is inner invariant for U — a iff S = χAV where
A is a Baire set of the unit circumference.

(ii) // I a I ̂  1, then S is inner invariant for U - a iff S = χAV (for A
a Baire set) or S = FH2 (for F a measurable function on the unit
circumference with modulus 1); i.e., iff S is invariant for U.

Proof. It is well known that the invariant subspaces of U are either
of the form FH2 or χAL

2. We now divide the proof into several cases.

Case 1. Let | α | < l . It is clear that invariant subspaces of the
form FH2 are not inner invariant for U - a since l/(eiβ - a)E L2 but not
t o / / 2 .

Now consider subspaces of the form χAL
2 but these subspaces are

always inner invariant since l/(eiθ - a) is bounded in V (for | a \ > 1 too).

Case 2. Let \a \ > 1. Here l/(ei$ - a) belongs not only to L2 but
also to H2 (since it is analytic). Thus all invariant subspaces of the form
FH2 (for F with modulus 1) are inner invariant for U - a. The space
χAL

2 is inner invariant for U-a when | α | > l , as was mentioned
previously.
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Case 3. Let | a \ = 1. In this case l/(eiθ - a)£U. We consider,
for / in V and g in H2, the following:

(10) f(θ) = F(θ)g(θ)/(e«-a).

Since / E V and | F(θ)\ = 1, equation (10) implies that g(θ)/(eιθ -a) EL2

with g in /ί2. Lemma 3.5 then tells us that g(θ)/(eιθ - a) is in H2 so that
/ E FH2 and thus F//2 is inner invariant.

Lastly, for some / and g in L2 we consider /(#) =
XA(e)g(e)/(e« - α) = ̂ (θ)(^(0)g(f l )/β w - β) = X*(0)/(0) so that
/ E ΛΆ̂ 2 and thus ^J-2 is inner invariant when | a | = 1.

For background material on L2(K) the reader is referred to Fillmore
[5], pages 31-44. We will use theorems from that wofk. Loosely
speaking L2(K), for K a Hubert space, consists of all measurable
functions / from the unit circumference into K such that

Our goal is to describe the inner invariant subspaces of U - a on
L2(K). We will write M for a reducing subspace of U on L\K). It is
known that M has the form M = {/ | /(0)E M(0) a.e.} where M(θ) =
P(Θ)K and P is the projection operator from L\K) onto M. If 5 is an
invariant subspace of £/, it is known that S = MφN where M reduces
U, the space N is invariant for U and Π^=o U

k(N) = {0}. More
specifically, we can state that N = VH2(R) where R is a closed subspace
of K and V is a partial isometry on L2(X), with initial space L2(R), that
commutes with U.

We now prove the following series of lemmas.

LEMMA 3.7. // g /s in H2(K) and \ a \ = 1 ί/ierc α necessary and
sufficient condition for h(θ)= g(θ)/(eiθ - a) to belong to L\K) isthath(θ)
be in H2(K).

Proof. This is clearly a further extension of Lemma 3.5. If h is in
H2(K) then it automatically belongs to L2(K); so assume g is in H2(K)
and g/(eιθ - a) is in V(K). Let {£n}n=o be an orthonormal basis for K
and let gn(0) = (g(#), &n); i e , the inner product of g with bn. Then it is
known that g(θ) = Σngn(θ)bn (convergence of this sum being in the norm
of K) and that gn is in H2. Since {bn}^=0 is an orthonormal basis for K
we get ||g(0)||κ= Σ^=o |gn(0)|2. From this we get (using Fatou's Lemma)
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that

β-a)\\h(K) = ̂ -\ \\g(θ)/(e'β-a)fκdθ

Since g/(eiθ - a) is in L2(K) we can conclude that gn/(eiθ - a) is in L2 for
all n. Thus we now have gn in JF/2 with gn/(eiθ - α) in L2 (for | α | = 1) and
so we can conclude, by Lemma 3.5, that gn/(eiθ -a) is in H2 for all
n. From this we get finally that g/(eiθ - a) is in H2(K).

LEMMA 3.8. (i) If \a\< 1, then N is never inner invariant for
U - a. (ii) If I a | g 1, ί/ien N is always inner invariant for U - a.

Proof. We are assuming N = V7/2(JR) with V and i? as described
above.

Case 1. Let | α | < l and x be in JR. Then x/(eiθ-a) is in
L2(R)\H2(R). Now V maps L2(R) into L2(iC) so that V(x/ew - α) is in
L\K). Thus

I β - α ) = Vx

since V commutes with U and hence with U - a. Since x is in i? and JR
is contained in H\R) we get Vx in H2(R). This contradicts the inner
invariance of N.

Case 2. Let \a \ > 1. Assume there is an / in L\K) such that

(11) (eiθ-a)f(θ)=V(θ)g(θ)

for some g in H2(R). Since | α | > 1, the function l/(eιθ - a) is analytic
and bounded in the unit disk so that g/(eiθ - a) is in H2(R). Thus (11)
implies that
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since V commutes with U-a on L2(R). We already know that
g(θ)/(eιθ-a) is in H2(R) so that / is in VH2(R). Thus N is inner
invariant for U — a when | a \ > 1.

Case 3. Let | Λ | = 1. Assume / is in L\K) and g is in
H\R). We must show

(12)

but

^ —L
L(K)~2πJ0

2τr)a

VIP(R),

1

e'° -a

1

\\V(θ)g(θ)\\2

κdθ

)\g(θ)\\ldθ

since V(θ) is a partial isometry a.e. from R into K
Thus

'e - a)fRdθ

= \\g/(e"-a)tfL>w.

Since / is in L2(K) this means g/(elθ - a) is in L2(JR). Since V commutes
with U - a on L2(K) we can rewrite (12) as

Since g is in H2(R) and g/(eιθ - a) is in L2(R), an application of Lemma
3.7 tells us that g/(V* - α) is in H2(R) so that / must be in VH\R).

These lemmas now allow us to completely describe the inner
invariant subspaces of the bilateral shift.

THEOREM 3.9. The closed nonzero inner invariant subspaces S of
U-a on L\K) are:

(i) // I a I < 1 then S is inner invariant for U — a iff S — M where M
is a reducing subspace for U, i.e., iff S is reducing for U-a.

(ii) // j a I ̂  1 then S is inner invariant for U - a iff S = M φ N with
N = VH2(R), i.e., iff S is invariant for U-a.
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Proof. Lemma 3.8 (i) tells us N is not inner invariant for U-a
when |α I < 1, but M being a reducing subspace for U is clearly also a
reducing subspace for U-a. Since U-a is one-to-one, Proposition
2.10 tells us M is inner invariant for U-a. The question is, can M φ N
be inner invariant in these circumstances?

Since N is not inner invariant, there is an x in L2(K)\N such that
(U-a)xEN. We know L2(K) = MφM± with NCM1. Thus we
can write x = m ^ m2 where mi E M and m2GMλ, and (l/-α)jc =
([/ - a)mλ + (t/ - α)m2 E N. We know ((/ - a)mλ is in M since M is
reducing for U-a. Since N is orthogonal to M this means
(£/ - a)mλ = 0 which in turn means rri\ = 0 since £/ — α is one-to-one.
Thusx = m2E Mλ\N so that x 0 φ N yet {U - a)x E M φ N so that
M φ N cannot be inner invariant.

If I α I ̂  1 then Lemma 3.8 (ii) tells us N is inner invariant. It is also
clear that M is inner invariant. We will now show that M φ N must
also be inner invariant.

Assume x E L2(K) and

The element JC can be expressed as x ~ mx+ m2 as before, so that
(U - a)x is again equal to (U — a)nii + (U — a)m2. Since M reduces
U-a, we know

( ί 7 - α ) m 2 E M 1 and {U-a)m^M,

so that (U-a)m2 = (U-a)x-(U-a)mίGM^N. Therefore
(U - a)m2 E ML Π ( M φ N ) = N. Since N is inner invariant for U - a
we can conclude that m2 is in N.

Let us look a bit more closely at part (ii) of the previous
theorem. The subspace S has the form M φ N . If K were one
dimensional, i.e., K = C then this theorem should reduce to Theorem 3.6
(ii). It is not difficult to show that in this case the subspace M reduces to
χAU (for A a Baire set) and N reduces to FH2 (for F a measurable
function of modulus 1). At this point there seems to be an
inconsistency. In Theorem 3.6 we have S = FH2 or S = χAL

2 (but not
both together) while in Theorem 3.9 we seem to allow the possibility that
S = FH2φχAL

2. That there is no inconsistency follows from the
following:

Assume S = FH2($χAL
2. This means FH2 is contained in the

orthogonal complement of χAV, i.e., if B is the complement of A on the
unit circumference, then FH2 C χBL

2. If A has measure zero then there
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is no problem since, in this case, χAV = {0} and S = FH2. Thus, let us
assume that the measure of A is positive. Let / = Fg E FH2 with g in
H2. Then since FH2 C χBL

2 we must necessarily conclude that / = 0 on
A, i.e., / = 0 on a set of positive measure. Since F has modulus 1 a.e., it
is necessary that g = 0 on a set of positive measure. This is impossible if
g is not identically zero.

Since g E /f2, g ELH1 and the log of an if1 function is
integrable. But log | g | = — °° on a set of positive measure which
contradicts the integrability of log|g|. Hence g must be identically
zero. This implies FH2 = {0} so that 5 = χAV. Thus when K = C it
cannot happen that S = M φ N nontrivially.

Lastly, there is a question that still remains open, namely, what are
the inner invariant subspaces of the unilateral shift and its translates on
H2{K)Ί The invariant subspaces we know: they are of the form
N = VH\R) where V is a partial isometry on H\K) commuting with
the unilateral shift and JR is a closed subspace of K. The argument used
in Lemma 3.8, Cases 2 and 3, with minor modification, suffices to tell us
that all invariant subspaces of U are inner invariant for U - a when
I a I ^ 1, but what happens when | a \ < 1 ? Things are not too clear in
this case. In the one-dimensional case S = FH2 and 5 is inner invariant
for U-a iff F(a)^0. What condition on the partial isometry V on
H2(R) reduces to V(a)/0 when K is one-dimensional?

4. A characterization of the Volterra operator. We
characterize integration abstractly on an arbitrary Hubert space. Then
we apply the work of the previous section to obtain the inner invariant
subspace structure for a translate of the integration operation.

For the sake of convenience we will write A ~ B to mean A is
unitarily equivalent to B.

Jo

DEFINITION 4.1. The Volterra operator V is defined by V/(x) =

f(y)dy for £ in D(V) where D{V) = {f E L2(0, oo) | VfE L2(0, «>)}.
o

A straightforward application of the Fubini Theorem tells us that

for a in C - {0} where / is in D( V - a)"1. It is then not difficult to show
that ( V - α ) 1 is bounded and defined everywhere in L2(0,oo) for
Re(α)<0.

PROPOSITION 4.2. The Volterra operator V is a closed densely de-
fined unbounded operator.
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Proof. Since (V + l)"1 is bounded and defined everywhere, it is
closed. Therefore V + l and V are also closed.

Sarason [13] showed that (V + I)"1 on L2(0, oo) was unitarily equival-
ent to (1 + U)/2 on H2 where (7 is the shift operator. Since (V + I ) 1 ~
((7 + l)/2 we get V + 1 ~ 2(1/ + I)"1. Therefore V + 1 (and hence V) is
densely defined if (1/ + 1)"1 is, but D( l/ +1)"1 = (1/ + l)D(t/) =
(z + I)// 2 and Proposition 3.4 (ii) assures us that (z + ΐ)H2 is dense in H 2 .

To show V is unbounded, define /α(x) to be 1 if O^x^a and
- a(a + l)/(x + I)2 if JC > α where 1< α < «. Then || V/fl || > a \\fa \\ for
a = 2,3,4, so that V is indeed unbounded.

In order to characterize the Volterra operator it will be useful to
generalize the concept of a symmetric operator and its Cayley transform.

DEFINITION 4.3. A linear operator A on a Hubert space H is
called b-symmetric if eibA CΛ* where b is real. If b = π then Λ is
called skew-symmetric.

We now note that virtually all results about symmetric operators and
their Cayley transforms also hold for b -symmetric operators. Simply
substitute b-symmetric for symmetric in their proofs. A good reference
for symmetric operators is Akhiezer and Glazman [1].

Recall that if B is a symmetric operator then its Cayley transform C
is defined by C = (B - z)(B - z)"1 where I m ( z ) > 0 and C is a partial
isometry.

We now define a Cayley transform for a b-symmetric operator. If
A is fe-symmetric then B = eib/2A is symmetric and has a Cayley
transform C where (for Im(z)>0)

C = (B-z)(B-zΓ

= (eibl2A - z)(eihl2A - f)"'

= {A-e-ibl2z){A-e'imz)-\

Now let w = e'ibl2z so that

(13) C=C(A) = (A-w)(A-e-ibw)-1

iorlm(e""2w)>0.

DEFINITION 4.4. We call the partial isometry C— C(A), i.e., (13)
above, the Cayley transform of the b-symmetric operator A. The
domain D(C) = (A - e'ibw)D{A) and the range R(C) = (A - w)D(A)
where Im(e ί ί > / 2w)>0.
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DEFINITION 4.5. If A is a b -symmetric operator, we define the
defect spaces Ht and H~ by

Ht=D(Cy = {(A - e-ibw)D{A)Y-

y = {(A - W)D(A)}1

where Im(eib/2w)>0.

DEFINITION 4.6. The defect indices of a b-symmetric operator A
are (/?, q) where p- dimension Ht and q = dimension H~w. From
Definition 4.6 it is clear that (p, q) are also the defect indices of the
Cayley transform C(A).

PROPOSITION 4.7. Let A be b-symmetric and lm(eιb/2w)>
0. Then HI = {x E H | A *JC = e'W}, H ; = {x G H | A *JC = WJC} and

D(A) n H ; = D(A) n H; = H ; n H; = {0}.

THEOREM 4.8. Lei A fee b-symmetric, then A is closed iff D(A *) =
D(A)®Ht®H- where lm(eib/2w)>0. The algebraic direct sum above
is not necessarily orthogonal.

Proof ( Φ ) This direction is well known and its proof can be
found in Akhiezer and Glazman [1], Volume II, Page 98.

( φ ) This part is new and its proof is due to Robert
Waterman. We assume that A is not closed and that C = C(A) is the
Cayley transform of A. We will also make use of the following
equivalent statements:

A is not closed <£> C(A) is not closed <=> D(C) is not closed <£>
R(C) is not closed.

Since C is not closed we can get a smallest closed extension C of C
by considering the naturally induced partial isometry on D(C) that
extends C. It is then clear that ( C - 1)D(C) = D(A) and D(A) is
dense in H. Thus (C - l)D(C) is also dense in H since (C - l)D(C) =
(C - ί)D(C) D(C- l)D(C). In this case A = (e~ώwC - w)(C - I)"1 is
a closed 6-symmetric operator. We know A^A since C^C (see [1],
Volume II, page 96). Since A is a closed b -symmetric operator, the first
half of this theorem tells us D(A*) = D(A)(BH+

W(A)0HW(A). From
Definition 4.5 we get H+

W(A) = D(C)1 = D{C)L = D(C)L = Ht(A) and
HW(A ) = R(CY = R (C)1 = R(cy = HW(A ). Therefore

(14)
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since A g A. But A g A implies A *g A * so that D (A *)gD (A *). This
completes the proof since by (14) D(A *)^D(A * ) 5 D ( Λ ) φ H ; φ H ; .

DEFINITION 4.9. A 6-symmetric (or partial isometry) A is simple if
there does not exist a closed subspace K oί H invariant under A such
that A restricted to l£ is b-adjoint (or unitary). An operator F is
b-adjoint if eibF = F*.

REMARK. A b-symmetric operator A is simple iff C(A) is simple.

Let /f be a separable Hubert space and let {e,}Γ=i be an orthonormal
basis for H. We define an operator C* by

C*ek = ek+ι for /c = 1,2,3, .

It is clear that C # is a partial isometry with defect indices (0,1). As a
matter of fact C # is the shift operator. A short calculation then shows
that {C#- l)D(C#) is dense in H so that

for lm(eib/2w)>0 is a fe-symmetric operator.

THEOREM 4.10. (J. von Neumann) // a simple b-symmetric
operator A on H has defect indices (0,1) then H is separable and A is
unitarily equivalent to A# .

REMARK. This important theorem was originally proved for sym-
metric operators. Its present form is a direct generalization of this and
its proof is similar.

THEOREM 4.11. The Volterra operator V on L2(0,°o) is a simple
skew-symmetric operator with defect indices (0,1).

Proof. In Sarason [13], the following was shown: If U is the shift
operator on H2 then (V+ I ) " 1 - ([/ + l)/2. A little calculation then
gives U ~ (1 - V)(l + V)"1 = - C( V). Therefore V is simple with de-
fect indices (0,1) since U is, and V is skew-symmetric since it is the
"anti"-Cayley transform of U (i.e., b = π and w = 1 in (13) above).

As a corollary of the last two theorems we now have the abstract
characterization of the Volterra operator.

COROLLARY 4.12. Any skew-symmetric operator A, defined on a
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Hubert space H, that has defect indices (0,1) is unitarily equivalent to the
Volterra operator V on L2(0, oo).

Proof. By Theorems 4.11 and 4.10 we have V ~ A* and A ~ A* so
that V-A.

Since Vf(x)= Γ f(y)dy for / in D(V) = {fEL2\ VfEL2}, we

easily get that V'ιg{x) = d/dxg(x) for g in D( V"1) = {/ in V \ f G L2,
/ E A C and /(0) = 0} where f'(x)= d/dxf(x) and A.C is the set of
absolutely continuous functions on L2 = L2(0, °°).

THEOREM 4.13. The operator V is unitarily equivalent to V~\

Proof In the proof of Theorem 4.11 we showed that C(V)~-
- U. Thus since U ~ eibU for real 6 we get that

= (1+U)(l-Uyι if

= {(l-l/)(l+t/)-1}-1

}-χ= V"1.

We finish this section with some remarks about the nature of the

adjoint V* of the Volterra operator V. On L2(0,l), Vf = Γ f(y)dy
r\ Jo

and V*f = I f(y)dy. At a first glance it might seem natural to suppose
J X

that V* on L2(0,oo) would be similarly defined, .that is, V*f =

I f{y)dy. This is not the case.

Since by Theorems 4.11 and 4.2, V is a closed skew-symmetric
operator, we can use Theorem 4.8 to deduce that D(V*) =
D ( V ) φ H ί φ H r . The defect indices of V are (0,1) so that H\ =
{0}. We now need to describe the defect space Hΐ. The function e~ι in
L2(0, oo) is not in D( V) since V(e~') = 1 - e~' and the constant 1 does not
belong to L2(0, oo). On the other hand e~x does belong to D( V*) since

= Γ
Jo
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for / in D( V). Thus e"' is in D( V*) and V*e"' = <Γ' so that e~' is in
Hi". Since Hΐ is one dimensional, we conclude H\ = [e~'].

PROPOSITION 4.17. 77ιe adjoint V* can be described by V*f(x) =

lim Γ f{y)dy for f in D{V*) = D( V)Θ[e"].

f*Proof. From above we know V*e x = e x = lim e fώ. If / is in

D(V) then (using integration by parts) we have (Vf,/) =
lim^oc I V/(ft)|2 - (/, Vf) which implies that l i m ^ Vf(b) = 0 for otherwise
|| V/ll = oo which contradicts / being in D( V). Hence

0 = lim £ /(0 A = £ /(O A + lim £ /(*) A

so that

since V is skew-symmetric.

We can actually describe D(V*) in slightly different terms, namely
D(V*) = {/EL 2 (0^) | y * / E L 2 ( 0 , 4 It is obvious that D(V*) is
contained in this set, which we will call D*. We need only show
D* CD( V*). To do this consider / in D(V) and g in D*. Then

and

lim I f{x) I g(y)dydx = I f(x)Wg(x)dx
" - " J o Jx Jo

where W = V* with D(W) = D, so that

for/ in D(V) and g in D*.
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5. Inner invariant subspaces for Volterra type
operators. We are now ready to apply the results of the past few
sections to the unbounded Volterra operator.

THEOREM 5.1. There exists a surjectiυe isometry (i.e., a unitary
map) / from H2 to L2(0, oo) such that the closed nonzero inner invariant
subspaces of V + 1 are precisely {I(gH2) | g is an inner function}. The
same result holds for V~ι + 1 in place of V + 1.

Proof Recall that V is a skew-symmetric simple operator with
defect indices (0,1). Thus ( 1 - V)(l + V)"1 is the shift operator since
this is the Cayley transform of V. Therefore there is a unitary map /
from H2 onto L2(0, oo) such that IU = (1 - V)(l + V)Ί where U is the
shift operator on H2. Thus IU + 7 = 2(1+ V)'ιI so that J|(t/ + 1) =
(1 + V) 7. Thus K is an inner invariant subspace of \{U + 1) iff I(K) is
an inner invariant subspace of (14- V)"1, and \{U + 1) has the same inner
invariant subspaces as U + 1. Theorem 3.3 then tells us that K must
equal gH2 with g an inner function. Thus {I(gH2) | g inner} is the set of
inner invariant subspaces for (V + I)"1, and by Theorem 2.5 for V + l
too.

To get the second part of this theorem, notice that by Theorem 4.13
we have V ~ V"1 so that V + 1 ~ V'1 + 1.

REMARK. It should be pointed out that while the unitary maps from
H2 onto L2(0, oo) may be different for V + 1 and V"1 +1 it happens that it
is also possible to pick a single unitary map / in such a way that the spaces
I(gH2) are inner invariant for both V + l and V"1 +1
simultaneously. For an example of such a unitary map see Sarason [13].

If we now look back at Example 2.6 we will notice that the spaces
L2(a, 1) for 0 ̂  a S 1 are inner invariant for the Volterra operator V on
L2(0,1). Since our Volterra operator V on L2(0, oo) is a natural extension
of this it seems appropriate to inquire if the spaces L\a^) are inner
invariant for V.

PROPOSITION 5.2. The subspaces L2(a, <*>), for 0 < a < oo, o/L2(0, oo)
are inner invariant for V + l .

Proof We will show that L2(a, oo) is invariant for both V + l and
(V+l)" 1 . Then an application of Theorem 2.5 shows that L2(α,oo) is
inner invariant.

Since (V+ I)"1 is bounded and defined everywhere, we need only
show that (V + l)\L2{a, oo)) c L2(a, oo) but (V + l)~lf(x) =

f{x)- Γ eι~xfit) dt for / in L2(α, oo). Since Γ eι'xfit) dt has its support
Jo Jo
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in [a, °°) if / does, we can conclude that (V + I)"1/ is indeed in L\a, °°).
To show L\a,<χ>) is invariant for V + 1, we have

D(V + 1) Π L2(α, a) = D(V) Π L2(α,«)

= {/ G L2(0,«) £ /(y) dy G L2(0, oo) J n L\a, oo)

= {/ e L2(α, cc) I |J/(y) ί / y εL 2 (α, oo) j

and it is clear that this is dense, in L2(a,™) if D(V) is dense in
L2(0, oo). Thus condition (ii) in the definition of invariance is satisfied.

As in the first part of the proof, I f(y) dy has its support in [a, oo) if f
Jo

does. Thus if / is in D (V) Π L2(a, oo) then (V +1)/ must be in L2(α, oo).

REMARK. From Theorem 5.1, there must be an inner function ga

such that I(gaH
2) = U(a, oo). Using the isometry / given by Sarason [13]

we see that ga(z) = exp(α(z + l)/(z - 1)) is precisely the inner function
we want.

PROPOSITION 5.3. The inner invariant subspaces of V + l are all
inner invariant for V.

Proof In Proposition 4.2 we showed that (V + I)"1 - (1 + J7)/2 so
that V + 1 - 2 ( 1 + t/)-1 or V- 2(1 + t/)"1 - 1. Thus /(gH2) is inner
invariant for V iff g//2 is inner invariant for 2(1 + U)~ι - 1. Since gH2 is
inner invariant for (1 + U)/2 it is inner invariant for 2(1 + J7)"1 and
therefore necessarily invariant for 2(1 + U)~\ We must now show that
gH2 is also invariant for 2(1 + U)~ι- 1.

Clearly D(2(l + (7) 1 - 1) = D(l + t/)"1 = (z + l)f/2. By Proposi-
tion 3.4 we know that (z + I)//2 is dense in H2. Also since gH2 is inner
invariant for U -hi we get (z + I)// 2 Π gίf2 = (z + l)gH2 (we leave the
proof of this fact to the interested reader). Now condition (ii) in the
definition of invariance tells us that we must show {((z + ΐ)H2 Π gH2) +
[2( ί/ + I)"1 - 1] ((z 4- l)H2 Π g/f 2)}~ = g//2. Since (z + I)//2 Π gH2 =
g(z + I)//2 we know that this subspace is dense in gH2 because (z + ί)H2

is dense in H2. Thus condition (ii) will be satisfied if we can show
[2(U + I)"1 - l](g(z + l)/f2) C g/ί2 (this is condition (i) of the definition
of invariance) but this is true iff 2(17 + l)~ιg(z + 1)H2C gH2 which is
clearly true. Thus I(gH2) is invariant for V.

To complete this proof we now show that I(gH2) is also invariant for
V'1 and then call on Theorem 2.5. We do this by showing V'1 + 1 ~
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2( ί/- l ) " 1 so that V r-1~2(t/-l)"~1-l. Then we use the argument
given above to show that gH2 is indeed invariant for 2(U — I ) ' 1 - 1.

To show V-J + 1 - 2 ( 1 7 - I ) " 1 , consider the fact that (1 + V)"1 =

1 - K where Kg(x)= I etxg{t)dt. We then consider the differential
Jo

equation {ιV~ι + /)/ = g, that is, if'(x)+if(x) = g(x). The solution of
this equation is/(jc) = iKg(x). Ύhusf(x) = (iVι + i)~ιg(x) = iKg(x) or

-K = (V-1+iγι. Since 1 + V~ 2(1 + U)~λ we have 1 - K =
(1 + V)-1 ~ (1/ + l)/2 or - K ~ (U - l)/2. Since (V"1 + I)"1 = - K we
conclude (V"1* 1)~ 2(17- I)"1.

We now examine one difference between the bounded Volterra
operator on L2(0,1) and the unbounded Volterra operator on
L2(0,°o). In reference [10], Kalisch showed that V on L2(0,1) is a
unicellular operator. For the unbounded Volterra operator, it is not.

It is not difficult to show this. We need only show that the spaces
I(gH2) for g an inner function are not totally ordered. This is true iff
the spaces gH2 are themselves not totally ordered. Consider two
subspaces gλH

2 and g2H
2 of H2 with

z v a a — z , / x b b — z
gi(z) = γ—{'- — and (z)

I I 1
γ { a n d g2(z) Γ

I a I 1 - az \b\ ί-bz

where a and b are nonzero complex numbers such that a^ b. It is then
a routine calculation to show that neither gιH

2Qg2H
2 nor g2H

2C
giH2. Thus the unbounded Volterra operator is not unicellular.

We do know all of the inner invariant subspaces for V + 1 but do we
know all of them for VΊ The answer at present is no, though we can
(and will) exhibit a rather large set of inner invariant subspaces of V that
are not inner invariant for V + 1.

EXAMPLE 5.4. Let Pn be the set of functions of the form p(t)e'{

where p(t) is a polynomial of degree at most n for n a positive
integer. Thus Pn is an n + 1 dimensional subspace of L2(0, oo). We will
show that Pn is inner invariant for V'1 and therefore also for V. Now

with D ( V 1 ) = {/EL 2 (0,^) |/EΛ.C, /ΈL2(0,<*) and

Claim 1. PnnD(Vr-1) = {p(ί)e"f | p(0) = 0 and/? is a polynomial of
degree at most n}.

Proof of claim. Straightforward.

Claim 2. V\Pn(ΛD{Vι))QPn.
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Proof of claim. We have V"1p(ί)e~ί = (p'(t) — p(t))e"' which is in
Pn whether or not p(0) = 0.

Claim 3. Pn={(P l lnD(V-1))+ V ^ n D ί V - 1 ) ) } .

Proof o/ claim. Straightforward.

These three claims taken together tell us that Pn is invariant for
V~\ We now show that Pn is inner invariant.

If V~ιf = f is in Pn then /'(ί) = piήe'* with p a polynomial of degree
at most n. Therefore

f(0= P P(y)e~ydy
Jo

p'(0)+ + p

Since / is in L2(0,oo) we conclude Σ^0p
( lς)(0) = 0; hence f(t) =

-Σ"k=op
(k}(t)e~'. Thus f(t) = g(t)e-' where g(ί) is a polynomial of

degree at most n, and so / belongs to Pn and Pn is inner invariant for V"1

and also for V.
We will show that the subspaces Pn (for n = 1,2, •) are invariant for

V + 1 and V"1 + 1 but not inner invariant for either. Keep in mind that
D(V-1 + 1) = D(V-1) so that D ( V ' + 1 ) ,Ί PB = {p(/)e-'| p(0) = 0},
where p is understood to be a polynomial of degree at most n.

Let / be in D ( Γ ' + l ) n P , so that f(t) = p(t)e" with p(0) =
0. Then

=p'(t)e->

Thus, because of (15) we have {V~ι + 1)(D(V"1) n Pn) = ?„_,. Further

(v-1 +1) (D (v-1) n pn) + (p (v-1) n pn)

since t"e" e {p(ί)e"' | p(0) = 0} and Pn_, + [tne'] = Pπ. Thus (15) and
(16) imply that Pn is invariant for V~ι + 1. On the other hand tn+ιe~' is in
D(Vι + ΐ)\Pn while ( V"1 + \){tn+ιe-') = (n + ΐ)tne" belongs to Pn so that
Pn is not inner invariant for V'x + 1.

We will use V for L2(0,») below. Consider D{ V + 1) = D{ V) =
{fEL2\ VfEL2}. We look at D(V)ΠPΠ. Let / be in Pn. Thus
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fit) = p(t)e~'. If / is to belong to D( V) then I p(y)e'ydy must belong
Jo

L2; but (' p(y)e->dy = - e-(ΣUp*Xt)) + ΣUp*\O). If this is to
JoJo

belong to L2 then ΣUop
(k)Φ) = 0 in which case ( V + l ) ( p ( ί ) O =

-e-'(Σ;.op<t)(0) + p(Oe"=-β- | (Σ;. 1 p ( t ) (ί)). Thus (V + l)
(Pn ΠD(V))CPn and PnΠD(V) = {p{t)e" \Σ"k=0p

{k)(0) = 0}.

Claim 4. For fc = 1,2, , n, (tn - ktk~ι)e- E PnΠD(V).
\

Proof 0/ Claim. A simple calculation gives us

k

i=0

Therefore Σf=op'(O) = 0k = 0.

Claim. 5. Pn.1C(V+ l)(PnΠD(V)).

Proof of Claim. If we do some more calculation we get

(17) (V+l)(tk - ktk-ι)e-1 = -e-ι(ktk-χ)

for k = 1,2, « ,n. Therefore (V + l)(PnΠD(V)) contains the space
generated by e~\ te~\ t2e~\ % tn'xe~l which is Pn-X.

Now let p(ί) =tn-nl then clearly Σ£=op*(0) = - n ! + n ! = 0 s o
that (Γ - n !)*?"' belongs to PnΠD(V). From Claim 5 we get n \e~ι in
(V+ l)(PnΓ)D(V)). Thus r"e~r = (ίn - n \)e~' + n\e-' and this belongs
to (PnnD(V)) + (V+l)(P n nD(V)) so that Pn = (PnΠD(V)) +
(V + 1) (Pn Π D (V)). This means Pn is invariant for V 4-1. From Claim
4 we know that ( r + 1 - ( n + I)*")*"1 belongs to D(V)\PΠ but ( V + l )
(Γ+1 - (n + l)ίn)e" f = - (n + l ) r e ^ by (17) above, which is in Pn. Thus
Pn is not inner invariant for V + 1.

A few comments about the inner invariant subspaces I(gH2) are now
in order. We have shown that these subspaces fill out the set of inner
invariant subspaces for V+ 1. We can also show that these subspaces
are inner invariant for V - a where a is in the resolvent set of V. Since
- 1 belongs to the resolvent set and we do know all of the inner invariant
subspaces for V - (.- 1) = V + 1, is it possible that the spaces I(gH2) also
fill out the inner invariant subspace structure of V - aΊ If not, what
other inner invariant subspaces are there?
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PROPOSITION 5.5. The operators V - a and V~ι - a, for a EC, have

no nontriυial reducing subspaces.

Proof. It is well known that the shift operator on H2 has no
nontrivial reducing subspaces (see Hoffman [9], Page 110). Also, for a
fc-symmetric operator A, a subspace K reduces A iff it reduces C(A)
(see Akhiezer and Glazman [1]). Since C(V)= - U where V is the
Volterra operator and U is the shift, we can conclude that V has no
nontrivial reducing subspaces. Since V ~ V~\ we also know that V"1

has no nontrivial reducing subspaces. We know

(18) D(V-a) = D(V) and D(V) = L2(0,oo).

Let us assume that K is a reducing subspace for V - a where a is a
nonzero complex number. Therefore

D{V- a) = (D( V) Π X ) 0 ( D ( V ) Π K1)

by Definition 2.8 and (18) above. We therefore conclude
that {KΠD(V)}- = K and {KλΠ D(V)}~ = K±. In this case
(V-a)(KΠD(V))CK iff V(KΠD(V))CK, and
( V - a)(KLΠ D(V))QKL iff V ( i r Π D ( V ) ) C Γ so that K must also
reduce V. Thus K = {0} or K = L2(0,^). Since V'1 ~ V we get the
same result for V~ι - a.

6. Some applications. As in Goldberg's book, "Unbounded
Linear Operators", it is possible to define a natural induced linear
operator on a quotient space. To do this consider a linear operator T
with domain D contained in a Hubert space H. If K is a closed
subspace of H we can consider the quotient space H/K. The elements
of HIK are equivalence classes of the form x + K for x in H. We will
denote this equivalence class by [jc]k, or simply [x] when no ambiguity
results.

DEFINITION 6.1. We define the induced operator t: H/K -» H/K
by t[x]k=[Tx]k where D(ί*) = {[*]* I 3JC0G[JC], with x0ED(T)}.
When no ambiguity results we will use f for fk.

PROPOSITION 6.2. A closed invariant subspace K of T is inner
invariant for T iff tk is 1-1.

Proof
( φ ) Assume t[x] = f [y]. From Definition 6.1 we know Tx =
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Ty + k for some k in K. Since k = T(x - y) we conclude
fe G T(D) Π K, but the inner invariance of K then implies k G T(K Π D)
so that there is a ίC] in ί ( Ί D such that Tkι = fc. This tells us
Γ(x - y - kγ) = 0 so that n = x - y - kλ is in the null space of T. But for
an inner invariant subspace K, we always have the null space contained in
K Π D. Therefore nGK ΠD so that JC = y 4- (n + fc^ with
n -f fc, G K. This means [JC] = [y].

( φ ) Clear.

Let G be a subspace of H that contains K. We will let G denote
the subspace G/K of H/K. Let qk be the natural homomorphism from
H onto H/K. Then G = qk(G). It is clear that qk:G^G is
1-1. Denote D ( f ) by D.

THEOREM 6.3. Let K be a closed invariant subspace of T. Let G be
closed with G D K. Then G is {inner) invariant for T iff qk{G) = G is
(inner) invariant for Tk.

Proof
( Φ ) Suppose [g]GG Γ)D = (G Γ\D)/K. We can assume

g E G Π Zλ Since G is invariant for Γ, we get Tg G G. Thus Γ[gJ =
[Γg] isin G, that is, f(G C\D)CG. We must now show that G =
{(G Π D)+ t(G Π D)}~ but through elementary calculations we get

G = G/K = {(G Π D ) + Γ(G Π

= {[(G n D ) + τ(G n D)]/κ

= {(G n D)/x + τ(G n

= {(G n D)/κ + f [(G n

= {(GnD)+f(GΠD)}-.

( Φ ) Since qk is 1-1 and onto from the subspaces of H containing
K to the subspaces of H/K, we know that given G a subspace of H/K,
there must exist a subspace G containing K such that qk(G)= G. We
will assume G is invariant for f and show that G must then be invariant
for T.

Let JC G G Π D so that [JC] G G Π D. Thus f [x] G G since G is
invariant for Γ. Therefore there is a y G [TJC] such that y G G. This
means Tx - y = k E K or that Tx = y + k E G + K CG. Thus
Γ(GΠD)CG.
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Since G is invariant for t we know

G/K = G = {(G Π D) + f (G Π D)}-

= {(G n D ) / κ + Γ(G n D )/*:}-

= {[(GΠD)+Γ(GnD)]/X}-

= {(GnD)+T(GΠD)}-/K.

Since ^ is 1-1 we can conclude that G = {(G Γ)D)+ T(G Π D)}" as
soon as we know that {(G ΠD) + T(G nD)}~D K. This is true since K
being invariant for Γ implies

K = {(K n D) + Γ(κ n D)}- C {(G n D) + τ(G n D)}-.

For inner invariance, assume G is not inner invariant for T. Then
there is an x in D\G with Tx in G. This says [x]6 0 \ G with f[x]EG
which contradicts the inner invariance of G.

In the other direction we assume G not inner invariant for t. Thus
there is an [x] in D\G with Γ[JC] E G. This means there is a y in [x]
with y E £>\G. Now Γy E [Ty] = t[y] = f[x] E G. Thus there is a
z E [Γy] with z in G. Hence Γy - z = k for some k in K so that
Γy = z + fc E G. Since y E D\G this contradicts the inner invariance
of G.

REMARK. Since g* is 1-1 and onto, this theorem established a 1-1
correspondence between the (inner) invariant subspaces of Γ containing
K and the (inner) invariant subspaces of tk.

We state the following straightforward result.

COROLLARY 6.4. Let K be inner invariant for T and let G be a
subspace containing K. Then the following conditions are equivalent:

(i) G is inner invariant for T
(ii) G is inner invariant for tk

(iii) G is inner invariant for t~k

ι

(iv) G is invariant for both tk and TV-
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