Pacific Journal of Mathematics

A CHARACTERIZATION OF THE GAUSSIAN DISTRIBUTION IN A HILBERT SPACE

JEFFREY LYNN SPIELMAN

Vol. 68, No. 2

April 1977

A CHARACTERIZATION OF THE GAUSSIAN DISTRIBUTION IN A HILBERT SPACE

JEFFREY L. SPIELMAN

In this paper we consider the case in which random variables X_i take values in a real, separable Hilbert space \mathcal{H} . We look at a linear form $\sum A_i X_i$ where each A_i is a bounded linear operator in \mathcal{H} . We then assume that this linear form is identically distributed with a monomial and form conditions under which it is possible to deduce that the common distribution of the random variables is the Gaussian distribution.

The study of identically distributed linear forms of independent and identically distributed random variables has been undertaken by several authors. J. Marcinkiewicz studied linear forms in which all moments of the random variables are assumed to exist. He then proved that the common distribution of the random variables was the Normal distribution. R. G. Laha and E. Lukacs have considered the case where one of the linear forms is a monomial. They have obtained characterizations of the Normal distribution for both the case when the variance is assumed finite and when no assumption is made concerning the variance.

1. Statement of the main result. Suppose now that X_1, X_2, \cdots is a sequence (possibly finite) of independent, identically distributed, nondegenerate \mathcal{H} -valued random variables, where X_1 has a finite variance (i.e. $\operatorname{Var} X_1 < +\infty$). Let A_1, A_2, \cdots be a sequence of 1-1 bounded linear operators in \mathcal{H} , with the following two properties:

(1)
$$\sum_{j} ||A_{j}||^{2} < +\infty \text{ and } \sum_{j} A_{j}^{*}A_{j} \geq I$$

and

$$\sup_{i} \|A_i\| < 1.$$

We note that in the above A_i^* represents the adjoint of A_i and that the inequality $\sum_i A_i^* A_i \ge I$ is true in the sense of positive-definiteness. (For example, see page 313 of [7].)

Our goal is to prove the following theorem.

THEOREM 1. Suppose that $\Sigma_i A_i X_i$ converges with probability one. If $\Sigma_i A_i X_i$ has the same distribution as X_1 , then X_1 has a Gaussian distribution.

In §2 we will prove an important preliminary result (Theorem 2). Then in §3 we will present the proof of Theorem 1.

2. A preliminary result. In this section we will prove the following result.

THEOREM 2. Let X_1, X_2, \cdots be a sequence (possibly finite) of independent, identically distributed, nondegenerate, \mathcal{H} -valued random variables. Suppose that the sum $\sum_j A_j X_j$ exists with probability one, where A_1, A_2, \cdots are bounded linear operators in \mathcal{H} , with $\sup_j ||A_j|| < 1$.

If $\Sigma_j A_j X_j$ has the same distribution as X_1 , then X_1 has an infinitely divisible distribution.

Note. The hypotheses of Theorem 2 are somewhat weaker than the hypotheses of Theorem 1.

Before beginning the proof of Theorem 2, let us fix some notation.

Let $\varphi(y)$ be the common characteristic functional of X_1, X_2, \cdots . Then $\varphi(y) = \mathscr{E}e^{i(X_1, y)}$ for all $y \in \mathscr{H}$, where \mathscr{E} denotes mathematical expectation.

The characteristic functional of $A_i X_i$ is then given by:

(3)
$$\mathscr{E}e^{i\langle A_{j}X_{j}y\rangle} = \mathscr{E}e^{i\langle X_{j}A_{j}^{*}y\rangle} = \varphi(A_{j}^{*}y)$$

where A_{i}^{*} denotes the adjoint operator of A_{i} .

Now, suppose that $\sum_{j} A_{j} X_{j}$ has the same distribution as X_{1} . Then equation (3) gives us:

(4)
$$\varphi(y) = \prod_{j} \varphi(A^*_{j}y), \text{ for all } y \in \mathcal{H},$$

where the product converges uniformly on bounded spheres. (See Theorem 4.4, pg. 171 of [5].)

Since $\sum_{j} A_{j} X_{j}$ converges, then $\sum_{j=n}^{\infty} A_{j} X_{j}$ converges, with probability one, to the origin of \mathcal{H} as $n \to \infty$. (Of course, if X_{1}, X_{2}, \cdots is a finite sequence, the preceding statement is unnecessary.)

Thus, it is possible to choose N_0 for any $\epsilon > 0$, such that $P\{\|\sum_{j=N+1}^{\infty} A_j X_j\| > \epsilon\} < \epsilon$, whenever $N \ge N_0$. Let $\varphi_N(y)$ denote the characteristic functional of $\sum_{j=N+1}^{\infty} A_j X_j$. Then using equation (4), we have:

(5)
$$\varphi(y) = \varphi(A_1^*y) \cdots \varphi(A_N^*y) \varphi_N(y).$$

Proof of Theorem 2. We assume that $\sum_{j} A_{j} X_{j}$ has the same distribution as X_{1} . Then equation (5) holds. If we replace y by $A_{j}^{*}y$ in equation (5), we obtain:

(6)
$$\varphi(A_j^*y) = \varphi(A_1^*A_j^*y) \cdots \varphi(A_N^*A_j^*y)\varphi_N(A_j^*y)$$

for each $j = 1, 2, \cdots, N$.

Combining equations (5) and (6) we have:

$$\varphi(y) = \prod_{j=1}^{N} \varphi((A_{j}^{*})^{2}y) \cdot \prod_{j \neq k} \varphi(A_{j}^{*}A_{k}^{*}y) \prod_{j=1}^{N} \varphi_{N}(A_{j}^{*}y)\varphi_{N}(y)$$

If we repeat the above process n times, we get the following result:

(7)
$$\varphi(\mathbf{y}) = \prod \varphi(A_{j_1}^* \cdots A_{j_n}^* \mathbf{y}) \prod_{k=1}^{n-1} \prod \varphi_N(A_{j_1}^* \cdots A_{j_{n-k}}^*) \varphi_N(\mathbf{y}).$$

The product on the right hand side of equation (7) consists of $N^n + N^{n-1} + \cdots + N + 1$ factors, where each of the subscripts j_1, \dots, j_n can take any of the values $1, \dots, N$ with repetitions allowed.

Thus, equation (7) says that X_1 is distributed as the sum of $k_n = \sum_{k=0}^n N^k$ independent, \mathcal{H} -valued random variables, $Y_{n,k}$ ($k = 1, 2, \dots, k_n$), for any positive integer n.

We will now show that $Y_{n,k}$ is a uniformly infinitessimal collection of random variables. That is, we will show that for any $\epsilon > 0$, $\sup_{1 \le k \le k_n} P\{||Y_{nk}|| > \epsilon\} \rightarrow 0$ as $n \rightarrow \infty$. Once this has been established, the infinite divisibility of X_1 will follow from Corollary 6.2, page 199 of [5].

Consider the factors on the right hand side of equation (7). Let $\epsilon > 0$ be given. By definition $\varphi_N(y)$ is the characteristic functional of $\sum_{j=N+1}^{\infty} A_j X_j$ and $P\{\|\sum_{j=N+1}^{\infty} A_j X_j\| > \epsilon\} < \epsilon$, for all $N \ge N_0$.

Consider now a factor of the form $\varphi_N(A_{j_1}^*A_{j_2}^*\cdots A_{j_{n-k}}^*y)$. This is the characteristic functional of

$$A_{j_{n-k}}\cdots A_{j_2}A_{j_1}\sum_{j=N+1}^{\infty}A_jX_j$$

Also,

$$P\left\{ \left\| A_{j_{n-k}} \cdots A_{j_{2}} A_{j_{1}} \sum_{j=N+1}^{\infty} A_{j} X_{j} \right\| > \epsilon \right\}$$

$$\leq P\left\{ \left\| A_{j_{n-k}} \right\| \cdots \left\| A_{j_{2}} \right\| \cdot \left\| A_{j_{1}} \right\| \cdot \left\| \sum_{j=N+1}^{\infty} A_{j} X_{j} \right\| > \epsilon \right\}$$

$$\leq P\left\{ \left\| \sum_{j=N+1}^{\infty} A_{j} X_{j} \right\| > \epsilon \right\} < \epsilon \quad \text{whenever} \quad N \geq N_{0},$$

since $\sup_{i} ||A_{i}|| < 1$.

Finally, we consider a factor of the form $\varphi(A_{j_1}^* \cdots A_{j_n}^* y)$, which is the characteristic functional of $A_{j_n} \cdots A_{j_n} X_1$. Set $\alpha = \sup_j ||A_j||$.

Then

$$P\{||A_{j_n}\cdots A_{j_1}X_1|| > \epsilon\}$$

$$\leq P\{||A_{j_n}||\cdots ||A_{j_1}|| \cdot ||X_1|| > \epsilon\}$$

$$\leq P\{||X_1|| > \frac{\epsilon}{\alpha^n}\}.$$

Now choose an integer N' such that $P\{||X_1|| > \epsilon/\alpha^n\} < \epsilon$, whenever $n \ge N'$. (This is possible because $0 < \alpha < 1$). Set $n_0 = \max\{N_0, N'\}$.

Hence, we have shown that $P\{||Y_{nk}|| > \epsilon\} < \epsilon$, for all $k = 1, 2, \dots, k_n$, whenever $n \ge n_0$. Therefore, the collection Y_{nk} is uniformly infinitesimal and X_1 is infinitely divisible. This completes the proof of the theorem.

3. Proof of the main result. For convenience, we now will make the assumption that X_1, X_2, \cdots are symmetric random variables. Since the common distribution of these random variables is infinitely divisible, the common characteristic functional, $\varphi(y)$, has a unique Levy-Khintchine representation given by:

(8)
$$\ln \varphi(y) = -\frac{1}{2} \langle Sy, y \rangle + \int (\cos \langle x, y \rangle - 1) dL(x)$$

where S is an S-operator (a nonnegative, self-adjoint compact operator on \mathcal{H} , with a finite trace), and L is a σ -finite measure with finite mass outside every neighborhood of the origin and with the property that

$$\int_{\|x\|\leq 1} \|x\|^2 dL(x) < +\infty.$$

(see [5], page 181.)

Furthermore, since X_1, X_2, \cdots have finite variance, $\varphi(y)$ has a unique Kolmogorov representation, given by:

(9)
$$\ln \varphi(y) = -\frac{1}{2} \langle Sy, y \rangle + \int_{\mathscr{H} \setminus \{0\}} \frac{\cos\langle x, y \rangle - 1}{\|x\|^2} dK(x)$$

where S is an S-operator and K is a finite measure on \mathcal{H} . (See [6].) By equations (4) and (8) we have:

$$-\frac{1}{2}\sum_{j} \langle SA^*_{j}y, A^*_{j}y \rangle + \sum_{j} \int (\cos\langle x, A^*_{j}y \rangle - 1) dL(x)$$
$$= -\frac{1}{2} \langle Sy, y \rangle + \int (\cos\langle x, y \rangle - 1) dL(x).$$

Also,

$$(10) \qquad -\frac{1}{2}\sum_{j} \langle SA_{j}^{*}y, A_{j}^{*}y \rangle + \sum_{j} \int (\cos\langle x, A_{j}^{*}y \rangle - 1)dL(x)$$
$$= -\frac{1}{2} \langle \sum_{j} A_{j}SA_{j}^{*}y, y \rangle + \sum_{j} \int (\cos\langle A_{j}x, y \rangle - 1)dL(x)$$
$$= -\frac{1}{2} \langle \sum_{j} A_{j}SA_{j}^{*}y, y \rangle + \sum_{j} \int (\cos\langle x, y \rangle - 1)dLA_{j}^{-1}(x).$$

It is not difficult to show that $\sum_{j} A_{j} S A_{j}^{*}$ is an S-operator. Also, it is clear that LA_{j}^{-1} is the σ -finite measure which occurs in the Levy-Khintchine representation of $A_{j}X_{j}$, for each j.

We denote by $\hat{\mathcal{B}}$, the class of Borel sets in \mathcal{H} . Then the measure K_{j} , defined by:

$$K_{i}(D) = \int_{D} ||x||^{2} dLA_{i}^{-1}(x), \text{ for all } D \in \mathcal{B}$$

is the finite measure which occurs in the Kolmogorov representation of $A_j X_j$, for each *j*.

Since X_1, X_2, \cdots have finite variance,

(11)
$$\int ||x||^2 dL(x) < +\infty. \quad (\text{See [6]}.)$$

By equation (10), $\ln \prod_{j} \varphi(A_{j}^{*}y)$

(12)
$$= -\frac{1}{2} \left\langle \sum_{j} A_{j} S A_{j}^{*} y, y \right\rangle + \sum_{j} \int_{\{x \neq 0\}} \frac{(\cos \langle x, y \rangle - 1)}{\|x\|^{2}} dK_{j}(x).$$

We note that

$$\sum_{j} \int_{\{x \neq 0\}} \left| \frac{\cos\langle x, y \rangle - 1}{\|x\|^{2}} \right| dK_{j}(x) \leq \sum_{j} \int_{\{x \neq 0\}} \frac{\|x\|^{2} \|y\|^{2}}{\|x\|^{2}} dK_{j}(x)$$

$$= \|y\|^{2} \sum_{j} \int_{\{x \neq 0\}} dK_{j}(x) = \|y\|^{2} \sum_{j} \int \|x\|^{2} dL A_{j}^{-1}(x)$$

$$= \|y\|^{2} \sum_{j} \int \|A_{j}x\|^{2} dL(x) \leq \left(\sum_{j} \|A_{j}\|^{2}\right) \|y\|^{2} \int \|x\|^{2} dL(x) < \infty$$

because of relations (1) and (11).

Thus we may interchange the integral and summation signs in equation (12) to obtain:

$$\ln\prod_{j} \varphi(A_{j}^{*}y) = -\frac{1}{2} \Big\langle \sum_{j} A_{j}SA_{j}^{*}y, y \Big\rangle + \int_{\{x \neq 0\}} \frac{\cos\langle x, y \rangle - 1}{\|x\|^{2}} d\Big(\sum_{j} K_{j}(x)\Big).$$

Then, by the uniqueness of the Kolmogorov representation, we have:

$$\sum_{j} A_{j}SA_{j}^{*} = S \text{ and } \sum_{j} K_{j} = K.$$

From the second of these relations, $\Sigma_j K_j(\mathcal{H}) = K(\mathcal{H})$, which leads to the following sequence of equations.

$$\sum_{j} \int ||x||^{2} dL A_{j}^{-1}(x) = \int ||x||^{2} dL(x)$$
$$\sum_{j} \int ||A_{j}x||^{2} dL(x) = \int ||x||^{2} dL(x)$$
$$\int \left[\sum_{j} ||A_{j}x||^{2} - ||x||^{2} \right] dL(x) = 0$$
$$\int \left[\left\langle \sum_{j} A_{j}^{*}A_{j}x, x \right\rangle - \left\langle x, x \right\rangle \right] dL(x) = 0.$$

In view of relation (4), it must then be true that

(13)
$$L\left\{x: \sum_{j} \|A_{j}x\|^{2} - \|x\|^{2} > 0\right\} = 0.$$

We note that for *n* a positive integer, $\sum_{j=1}^{n} A_{j}X_{j}$ has characteristic functional $\prod_{j=1}^{n} \varphi(A_{j}^{*}y)$, and

(14)
$$\ln \prod_{j=1}^{n} \varphi \left(A_{j}^{*} y \right) = -\frac{1}{2} \left\langle \sum_{j=1}^{n} A_{j} S A_{j}^{*} y, y \right\rangle + \int (\cos \langle x, y \rangle - 1) d \left(\sum_{j=1}^{n} L A_{j}^{-1} (x) \right).$$

Thus $\sum_{j=1}^{n} LA_{j}^{-1}$ converges weakly, outside closed neighborhoods of $0 \in \mathcal{H}$, to L, as $n \to \infty$. (See [5], page 189).

It now becomes necessary to state and prove two technical lemmas.

LEMMA 1. For any $\epsilon > 0$,

$$\int_{\|x\|>\epsilon} \|x\|^2 dL(x) = \sum_j \int_{\|A_j x\|>\epsilon} \|A_j x\|^2 dL(x).$$

Proof. Let ϵ_1 and ϵ_2 be positive constants with $\epsilon_1 < \epsilon_2$. Define a function f(x) by:

$$f(x) = \begin{cases} \|x\|^2, & \epsilon_1 < \|x\| \le \epsilon_2 \\ \\ (\epsilon_2)^2, & \|x\| > \epsilon_2. \end{cases}$$

Then f(x) is bounded and continuous. Thus by comment (14),

$$\int_{\|x\|>\epsilon_1} f(x) dL(x) = \lim_{n\to\infty} \sum_{j=1}^n \int_{\|x\|>\epsilon_1} f(x) dL A_j^{-1}(x)$$

which implies that

$$\sum_{j=1}^{n} \int_{\epsilon_{1} < \|x\| \leq \epsilon_{2}} \|x\|^{2} dLA_{j}^{-1}(x) + (\epsilon_{2})^{2} \sum_{j=1}^{n} LA_{j}^{-1} \{\|x\| > \epsilon_{2}\}$$

converges to

$$\int_{\epsilon_1 < \|x\| \le \epsilon_2} \|x\|^2 dL(x) + (\epsilon_2)^2 L\{\|x\| > \epsilon_2\}$$

as $n \to \infty$.

But, again because of comment (14), $\sum_{i=1}^{n} LA_{i}^{-1}\{||x|| > \epsilon_{2}\}$ converges to $L\{||x|| > \epsilon_2\}$ as $n \to \infty$.

Therefore,
$$\sum_{j=1}^{n} \int_{\epsilon_1 < \|x\| \le \epsilon_2} \|x\|^2 dL A_j^{-1}(x)$$
 converges to
$$\int_{\epsilon_1 < \|x\| \le \epsilon_2} \|x\|^2 dL(x),$$

whenever we choose $0 < \epsilon_1 < \epsilon_2$.

Let $\epsilon > 0$ be given. Let ϵ_n be a strictly increasing sequence of positive numbers, $\epsilon_n \uparrow +\infty$, with $\epsilon_1 > \epsilon$. For convenience we set $\epsilon = \epsilon_0$. Then

$$\begin{split} \int_{\|x\|>\epsilon_0} \|x\|^2 dL(x) &= \sum_{k=0}^{\infty} \int_{\epsilon_k < \|x\| \le \epsilon_{k+1}} \|x\|^2 dL(x) \\ &= \sum_{k=0}^{\infty} \sum_j \int_{\epsilon_k < \|x\| \le \epsilon_{k+1}} \|x\|^2 dLA_j^{-1}(x) \\ &= \sum_j \sum_{k=0}^{\infty} \int_{\epsilon_k < \|x\| \le \epsilon_{k+1}} \|x\|^2 dLA_j^{-1}(x) \\ &= \sum_j \int_{\|x\|>\epsilon} \|x\|^2 dLA_j^{-1}(x) = \sum_j \int_{\|A_jx\|>\epsilon} \|A_jx\|^2 dL(x). \end{split}$$

This completes the proof.

LEMMA 2. $L({x : ||A_kx||^2 \ge ||x||^2}, \text{ for some } k = 1, 2, \dots) = L({0}).$

Proof. Let k be a fixed positive integer.

Set $E_k = \{x : ||A_k x||^2 = ||x||^2\}$. Then, using equation (13), $L(E_k) = L(E_k \cap \{x : \sum_j ||A_j x||^2 = ||x||^2\})$.

Thus, $L(E_k) = L\{x: \sum_{j \neq k} ||A_j x||^2 = 0\} = L(\{0\})$, since each operator A_j is 1-1.

(15) Similarly,
$$L\left(\bigcup_{k} E_{k}\right) = L(\{0\}).$$

Using the same type of argument, it is easy to show that for all $k = 1, 2, \cdots$

(16)
$$L\{x: ||A_k x||^2 > ||x||^2\} = 0.$$

Combining equations (15) and (16) we are done.

From relations (1) and (13), we see that $L\{x: ||x||^2 \neq \Sigma_j ||A_j x||^2\} = 0$. Hence, referring to Lemma 1, it is true that, for all $\epsilon > 0$,

$$\sum_{j} \int_{\|x\|>\epsilon} \|A_{j}x\|^{2} dL(x) = \sum_{j} \int_{\|A_{j}x\|>\epsilon} \|A_{j}x\|^{2} dL(x),$$

and this implies that

(17)
$$\sum_{j} \left[\int_{\|x\|>\epsilon} \|A_{j}x\|^{2} dL(x) - \int_{\|A_{j}x\|>\epsilon} \|A_{j}x\|^{2} dL(x) \right] = 0, \text{ for all } \epsilon > 0.$$

But

(18)
$$L\{x: x \neq 0 \text{ and } ||A_j x|| \ge ||x||\} = 0$$
, for all j .

Thus, each term in the sum of equation (17) must be nonnegative, which yields:

$$\int_{\|x\|>\epsilon} \|A_j x\|^2 dL(x) = \int_{\|A_j x\|>\epsilon} \|A_j x\|^2 dL(x), \text{ for all } \epsilon > 0 \text{ and all } j.$$

Or, using equation (18),

$$\int_{\{\|x\|>\epsilon\}\cap F_i} \|A_j x\|^2 dL(x) = \int_{\{\|A_j x\|>\epsilon\}\cap F_i} \|A_j x\|^2 dL(x),$$

for all $\epsilon > 0$ and all j, where $F_j = \{x : ||A_j x|| < ||x||\}$, for each $j = 1, 2, \cdots$. The above implies that

$$\int_{\{\|x\|>\epsilon\}\cap\{\|A_jx\|\leq\epsilon\}\cap F_j} \|A_jx\|^2 dL(x) = 0, \text{ for all } \epsilon > 0 \text{ and all } j,$$

or,

$$\int_{\{\|x\|>\epsilon \text{ and }\|A_jx\|\leq\epsilon\}} \|A_jx\|^2 dL(x) = 0, \text{ for all } \epsilon > 0 \text{ and all } j$$

So, we must have that

(19)
$$L\{x: ||x|| > \epsilon \text{ and } ||A_jx|| \le \epsilon\} = 0$$
, for all $\epsilon > 0$ and all j.

Consider the set Q^+ of positive rational numbers. Let k be a fixed positive integer.

$$L\left[\bigcup_{r\in Q^+} \{x: \|x\| > r \text{ and } \|A_k x\| \le r\}\right] = L\left[\{x: \|A_k x\| < \|x\|\} = L\left[\mathcal{H}\setminus\{0\}\right].$$

Therefore, $L[\mathscr{H}\setminus\{0\}] \leq \sum_{r \in Q^+} L\{x : ||x|| > r \text{ and } ||A_kx|| \leq r\} = 0$, by equation (19).

This last relation says that L is degenerate at $0 \in \mathcal{H}$, which means that the common characteristic functional of X_1, X_2, \cdots is given by:

$$\ln \varphi(\mathbf{y}) = -\frac{1}{2} \langle S\mathbf{y}, \mathbf{y} \rangle \quad (\text{see Eq. (8)}).$$

Hence X_1, X_2, \cdots have a common Gaussian distribution.

Recall that we have assumed X_1, X_2, \cdots to be symmetric, but it is now easy to extend our result to the general case by using Cramer's Theorem (see page 141 of [1]).

The proof of Theorem 1 is now completed.

REFERENCES

1. U. Grenander, Probabilities on Algebraic Structures, Wiley, New York (1963).

2. R. G. Laha, On a property of infinitely divisible distributions in a Hilbert space, Acta Math. Acad. Sci. Hungar. 20 (1969), 143–147.

3. R. G. Laha and E. Lukacs, On a linear form whose distribution is identical with that of a monomial, Pacific J. Math., 15 (1965), 207-214.

4. J. Marcinkiewicz, Sur une propriété de la loi de Gauss, Math. Zeitschr., 44 (1949), 612-618.

5. K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York (1967).

6. B. L. S. Prakasa Rao, Some characterization theorems for Wiener processes in a Hilbert space, Z. Wahr. verw. Geb., 19 (1971), 103–116.

7. W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).

Received April 2, 1976.

CHICAGO STATE UNIVERSITY CHICAGO, IL 60628

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, CA 90024

R. A. BEAUMONT University of Washington Seattle, WA 98105

C. C. MOORE University of California Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

> Copyright © 1977 Pacific Journal of Mathematics All Rights Reserved

J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90007

R. FINN AND J. MILGRAM Stanford University Stanford, CA 94305

Pacific Journal of Mathematics Vol. 68, No. 2 April, 1977

William Allen Adkins, Aldo Andreotti and John Vincent Leahy, An	207
analogue of Oka's theorem for weakly normal complex spaces	297
Ann K. Boyle, M. G. Deshpande and Edmund H. Feller, <i>On nonsingularly</i> <i>k-primitive rings</i>	303
Rolando Basim Chuaqui, Measures invariant under a group of	
transformations	313
Wendell Dan Curtis and Forrest Miller, <i>Gauge groups and classification of</i>	
bundles with simple structural group	331
Garret J. Etgen and Willie Taylor, <i>The essential uniqueness of bounded</i>	
nonoscillatory solutions of certain even order differential	
equations	339
Paul Ezust, On a representation theory for ideal systems	347
Richard Carl Gilbert, <i>The deficiency index of a third order operator</i>	369
John Norman Ginsburg, <i>S-spaces in countably compact spaces using</i>	207
Ostaszewski's method	393
Basil Gordon and S. P. Mohanty, <i>On a theorem of Delaunay and some</i>	070
related results	399
Douglas Lloyd Grant, <i>Topological groups which satisfy an open mapping</i>	577
theorem	411
Charles Lemuel Hagopian, A characterization of solenoids	425
Kyong Taik Hahn, On completeness of the Bergman metric and its	
subordinate metrics. II	437
G. Hochschild and David Wheeler Wigner, Abstractly split group	
extensions	447
Gary S. Itzkowitz, <i>Inner invariant subspaces</i>	455
Jiang Luh and Mohan S. Putcha, A commutativity theorem for	
non-associative algebras over a principal ideal domain	485
Donald J. Newman and A. R. Reddy, Addendum to: "Rational	
approximation of e^{-x} on the positive real axis"	489
Akio Osada, On the distribution of a-points of a strongly annular	
function	491
Jeffrey Lynn Spielman, A characterization of the Gaussian distribution in a	
Hilbert space	497
Robert Moffatt Stephenson Jr., <i>Symmetrizable-closed spaces</i>	507
Peter George Trotter and Takayuki Tamura, <i>Completely semisimple inverse</i>	
Δ -semigroups admitting principal series	515
Charles Irvin Vinsonhaler and William Jennings Wickless, <i>Torsion free</i>	
abelian groups quasi-projective over their endomorphism rings	527
Frank Arvey Wattenberg, <i>Topologies on the set of closed subsets</i>	537
Richard A. Zalik, Integral representation of Tchebycheff systems	553
rectaine in Zank, integra representation of renebyenegi systems	555