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In this paper we consider the case in which random
variables X; take values in a real, separable Hilbert space
#. Welook at a linear form 3 A X; where each A, is a bounded
linear operator in #. We then assume that this linear form is
identically distributed with a monomial and form conditions
under which it is possible to deduce that the common distribu-
tion of the random variables is the Gaussian distribution.

The study of identically distributed linear forms of independent and
identically distributed random variables has been undertaken by several
authors. J. Marcinkiewicz studied linear forms in which all moments of
the random variables are assumed to exist. He then proved that the
common distribution of the random variables was the Normal
distribution. R. G. Laha and E. Lukacs have considered the case where
one of the linear forms is a monomial. They have obtained char-
acterizations of the Normal distribution for both the case when the
variance is assumed finite and when no assumption is made concerning
the variance.

1. Statement of the main result. Suppose now that
X, X,,+ -+ is a sequence (possibly finite) of independent, identically
distributed, nondegenerate #-valued random variables, where X, has a
finite variance (i.e. Var X; < + ®). Let A,, A,,-- - be a sequence of 1-1
bounded linear operators in , with the following two properties:

(1) SNA/F<+» and D A*A, =1
i i
and
@ sup || A || < 1.
]

We note that in the above A % represents the adjoint of A; and that
the inequality 2,A%A;,=1 is true in the sense of positive-
definiteness. (For example, see page 313 of [7].)

Our goal is to prove the following theorem.
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THEOREM 1. Suppose that 2 AX, converges with probability
one. If XA X, has the same distribution as X,, then X, has a Gaussian
distribution.

In §2 we will prove an important preliminary result (Theorem
2). Then in §3 we will present the proof of Theorem 1.

2. A preliminary result. In this section we will prove the
following result.

THEOREM 2. Let X,, X,, -+ be a sequence (possibly finite) of
independent, identically distributed, nondegenerate, ¥-valued random
variables. Suppose that the sum Z;A X; exists with probability one, where
A, A, - are bounded linear operators in ¥, with sup; || A, || <1.

If 2 A,X, has the same distribution as X, then X, has an infinitely
divisible distribution.

Note. The hypotheses of Theorem 2 are somewhat weaker than the
hypotheses of Theorem 1.
Before beginning the proof of Theorem 2, let us fix some notation.
Let ¢(y) be the common characteristic functional of
X, X5+, Then ¢@(y)= &' ™ for all y € ¥, where &€ denotes
mathematical expectation.
The characteristic functional of A X, is then given by:

o o0 = A = g (ATy)

where A * denotes the adjoint operator of A,
Now, suppose that 2;A;X; has the same distribution as X,. Then
equation (3) gives us:

Q) @(y)=U¢(ATY), for all y€X,

where the product converges uniformly on bounded spheres. (See
Theorem 4.4, pg. 171 of [5].) \

Since 2;A,X; converges, then 27, A X, converges, with probability
one, to the origin of # as n —» . (Of course, if X, X,, -+ is a finite
sequence, the preceding statement is unnecessary.)

Thus, it is possible to choose N, for any € >0, such that
P{|Z7v.iAX | >€}<e whenever N= N, Let ¢y(y) denote the
characteristic functional of X7 5, A, X,. Then using equation (4), we
have:

) e(y)=¢e(ATy) - e(A%y)en(y).
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Proof of Theorem 2. We assume that 2;A4,X; has the same distribu-
tion as X,. Then equation (5) holds. If we replace y by A%y in
equation (5), we obtain:

(6) e(ATy)=e(ATATy) - ¢ (ARATY)en(ATY)

for each j =1,2,---,N.
Combining equations (5) and (6) we have:

<o(y)=f; e (ay)-I] qo(AtA:y)ﬁ on (A%Y)en(y).

If we repeat the above process n times, we get the following result:

n-1
M em=TeAt- Al neat - A1 e,

The product on the right hand side of equation (7) consists of
N*+ N"'+-.--+ N+1 factors, where each of the subscripts j,,- -, J,
can take any of the values 1,---, N with repetitions allowed.

Thus, equation (7) says that X, is distributed as the sum of
k,=Zr_oN* independent, #-valued random variables, Y,, (k=
1,2,---, k,), for any positive integer n.

We will now show that Y, is a uniformly infinitessimal collection of
random variables. That is, we will show that for any e >0,
sup;<i=i, P{|| Yo || > €}—0 as n—> . Once this has been established,
the infinite divisibility of X, will follow from Corollary 6.2, page
199 of [5].

Consider the factors on the right hand side of equation (7). Let
€ >0 be given. By definition ¢x(y) is the characteristic functional of

“ v AX, and P{|Z_r. A X || > €} < for all N = N,.

Consider now a factor of the form on(A* A%,--- A% _y). This is

the characteristic functional of

A AAL D AKX,
Also,
P{“ Ajnfk ct e AjzAjl Z A]X, ”> E}

j=N+1

=PI lAd-14)-

|2, 4%]
j=N+1

2 A,-X,-” > e} <€ whenever N=N,,

since sup;||4;[ < 1.
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Finally, we consider a factor of the form ¢ (A%, --- A%.y), which is
the characteristic functional of A;, --- A, X,. Set a =sup, | A,|.
Then

PIA, - AX]> )
= Pl AL DA 1X]> €)

= p{||x1||> ai}.

Now choose an integer N’ such that P{|| X,|>€/a"} < €, whenever
n= N’'. (This is possible because 0 < a <1). Set n,=max{N,, N'}.

Hence, we have shown that P{|| Y. || > €} <e¢ forallk =1,2,- - k,
whenever n = n,. Therefore, the collection Y, is uniformly infinites-
imal and X, is infinitely divisible. This completes the proof of the
theorem.

3. Proof of the main result. For convenience, we now will
make the assumption that X, X, --- are symmetric random
variables. Since the common distribution of these random variables is
infinitely divisible, the common characteristic functional, ¢(y), has a
unique Levy-Khintchine representation given by:

®) Ing(y)= =45y, 1)+ [ (cos(x, )~ DAL (x)

where S is an S-operator (a nonnegative, self-adjoint compact operator
on J, with a finite trace), and L is a o-finite measure with finite mass
outside every neighborhood of the origin and with the property that

f % [PdL (x) < + .
fxl=1

(see [5], page 181.)
Furthermore, since X, X,,--- have finite variance, ¢(y) has a
unique Kolmogorov representation, given by:

©) ne(y)= Ky | %”BudK(x)

where S ’is an S-operator and K is a finite measure on #. (See [6].)
By equations (4) and (8) we have:

32 A A+ T [ (ostx ATy~ VLK)

- —%(Sy,y>+f(cos(x,y)*l)dL(x)-
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Also,

NS

S (3473, 430+ 3 [ (cos(x, ATy) = 1L (x)

Il

(10) -%<Z A,SATy,y>+ > J’ (cos{Ax, y)—1)dL(x)

-3(S asayy)+ S [ costry) - naLa ).

It is not difficult to show that £ A SA ¥ is an S-operator. Also, it is
clear that LA;' is the o-finite measure which occurs in the
Levy-Khintchine representation of A,X;, for each j.

We denote by %, the class of Borel setsin #. Then the measure K|,
defined by:

K’(D):L [x|FALA;'(x), for all DeE R

is the finite measure which occurs in the Kolmogorov representation of
A X, for each j.
Since X, X, -+ have finite variance,

(11) f Ix|FdL (x) < + . (See [6].)

By equation (10), InIl,p (A %y)

@) =-3(Sasanpy)+s| (cose =L ak (x).

We note that

|
i Jix#0)

S| ak@=IyFS [ IxFdca; )

Myj___l’d[(j(x)gZﬁ ”iﬂ”;””lzJEdK;(x)
T it

I P

=IyFS [1axPdLe)= (S 1A F)IyF [ IxPdLe <=

because of relations (1) and (11).
Thus we may interchange the integral and summation signs in
equation (12) to obtain:
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nlleaty)=-3(Sasaty)+ [ ERta(S k).

Then, by the uniqueness of the Kolmogorov representation, we
have:

> ASA*=S and > K =K.
] ]

From the second of these relations, 2K, () = K(#), which leads to
the following sequence of equations.

S [ IxfaLa; o= [ Ix L)
S [ laxkaLe = [ IxFare)

[ S 1axr-1xpjare =0

f [<2 A’,*A,x,x>—(x,x>]dL(x)=O.

In view of relation (4), it must then be true that

(13) L{x: S Ax H2—||xH2>O}=O.

We note that for n a positive integer, 2, A X, has characteristic
functional II/_, ¢ (A ¥y), and

nlTeiy=-3(3 Asatny)

1=1

(14) + [ costx )= 1d(3 14, )

Thus 2", LA;' converges weakly, outside closed neighborhoods of
0e #, to L, as n—>x. (See [5], page 189).
It now becomes necessary to state and prove two technical lemmas.

LemmA 1. For any € >0,

fuxrx %L (x) = Z [ Ax[FdL (x).

Ax|>e
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Proof. Let €, and €, be positive constants with €, <e,. Define a
function f(x) by:

f(x)=

{llxlF, a<[x|=e

(), |x|l>e..

Then f(x) is bounded and continuous. Thus by comment (14),

[ fwaw=im3 [ feodearic)
llxl>ex "= =1 Jxl>e
which implies that

[ IxFdLAR@ e S LA (x> )
e1<|x||=e2 i=

j=1
converges to

[ DxFaLE)+ P Ll > e

as n— o,
But, again because of comment (14), =, LAY x || > €} converges
to L{|x||> €} as n — o,

Therefore, =, | x |FALA;'(x) converges to

e1<|x||=e2
[ dxpaeo,
a1<|x[|sez

whenever we choose 0 < €, < €,.
Let € >0 be given. Let €, be a strictly increasing sequence of
positive numbers, €, T + ©, with €, > €. For convenience we set € = ¢,.
Then

Jo WP~ 3 i FdL (x)

ek <||x||Sex+1

S Ixpaare

i
> IxPaane)

Il
Ms

=
]

0

Il

2
S| Iekacar@ =3[ jaxpe).
i Jlxl>e i JlA

jx|[>e

This completes the proof.

Lemma 2. L({x:||Ax|F=| x|’ for some k =1,2,---}) = L{0}).
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Proof. Let k be a fixed positive integer.

Set E, ={x:||Ax|F=]x|}}. Then, using equation (13), L(E,)=
L(E N {x: S, [Ax = Ix )

Thus, L(E,)= L{x: 2 .|| A;x | = 0} = L ({0}), since each operator A,
is 1-1.

(15) Similarly, L( U Ek) = L({0)).
k
Using the same type of argument, it is easy to show that for all
k=1,2,---
(16) Lix:[|Awx|f>]x[P}=0.

Combining equations (15) and (16) we are done.
From relations (1) and (13), we see that L{x: [[x[P# 2, |Ax |} =
0. Hence, referring to Lemma 1, it is true that, for all € >0,

>

lAx[PdL (x) = Z lAx[PdL(x),

fxfl>e flAx)>e

and this implies that

an s U; e A Lt dL(x)]= 0, for all € >0.
j x|>e |Ax{>e

But

(18) Li{x: x#0 and [|[Ax|[Z{x|}=0, for all j.

Thus, each term in the sum of equation (17) must be nonnegative, which
yields:

j” IAx[FdL(x)= f JAx|PdL(x), for all €>0 and all |

lAx[>€
Or, using equation (18),
[ lAxpare)- A FaL (x),
{Ix|I>eInF, {il Ax|[>e}F,

foralle >0 andall j, where F, = {x: | Ax || <|x |}, foreachj=1,2,---.
The above implies that
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f |Ax|*dL(x)=0, for all € >0 and all j,
flxl>e)nflAxlseinF;

or,

f |Ax |PdL(x)=0, foralle>0andallj.
x> andA,xl=e)

So, we must have that
(19) L{x:|x||>€e and ||Ax||=e€}=0, foralle>0andallj.

Consider the set Q" of positive rational numbers. Let k be a fixed
positive integer.

Ll txilxl>r and [AxlS = Liix: Al <]x )= LoD

Therefore, L[#\{0}]=Z,co-L{x:|x||>r and |Ax||=r}=0, by
equation (19).

This last relation says that L is degenerate at 0 € #, which means
that the common characteristic functional of X,, X5, - - is given by:

Ine(y)= —3(Sy,y) (seeEq.(8)).

Hence X, X,, - have a common Gaussian distribution.

Recall that we have assumed X, X,,--- to be symmetric, but it is
now easy to extend our result to the general case by using Cramer’s
Theorem (see page 141 of [1]).

The proof of Theorem 1 is now completed.
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