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Let ¢=(yy, +++,7.) be given. The generalized numerical
range of an nXn matrix A, associated with ¢, is the set
W, (A)={27,(Ax;, x,)} where (%, ---, x,) varies over orthonor-

mal systems in C». Characterizations of this range, for
real ¢, are given. Next, we study integrals of the form

SWc(A)d,u(c) where p(c) is a measure defined on a domain in
R”., The above characterizations are used to study the
inclusion SWC(A)d;z(c)CZWcr(A). We determine those 2, for

which this inclusion holds for all nXn matrices A. Such
relations lead to more elementary ones, when the integral
reduces to a finite linear combination of ranges. In parti-
cular, we obtain the inclusion relations of the form W (A)c
AW, (A) which hold for all A.

1. Introduction. The generalized numerical range of an nx =
complex matrix A, associated with a fixed vector ¢ = (v, ---,7,) €
C~, is the set of complex numbers

@D W= Worod) = { 57,48, 0): @, o w) e, ]

where 4, is the set of all orthonormal n-tuples of vectors is C™.
We call W, a generalized range since for ¢ = (1,0, ---, 0) it reduces
to the classical range

W(A4) = {(Az, 2): [[z]| = 1} .

It is clear from (1.1) that W, remains invariant under permuta-
tions of the components of ¢; that is, W, depends on the unordered
set {v,, ---,7,} rather than on c.

Westwick, [5], has shown that if ¢ is a real vector then W, is
convex, but if ¢eC* with » = 3, then W (x) may fail to be convex
even for normal A. For this reason we restrict our attention, in
this paper, to generalized numerical ranges with real coefficients.

Our first purpose is to characterize the sets W,. In §2 we
show that

WA(A) = {tr (HA): He 5.},

where 57 is a class of Hermitian matrices depending on c.
In §3 we define integrals of the form g W, (A)du(c) where &
_@
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46 MOSHE GOLDBERG AND E. G. STRAUS

is a domain in R" and p{c) is a nonnegative measure on &. Since
the sets W, are convex, such integrals are convex as well, and we
may define them in terms of their support functions.

Finally, using the above characterization of W, we investigate
inclusion relations of the form

(1.2) SQWC(A)(Z/J(C) CYW,(A), » = constant ,

which hold, uniformly, for all AeC,,,, i.e., for all n-square matrices.
If the measure g{c) is concentrated on a finite number of vectors
¢, then (1.2) is reduced to inclusion relations involving finite linear
combinations of generalized numerical ranges. Such relations were
considered in earlier works [2, 3].

In particular, for given vectors ¢, ¢’ we obtain necessary and
sufficient conditions under which

WA W, , vAeC,,, .

2. Characterization of generalized ranges. For any vector
¢= (7, +++,7,) consider the diagonal matrix

C = diag (¢) = diag (7, *++, V.)
and construct the class of matrices
Z, = conv {UCU*: U unitary},

where conv denotes the convex hull.

Since we restrict attention to c¢e R* it is evident that the ele-
ments of %/, are Hermitian.

Using %, we have the following characterization of ranges with

real coefficients.

THEOREM 1. If ceR" then
WAA) = {tr (HA): He %} .
Proof. 1t follows from the definition of W, (4) in (1.1) that
WJ(A) = {tr (CU*AU): U unitary} .
Thus
(2.1) WAA) = {tr (UCU*)A): U unitary} ,
which implies that
W(A)c{tr (HA: He %} .



CHARACTERIZATIONS AND INTEGRALS 47

For the converse inclusion let
H= ZNZ(U’LCU‘L*)’ Nz 0, 27‘% =1,
be an arbitrary element of %/,. By the convexity of W, and by
(2.1) we have
tr (HA) = S\ tr ((U,CUXA) e W,(A) .

So,
{tr (HA): He zz,} Cc W,(4) ,

and the theorem follows.
We introduce two definitions which lead to another characteri-
zation of W (A4).

DerinITION 1. (i) A real vector ¢ = (v, +-+,7,) is called ordered
if

712722"'2'\/7‘-

(ii) We say that ¢, ¢ satisfy ¢ < ¢ if there exists a doubly
stochastic matrix S (i.e., a matrix with nonnegative entries whose
row sums and columns sums equal 1), such that ¢’ = Se.

In Theorem 5 of [3] we proved the following.

LEMMA 1. For ordered ¢, ¢ we have ¢’ <c if and only if

with equality for 1 = n.
DEFINITION 2. Let ccR”, and let 4,(1 <1< n) be the set of

all orthonormal I-tuples of vectors in C*. We define 5%, to be the
class of all Hermitian matrices H for which

1 1
(2'2) Z(ij,xj)éz‘ﬂ’,-, V(xlr""xl)e/lli l:]-’"',n’
J=1 Jj=1
with equality for [ = n.
Let e, -+, ¢, be the standard basis of C*. Note that if ¥v;=0

(which is the case assumed in §8), then the equality for I == in
(2.2) implies that

S (Hej, 05) = 37, = 05
j=1

i.e., all members of 5# have trace 0.
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LeEMMA 2. If ¢ is ordered then 5%, = Z/..

Proof. Take a unitary matrix U and orthonormal vectors z,,- - -, x;,
1 =1Zmn). Since the vectors y; = U*x;, j =1, -+, [, are orthonor-
mal as well, it is not hard to verify that

l
(2.3) S (UCU*z;, ) = 3 (Coa y) S %+ - + 7,
J=1 Jj=1

C = diag (¢) ,

with equality for [ = n. Therefore, if
H=S2\0CU:, (Mz0, Sn=1),
is any (Hermitian) matrix in Z7,, we find by (2.3) that

l 1 1 1
JZ_]I(H% xa‘) = jZl IZI Ni( UiCUi*xji xj) = 2;. Ay jZﬂ“h- = JZ{ i
with equality for [ = n. So, by Definition 2, He 5%, and con-
sequently Z, C 22

Conversely, take any He 5#. Since H is Hermitian, it is
unitarily similar to a real diagonal matrix, i.e., there exists a
unitary V such that

(2.4) C'=V*HV =diag (v, -+, 7)) ,
where we may assume that ¢’ = (7], ---, 7,) is ordered. Using (2.2)
and the orthonormal vectors x; = Ve;, =1, ---, [, we find that
1 1 ! 2
jZ V= > (C'e;, ¢5) = JE (V*HVe;, ¢;) = JZ; (Hz; %) = 3375,
=1 =1 =1 =1 J=1

with equality for [ = n. That is, by Lemma 1, ¢’ < ¢. Hence, there
exists a doubly stochastic matrix S such that ¢’ = Se. Now recall
that doubly stochastic matrices are convex combinations of permuta-
tion matrices P,. In particular S = ¥ A,P,. Thus

(2.5) ¢ = 3 NPein =0, IN =1,

oe S,

where S, is the symmetric group. Since for every B, P,BP? has
both the rows and columns of B permuted according to o, we have

(2.6) diag (P.c) = P, diag (c)P* = P,CP; .
So, by (2.5), (3.6),
@2.7) C' = diag (¢') = 3\, diag (P.c) = S, \,P,CP; .
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From (2.4) and (2.7) we obtain
(2.8) H=VCV*=3\[(VP)C(VP)*] = X \(ULCU;),
N=0, N =1,

where U, = VP, are, of course, unitary. Hence, He %, Ii.e.,
&, C 7/, and the proof is complete.

Theorem 1 together with Lemma 2 imply a second characteri-
zation of generalized numerical ranges with real coefficients.

THEOREM 2. If ¢ ©s ordered then
WJ(A) = {tr (HA): He &£} .

Another simple consequence of the last lemma and the convexity
of 7/, is that for ordered ¢, 5%, is convex.

At this point we recall the definition of the k-numerical range,
L=k <mn), given by Halmos [1, §167], which after a convenient
normalization becomes

W.(4) = {% tr (PAP): P = orthogonal projection of rank k} .
It can be verified that W,(A) may be written as

W) = {13 (s, 0: (@, o, ) e i}

w'»—t

Hence we see that
Wid) = W), with o, = e+ = + e).

That is, the k-numerical range is a special case of the generalized
numerical range.

The matrices 5%;, are those Hermitian matrices which satisfy
Definition 2 with ¢ = ¢,. Using this definition one can show that

¢, = {Hermitian H:0 < H < %I, tr(H)=1}.
Thus Theorem 2 generalizes the result
W.(A) = {tr(HA):o <H< _11;1, tr (H) = 1} L k=1 -m

of Fillmore and Williams [1, Theorem 1.2].

3. Integrals of generalized ranges. In this section we are
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interested in linear combinations, or more generally, in integrals of
the sets W,A4), where A is arbitrary but fixed, and ¢ varies in
some domain of R".

Let ¢ = (v, -+, 7,) be a real vector with v = 37; # 0, and con-
sider the vector b = (8, ---, B8,) defined by

b:c—(%,...’ %)

We have Y¥8; = 0 and
B = diag (b) = diag (¢) — ~I=C — LI.
n n

So, by Theorem 1,
W,(A) = {tr (UBU*A): U unitary}
= {tr [U( — %— I)U*A]: U unitary} = W, (4) — {% tr (A)} .

This argument suggests that it is convenient to restrict attention
to those vectors ¢ for which 3v; = 0. The limitation merely involves
a translation of the ranges by multiples of the trace, or, equivalent-
ly, the restriction to matrices of trace 0.

Since W, is invariant under permutations of the 7v;, we may
assume that each vector ¢ in our domain is ordered. Hence, we
consider the set of ordered vectors ¢ with X7v; = 0, which form a
conical subset & of an (n — 1)-dimensional subspace of R".

We are ready now to study integrals of W,A) relative to an
arbitrary measure ¢ on %, that is integrals of the form

(3.1) Jo=JA4) = | Wddu(e) .

One way of defining the integral in (3.1) is by carrying linear sums,
over partitions of &, to the limit. Alternatively, one realizes that
J., being an integral of the convex sets W,, is a convex set as
well. Hence J, may be characterized by its support function (e.g.,
[4] part V), )

u(J, 0) =supRe (ze™¥), 0560<=x
zeJ#

In order to evaluate u(J,, 6), we consider the support functions of
our closed convex integrands W,. We have

w(W,, 6) = ulc, ) = max Re(ze™), 0=6<m.
zeW,

c

Since ufe, 0) is a linear function of ¢ in the sense that
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uAW, + MW, 0) = zule, ) + Nulc',0), YA N =0,
we have
u(J,, 0) = u(chdy(c), ) = Su(Wc, 0)ds(c) = Su(c, 8)ds(c) .

Of course, the measure 2 may be concentrated at a finite
number of points ¢, --+, ¢, € %. In this case the integral J, reduces
to the finite linear combination

L)W (A) + -« - + pen) W, (A) .

Since W,, = AW, for scalar A, we shall avoid integration over
proportional vectors of &. This can be achieved by restricting
integration to the domain

@:{0:02(71’ "':77»)7 27]':()9 71:1}’

which is the bounded set of all vectors in & with v, = 1.
The above concept of integration can be extended in order to

consider the integral
(3.2) 2, Eg SEAc)

We recall that the integrands 57 are convex sets in the (n* —1
real dimensional) space H of Hermitian matrices of trace 0. It
follows that 2%, is also a convex set in H. Again, the convexity
of &7 and ZZ. implies that the integral may be defined in terms
of the support functions of 5#,. Here, in analogy to the previous
case, the support function of SZ assigns to each point H, on the
unit sphere of H, the distance from the origin O of H to the plane

of support of 2%, perpendicular to the direction OH,.
Having the integrals J, and 25#. defined we state our main

result.

THEOREM 3. Let p be a monnegative measure on <, and let
¢ # 0 be an ordered wector with 37; =0. Then

(3.3) SO W(A)dc) c AW, (A), VAeC,,,,
if and only if N = n(c’) or N < L(c') where

3.4 () = R Wl alit

(3.42) 7e) =max | DI E T au),

(3.4b L :m'ng hE N gy .
) ( ) 1glin 5 7;_}_ PP +'\/:7,~_[+1 #(c)
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Proof. In the proof of Lemma 8 of [3] we have shown that if
¢ # 0 with ¥v; = 0, then

BBy M+ e >0, VoA F+ Y <0l=10,m—1,

This establishes that 7, { of (3.4) are well defined and since g is a
nonnegative measure we see that 7 =0, £ < 0.

Next we show that A = 9(c¢’) or N = {(¢') imply (3.3). For this
purpose we use the definition of 5#,, Theorem 2, and the linearity
of the trace to evaluate the set on the left of (3.3):

@6 | widuo = it @4y He s2)du0)
— {tr (HA): H e g@%dp(c)} = {tr (HA): He 57 .

Now choose N with A= #%(¢’). Since ) =0, the vector ¢
remains ordered. Hence, by Theorem 2,

3.7) AW (A) = Wo(A) = {tr (HA): He 57,) .

From (3.6), (8.7) we see that in order to prove (3.3) it suffices to
show that

(3.8) 0 C S

Thus, let H, be a matrix in &#. Then by (3.2), there exist
elements H,e 5Z for all ce &, such that

H, = gchdy(c).

The matrices H, satisfy Definition 2, and since g is a nonnegative
measure on <7, it follows that for I-tuples x,, -+, %, in 4, we have

(3.9 3 (Ha, 0) = | 35 (o, 2)du(0)
égg(’n + o+ Y)dpe);l=1, <o,

with equality for ! =mn. Since X7v; = 37; = 0, the above equality
for I = n implies

(3.10a) > (Hes, 0) = 0= 037 .

For 11 <mn we use the assumption M =7 to obtain from (3.9)
that
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(310b) Z_l: (Homa'; xj)

VR e+,

aue) EMTYL A+ e 7).
97{_}_..'_}_7; #() (1 l)

<t e+ )

By Definition 2, the relations (3.10) mean that H, € 5#7.. Hence,
(3.8) holds, and consequently the inclusion in (3.3) follows.

For M= { the situation is slightly different. Consider the
vector ¢” = (—7,, --+, —7). Since ¢’ is ordered, ¢” is too. Also,
the condition ) < {(¢") becomes

(3.11) A= ) = — ming AR L A

1si<n !

PV A e Vain

= max S L6 Wl L dp(e) = n(c") .

1si<n Jo—Y — oo — VL0

Hence, by the previous part of the proof, we have that
(3.12) S WAA)dp(e) = —\W,.(4), VYAeC,,,.
z

But —X\¢” is merely a reordering of »¢’. Thus, the set on the
right of (3.12) satisfies

AW (4) = W_o(d) = Wid4) = \W.(4),

and we obtain (3.3).

To complete the proof we have to show that if { <\ <%, then
(8.3) does not hold for some AeC,,,. First assume 0= 1 < 7.
That is, for some I, 1 £l < n,

(3.13) MY, 4 e £ ) < L(“A A O F

Consider the matrix A4, =I,PO0,_;. A simple computation shows
that for an ordered vector ¢, the range W,(A;) is a real interval
with right end-point v, + --- +7%,. Then, the left side of (3.3)
represents a real interval with right end-point

Lo+ e+ e
which, by (8.13), exceeds the right end-point M7 + :++ 4+ ) of
ch’(Al)'

Finally, if {(c’) < » < 0, then (3.11) implies that 0 < —X < 7(c")
where ¢’ = (—7,---, —7). Thus by the above example the inclusion

| W(4)3u(0) © = MW (4) = AW .(4)
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fails to hold, and the theorem follows.

We remember of course, that we restricted integration to the
domain & for convenience only. Therefore, if so desired, {c) can
be extended to the domain %, and Theorem 3 remains valid.

If g is concentrated at a finite number of vectorse¢, -, ¢, €&,
then Theorem 3 characterizes all » for which

S #e) W (A) CAW.(4), VAeC,.,.

A result of this type is given in Theorem 1 of [2].
Of particular interest is the case where g is concentrated at a
single vector ¢"e€%. That is,

S_@WE(A)d#(G) = W.(4),

and 7, { of (8.13) are given now by

(3.14) 7(c¢") = max 71, e b A/} ; £(¢') = min 71 LA +,A/l .
1i<n V) 4 eee Y 1si<n Y, 4 eve Vo

Thus, from Theorem 3 we conclude,

COROLLARY. Let ¢ # 0 and ¢” be ordered vectors with 37; =
v} =0. Then

Wc"(A) - )’Wc’(A) ’ VA € C%xn

if and only if N = 0(c") or N £ L(c") where 7, L are given in (3.14).

This result was proved differently in Theorem 8 of [3].
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