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CALCULATIONS OF THE SCHUR GROUP

J. WILLIAM PENDERGRASS

Let the field K be an abelian extension of the rational
field @. The Schur group of K, S(K), consists of those classes
in the Brauer group of K which contain an algebra isomor-
phic to a simple component of a rational group algebra QG
for some finite group G.

Suppose that K has a cyclic extension of the form Q({)
where { is a primitive nth root of unity. In this paper we
calculate the 2-part of S(K) where K contains the fourth
roots of unity.

An interesting facet of these results is that in some cases certain
local indices of classes in S(K) are tied together. That is, a class
in S(K) must have a nontrivial local index at an even number of
the primes in a certain set. The tying together of local indices in
these fields is caused by quadratic reciprocity and is not found in
the g-part of S(K) where ¢ is an odd prime number.

Let [A] be the class in the Brauer group of K which contains
the K-central simple algebra A. The Hasse invariant of [A] at a
prime ® of K is denoted invy[A]. Benard and Schacher [2] showed
that each class [A] in S(K) has uniformly distributed invariants.
That is, if the index of [A] is I, and o(¢;) = ¢} where ¢; is a primi-
tive Ith root of unity and o ¢ Gal (K/Q), then invg[4] = Ninv,q [A]
for each prime @ in K. A corollary of this result is that the local
index of a class [A] in S(K) is the same at each of the primes of
K which divide a single rational prime p. This common index is
called the p-local index of [A].

Set L = Q(&) where ¢ is a primitive 2°nth root of unity, (2, n) = 1.
Let K be a field contained in L such that Gal(L/K) = {(g) is a cyclic
group of order 2%, (2,t') =1. Let { be a primitive 2°th root of
unity and suppose that ¢({) = {* where h =5""". Thus the 2'th
roots of unity lie in K. A theorem of Benard and Schacher [2]
implies that the exponent of the 2-part of S(X) is at most 2.

Observe that there can be at most one rational prime » with
even ramification index in L/K. This follows from the fact that the
inertia group of a divisor of p is contained in Gal (L/K(c)) where &
is a root of unity in L having largest possible order not divisible
by p. If p is such a prime, then let:

2 exactly divide » — 1,

2° exactly divide e(p, L/K),

2¢ exactly divide f(p, K/Q),
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where e(p, L/K) is the ramification index of p in L/K and f(p, K/Q)
is the residue class degree of » in K/Q.

Now suppose that q is a prime which does not divide 2n. We
shall use the following notation:

2" exactly divides ¢ — 1,

2M0 exactly divides f(g, K/Q),

270 exactly divides A(g) where ¢*? = [L/K, q] is the Frobenius

automorphism of ¢ in L/K,

2" exactly divides V(q) where h4? — g7 @X/® = Y(g)2°.
In addition, for any prime » we denote p’®%/® —1 by I'(p).

Finally let A = max {s — ¢, 0}.

THEOREM. The 2-part of S(K) consists of those classes [A] in
the Brauer group of K which have uniformly distributed invariants
which satisfy the following conditions.

() If q does mot divide n, then the q-invariants of [A] are
integral multiples of 1/21? where

max {r — b(g), 2(q) — v(g), 0) if @) <7T — X

o = {max {r —b(@),r —x—w(g), 0} if s(gy=r—N.

(A1) If p divides n, then the p-invariants of [A] are integral
multiples of 1/27® where

01f p=2 or if e(p, LIK) is odd

I(p) =
(») {max{c-d+7’—k,c—d+s~t—->u,0} otherwise.

(III) Suppose that p divides n and I(p) = 0. If-k>s, k+#t,
and 2¥+t1 4s greater than the power of 2 which divides p’ — 1 for
all primes p’ + p which divide n, then the g-invariants of [A] are
odd multiples of 1/21 for an even number of primes q in the set.

{p} U{a:(g/p) = — 1,(q,2n) =1, and ~(q) = r — M}

where (q/p) is the Legendre symbol.

Proof. Let K'DK Dbe the field such that [L: K'] = 2. Then
Lemma 2 of [5] implies that the set of permissible invariants for
-elements in the 2-part of S(K) is exactly the set of permissible
invariants for elements in the 2-part of S(K’). Thus we may assume
that [L: K] = 2¢ without any loss of generality.

Now we must determine the invariants of the crossed product
algebras of the form

[L(e))/K, @] = X L(e)u, , 0 € Gal(L(e,)/K)

where ¢, is a primitive ¢th root of unity, ¢ is an odd prime which
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does not divide n, and a is a factor set from Gal(L(s,)/K) X
Gal (L(¢,)/K) into {{>. The multiplication in these algebras is given
by

U e = (T, Ty

u,w = o(w)u, ,
for o, 7 € Gal (I(¢,)/K) and we L(s,). We know from Theorem 1 of
[5] that the classes in the Brauer group of K which contain these
classes generate the 2-part of S(K).

Let 4, = 4,(x, y, 2) be the algebra (L(¢,)/K, @) where the values

of @ are in {{) and q is an odd prime not dividing ». Set Gal(L(¢,)/L)=
{7y. The factor set @ is determined by the integers =z, y, and z where

Uythg = UMy
() =10,
(g = .
We must have
us(C7) = (Cus = Ly
u (L") = (%, = C'uy
(urmgu; P = (Cug)”
(wsuuzt) ™ = (Cour)™ .
Thus
(a) 2°" divides z,
(1) (b) 27 divides =,
(¢) yh —1)+ z(¢q — 1) = Y2° for some integer Y.
The Frobenius automorphism of ¢ in L/K is ¢4?. Thus

¢A(q>(c) — Chfﬂq) — Cqﬂq,K Q)
Hence

hA@O — gf K/ — V28 for some integer V.

Now applying Theorem 3 of [6] we get that the g¢-local index
of [4,] is given by

qg—1
g — 1), ¢ —1)
where
_ ATt -1 T(g)
(2) @ v0) =g HSE vl
—_1 Iyl _
O av |.
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Thus, since 2" exactly divides & — 1, the g-local index of [4,] is
max {27# 1} where 2* exactly divides YI'(¢)/(g — 1) — zV.

We know that 2" exactly divides I'(¢9)/(¢ —1). Moreover, we
may make Y either odd or even without changing the power of 2
which divides z. If #(¢) £ r — », then equation (1)(c) implies that
2710 ig the smallest power of 2 which can divide z. If v = r — A,
then 27 is the least power of 2 which can divide x. Thus, the maxi-
mum ¢-local index of [47] is 22 where

max {r — b(q), 7(¢) — v(q), 0} if Z(=7r—X

Iq) = max {r — b(g), r — » — v(g), 0} if Z(@@)=7r— .

Now observe that for any prime ¢ which does not divide 2ug,
g is unramified in L(s,)/K. Thus the g-invariants of [4,.] must be
zero. This means that the only classes amongst the generators of
the 2-part of S(X) which have non-zero invariants at the primes of
K dividing ¢ are those classes of the form [4,(z, v, 2)]. Thus we
have proved (I).

If there is no prime which ramifies in L/K, then [4,] can have
nonzero invariants only at the primes of K which divide ¢. If 2
ramifies in L/K, it must be the only prime which ramifies in L/K.
So, since the 2-invariants of any class in S(X) must be zero by the
results of Yamada [7], the only nonzero invariants that [4,] can have
are at the primes of K which divide ¢q. In both of these cases we
are done and the theorem is proved.

So for the remainder of the proof let p be an odd prime which
is ramified in L/K. Set 4?7 equal to a Frobenius automorphism
for p in L(e,)/K. Observe that ¢* ° generates the inertia group of
p in L/K where 2° = ¢(p, L/K).

Applying Theorem 3 of [6] we get that the p-local index of [4,]
is given by

o
(2°v(p), 2°)

_ _1_[ R =1 F(p)]
v(p) o T + 2 5 |

where

Thus the p-local index of [4,] is max {2°77, 1} where 27 exactly divides

-1 I'(p)
T T A

We know that 2 exactly divides (A*'"° — 1)/(h — 1), that 2¢+¢°
exactly divides I'(p)/2°, and that 2°" is the least power of 2 which
divides z. Hence we need to find the smallest power of 2 which
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divides zg.

We know that g must be an f(p, K/Q)th power, so picking ¢
such that (¢/p) = —1 we get that min {2¢, 299} is the smallest power
of 2 which can divide g. If ~#(¢) = r — N\, then 2! must divide =,
and if #(¢) <7 — \, then 2“9 must divide #. Hence we find that
min {274, 2"} is the smallest power of 2 which can exactly divide zg.
Thus the maximum p-local index of a class in the 2-part of S(K) is
27 wwhere

Ip)=maxf{c—d+s—t—nc—t+s—r,c—d+r—Fk 0}
=max{c—d+s—t—Nc—d+7r—Fk, D0}

since ¢ <t — (s — 7). This proves (II).

If I(p) = 0, then we are finished. So assume for the rest of the
proof that I(p) > 0.

Now assume that & > s, k= ¢, and 2****% ig greater than the
power of 2 which divides p” — 1 for all primes p’ which are unequal
to p and which divide n.

Suppose that the p-local index of [4,(%, ¥, 2)] is 2"®. Now s —
t—~x>r—kso Ilp)=c—d+s—t—n Thus 2" exactly divides
2g, indeed 27 must exactly divide # and 2° must exactly divide g.
Thus #(¢g) = — N and (¢/p) = —1. Further, since p =1 mod 4,
(p/g) = — 1 by the law of quadratic reciprocity. This, together with
the hypotheses, implies that b(q) = k — ¢ + a(q) where 29 exactly
divides f(q, K/Q) and a(q) exactly divides A(g). Hence #(q) + b(q) >
r + a(g). So, since 240+2@ exactly divides ¢ — 1 and 27+%@ exactly
divides 24? — 1, we get that » + a(q) = s + v(q9). Thus

r—=b@=r—k+t—a@<r—-—r—al@=r—»r-—vQ9).

Hence I(q) = r — M — v(q) and the g-local index of [4,(%, ¥, 2)] is 27?2,
Observe that I(¢) > 0 since the hypotheses insure that a(q) <s — A,
so that »(q) < r — .

Now let ¢ be a prime such that (¢/p) = — 1, (¢,2n) =1, and
Z(q) = r — \. Suppose that the g¢-local index of [4,(x, ¥, 2)] is 2@,
We have seen that I(q) is positive and is equal to r — N — v(q) in
this instance. Hence 2! must exactly divide z by equation (2)(b).
Thus the p-local index of [4,(z, ¥, 2)] is greater than or equal to
2¢-d+e~t=2 . However I(p) = ¢ — d + s — t — A > 0, so the p-local index
of [4/x, ¥, 2)] must be 27,

We have now shown that under the hypotheses of (III), the p-
local index of [4,] is 27 if and only if (g/p)= — 1, 7@ =7 — \,
and the g¢-local index of [4,] is 2. This proves (III).

We now need to show that the restrictions on the invariants of
elements in the 2-part of S(K) given in the theorem are the only
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restrictions on the invariants of elements in the 2-part of S(K).

First assume that the hypotheses of (III) hold. Let F =
Q(e,, €41, ¥ p) and let ¢ be the element in Gal (F/Q) such that
o@,) =¢' o(Vp)=— ¥V, and 06(g+1) = (6,041)° wWhere B8 = 57,
Such a ¢ exists since p does not have a fourth root in Q(e,, &r1).
Let ¢ be a prime not dividing » whose Frobenius automorphism in
F/K is 0. There are infinitely many such primes by the Tchebotarev
density theorem. This means that 2° exactly divides ¢ — 1, 2 exactly
divides f(q, @(¢,)/Q), and 2 exactly divides f(p, Q(s,)/Q). Thus the
Frobenius automorphism of ¢ in L/K is an odd power of ¢* ' if
fg, K/Q) is odd, and it is 1 if f(g, K/Q) is even. So we have that
a(q) =t — 1 if flq, K/Q) is odd, and a(q) = 0 if f(q, K/Q) is even.
Further 7/(¢) = r — \.

Now the algebra class [4,(2% 0, 0)] has g-local index 1 if f(q, K/Q)
is even and [4,(2% 2°7%, 0)] has g¢-local index 1 if f(q, K/Q) is odd.
This follows from equation (2)(a). Now both of these algebra classes
have p-local index 27! gince 2*+¢* divides x¢ in both cases. Thus
the algebra class which has local index 27*~* at p and local index 1
at all other primes is in S(K). This implies that there are no further
restrictions on the 2-part of S(K) in the case where the hypotheses
of (III) hold.

Now assume that either k < s or k =t¢ > s. Let 4, be a gener-
ator of Gal (L/Q(, ¢,.)) where (n*, p) =1 and n/n* is a power of p.
Also set 4 equal to the automorphism in Gal (L/Q(e,)) which sends
{ to ¢*. Now let ¢’ be a prime whose Frobenius automorphism in
L/Q is 7, This implies that (¢'/p) = (p/¢') = — 1, that
2r+t-% exaetly divides ¢/ — 1, and that 2°7** exaectly divides (¢, K/Q).
Consider the algebra class [4,.(x,, ¥, 0] where

x, = 2470 [___F(q’) Jmod 2°
g —1
and

Y, = — 2770 [ h;;q—’) _i 1 ] mod 2° .

Observe that z(q¢ — 1) + y,(h — 1) = 0 mod 2° so that equation (1)(c)
is satisfied. Now we have that

hA(q’) — ! .
wo[ - __1_1_:] + yo[ F(Q)l:l = 0 mod2’ .

4 —

Hence the ¢'-local index of [4,(x, ¥, 0)] is 1. Further, 2* exactly
divides =z, 2"* divides ¢’ — 1, and (¢'/p) = — 1. Thus the p-local
index of [4,(=, ¥, 0)] is max {2°4+*=t=2 1},

Now consider the algebra class [4,(0, 0, 2°")]. Its ¢'-local index
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is 1 and its p-local index is max {2°7¢*"% 1].

Thus S(K) contains the algebra class with local index 27 at p
and local index 1 at all other primes. This implies that there are
no extra restrictions on the 2-part of S(K) when either t < s or
kE=t.

Finally assume that %k >s, k¢, and that there is a prime
p’ # p which divides n such that 2¢+*=*=* divides 9’ — 1. Let 4, be
a generator of Gal (L/Q(, ¢,.)) where (n/, ) =1 and n/n' is a power
of . Let 4, be as above.

Let ¢” be a prime whose Frobenius automorphism in L/ is
Y.  Thus (¢"”/p) = —1 and 2° divides ¢” — 1. Further observe
that if 8 is the smallest integer such that (/)" € Gal (L/K), then
2kr+=t=1 must divide 8. Hence a(¢’) = s — A. Thus [4,.(2%, 0, 0)] has
¢""-local index 1 and p-local index 2°7¢**~*4  Since £k >s=r, we
have that I(p)=c—d +s —t— . So S(K) contains an algebra
with local index 2’ at p and local index 1 at all other primes.
This implies that there are no further restrictions on the 2-part of
S(K) in this case.

This completes the proof to the theorem.
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