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A. Ya. Khinchin proved that if Φ and Ψ are characteristic
Λ t

functions and Φ(t) = t~x \ Ψ(u)du, then the distribution func-
Jo

tion of Φ is convex on (—°°,0) and concave on (0, +oo). A
similar theorem is proved here for logarithms of infinitely
divisible characteristic functions and their Le>y spectral
functions.

Suppose Φ(t) is a characteristic function (ch. f) of a distribution

function (df), F, so that Φ(t) = \ eixtdF(x). An application of
JR ~ Ct

Bochner's theorem (see [2]) shows that Φ(t) = t~ι I Φ(u)du is also a
ch. f. Khinchin proved that Φ is a ch. f by constructing its df.
In fact, he showed that a ch. f is of the form Φ if and only if its
df is unimodal at 0; that is, the df is convex on (— °°, 0) and
concave on (0, +©o). We shall prove a "unimodal theorem" for the

ct

function ώ(t) = t~ι I φ(u)du under the assumptions that Φ(t) is
Jo

infinitely divisible and φ(t) — In Φ(t). Johansen's characterization of
infinitely divisible ch. fs. ([1], Theorem 2) insures that φ, defined
above, may also be written φ(t) — In W(t), for some infinitely divisi-
ble ch. f Ψj and hence provided the motivation for our work. To
begin with, we state Levy's form of infinitely divisible ch. fs. (See
[2].)

THEOREM 1. A ch. f Φ is infinitely divisible if and only if
φ(t) = In Φ{t) may be uniquely represented as

(1) φ(t) - iμt - σψ + fje^ - 1 -

where μ e R, σ2 ^ 0, and the function M has the following properties:
( i ) M is defined on R\{0}
(ii) M is nondecreasing on (— °o, 0) and on (0, +°o) and is

right continuous
(iii) ΛΓ(-°o) = 0 = Λf(+oo)

(iv) \ x2dM(x) is finite for all ε > 0.
J(-e,e)

When (1) is in force, M and (μ, σ2, M) are respectively called
the Levy spectral function and the Levy triple of Φ. Moreover,
every function which satisfies (i)-(iv) is a Levy spectral function of

285



286 CAROL ALF AND THOMAS A. O'CONNOR

some infinitely divisible ch. f. The main result of this article is
Theorem 2 below; two preliminary lemmas are proven first.

LEMMA 1. For every Levy spectral function, M, the following
relations hold:

( i )

(ii)
>o+

Proof. It is known that to each Levy spectral function, M,
there exists a df, G, and nonneagative number c such that

( u~2(l + u2)dG(u) if x<0
M(x) = \ J Γ +

- c \ u~\l + t62)cZG(̂ ) if x > 0 .
J

S +TO

wιdM{u) g
u~ιdG(u) or α;3 \ u~~ιdG(u) ^ 2cα;\ u~ιdG(u). Similar state-

ments hold for negative x. Now, if we apply Lemma 4.5.1 of [2]
to the integrals involving G, the assertions of Lemma 1 follow at
once.

LEMMA 2. Let Mλ and M2 be two Levy spectral functions and
assume they are related by

dy if x < 0
J-oo J-oo Z

( 3 ) M2{x) =
Jx hj Z

Suppose φ(t) = iμt - σψ + ί (eίxt - 1 - ixt/(l + x^dM^x) where

μeR, σ2 ^ 0. T/iew

- it((μ/2) + ^ (i + a*

R \ 1 +
+ ί

J

Proof. Let T > 0 be fixed and define JBL(W, a?) - eιux - 1 -
i%a?/(l + α;2). Then K(u, x) = O(α;2) as £ ~ > 0 uniformly for |%| <; Γ.
Let 57 > 0. Then
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Γ1 Γdu lim (+K(u, x)dM1(x) = r ( ώ (
JO e-»0+ Je JO \Jθ+

+ r x Γ Γ ϋΓ(u, x)dudMx(x) = θ(\
J? Jo \J

where

it 2(1 + x2)

Letting η —> 0+, we have that

u, x)dM1(x)du = _ ,
Jo Jo+ Jo+ x

A similar statement for the negative axis shows that

ί"1 ^φ(u)du = (ijκέ/2) - (σ2ί2/3)
( 4 ) f (e«*-1 _ _ to2 y ^ w

Now apply integration by parts to the integral in (4), to conclude
that

1 Γ φ(u)du = (iμt/2) - (σψβ) + lim Ϊ-L(t, x) \+°° z
Jo ε->-0+ L Jx

dz + L(t, x)

- (σΨ/3)

The last equality follows by observing that L(t,x)/xz is bounded for
| ί | <£ T as α?—>0 and using Lemma 1. This completes the proof of
Lemma 2.

THEOREM 2. A necessary and sufficient condition for <ρ(t) to be
the logarithm of an infinitely divisible ch. f whose Levy spectral
function is convex on (—oo, 0) and concave on (0, +oo) is that φ(t)
may be written φ{t) = t~ι \ ψ{u)du, where ψ is the logarithm of a

Jo

certain infinitely divisible ch.f .

Proof. Suppose φ{t) — t~λ \ ψ{u)du where ψ and φ are as in the
Jo
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statement of the theorem and let M1 and M2 be the Levy spectral
functions of ψ and φ respectively. Since the Levy representation is
unique, Lemma 2 shows that M1 and M2 are related by (3). Clearly
M2 is convex on (— °°, 0) and concave on (0, +°o) and so the
sufficiency of the condition holds.

Conversely suppose a Levy spectral function M2 is given and
assume further that M2 is unimodal at 0. Then we can write

x

p(u)du if x < 0

— \ p(u)du if x > 0
Jx

where p i> 0 and is nondecreasing on (—°°, 0) and nonincreasing on

(0, + oo). Define M^x) = - Γ udp(u) if x < 0 and M^x) = Γ wdp(^)

if α? > 0. Then Mx is also a Levy spectral function and

M2(x)=\* Γ dp(«)di/= - ( * Γ z-'dM^άy
J —CO J—OO J—OO J—CO

if x < 0, and similarly, Λf2(a?) = -Γ°° Γ°° z^dM^dy if α; > 0. This
J x jy

shows that Mt and M2 are related by (3). So if ^ has the Levy
triple (μ, σ2, M2), define

+ I β«. _ l _ — ^
JΛ 1 + x2

By Lemma 2, φ(t) — t~ι \ ψ(u)du, and hence, the proof of Theorem 2.
Jo

Some applications and consequences of Theorem 2 will be given.
( a ) Suppose that a Levy spectral function, M, and a df, G, are

related by (2) for some c Ξ> 0. From (2), it is clear that the (0)-
unimodality of G entails that of Λf. The converse is not true; a
counterexample is provided by the function M(x) — cx\x\~a or c2x~a

according as x < 0 or x > 0, where elf c2 > 0 and 0 < a < 1.
(b) Medgyessy ([3], Theorem 2.1) proved that if M is symmetric

and convex on (— oo? 0), then the original df is unimodal at 0. Hence,
combining our result with Khinchin's theorem on unimodality, one
obtains that if Φ(t) is an infinitely divisible real ch. f and In Φ(t) =
t'ι^\nΨ{v)du for some infinitely divisible ch. f Ψ, then Γ

J
Jo

for some ch. f χ(u).
( c ) Suppose φ(t) = iμt - b\t\a(l + (iβt/\t\)ω(\t\, a)) corresponds
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to a stable law of index a. (See [2], p. 136.) In this case

(5) φ(t) = %Ίt + cφ(t)

where ΎeR, c ^ 0, and φ(t) = t'11 φ(u)du. Conversely suppose
Jo

φ(t) = In Φ{t) for some infinitely divisible ch. f Φ and for some 7 e R,
c ^ 0, (5) holds. Let (/ι, σ\ M) be the Levy triple of Φ. If If = 0,
then Φ is a normal ch. f and c = 3. Assume Λf is not identically
zero. By Theorem 2, M is convex on (—°°,0) and concave on
(0, +oo), and so there exists a nonnegative function p(x) such that
p is nondecreasing on (— oo, 0), nonincreasing on (0, +<*>), and such
that

x

p{u)du if x < 0

— \ p(u)du if a? < 0

Since the Levy representation is unique, if (5) holds, the Levy
spectral functions of φ and cφ agree. Hence M satisfies the identity

ί-c[X [ z-1dM(z)dy if x < 0
M(x) = •<

- c Γ°° Γ°° z~ιdM{z)dy if a? > 0
J J

In terms of p, (6) reduces to

S x

u~ιp{u)du if x < 0

u~ιp(u)du if x > 0 .

Employing the uniqueness theorem for first order differential equa-
tions, it follows that p(x) = p(-l)\x\~c if x < 0 or p(l)arc if a? > 0.

But since 1 p(x)dx and | #2p(α;)d# are both finite, we must
JΛ\(-1,1) J (—1,1)

have that 1 < c < 3» This, in turn, forces σ2 = 0. Combining this
and the form of the Levy spectral function for stable distributions,
we see that (5) characterizes the stable laws.
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