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The main theorem of this paper characterizes hi — k
spaces as those spaces whose product with every compact
spaces is sequentially k.

1Φ Introduction* The classes of hi — k spaces, countably hi — k
spaces and singly hi — k spaces were studied in [5], and the class
of sequentially k spaces was introduced in [3]. The following im-
plications hold among these spaces, without the assumption of any
separation axioms: hi — k—>countably hi — k-^>singly hi — k~+ se-
quentially k. Also, all k spaces are sequentially k, and all Hausdorίf
sequentially k spaces are k spaces. (These classes will be defined at
the end of this introduction.)

THEOREM 1.1. The following are equivalent:
(a) X is a hi — k space.
(b) X x Y is a singly hi — k space for every compact Hausdorff

space Y.
(c) X x Y is sequentially k for every compact space Y.

This theorem is proved in § 2.

EEMARK 1.2. Cohen [4] proved that the product of a & space
with a (locally) compact Hausdorίf space is a k space. Noble [6]
showed this is false without the Hausdorff assumption, but in Noble's
example, the product was a hi — k space. Theorem 1.1 (c<-+a) shows
that the product of a k space with a compact space need not even
be sequentially k.

REMARK 1.3. Michael [5] has asked whether the product of two
countably bί—k spaces must be countably bi—k. Examples have been
given showing it is consistent with Zermelo-Fraenkel set theory that
this is false. Theorem 1.1 can be used to give an absolute counterex-
ample. All we need is a countably bi — k space that is not bi — k.
Let X be the subspace of the product of uncountably many copies
of {0,1} consisting of points that are 1 on only countably many co-
ordinates (i.e., a J-product centered at the point all of whose co-
ordinates are 0). ArhangePskii proved that this space is countably
bi — k (in fact, countably δi-sequential) but not bi — k [2]. Thus,
by Theorem 1.1, there is a compact Hausdorff space Yx and a
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compact IΊ space Y2 such that X x Y1 is not singly bi — k, thus
not countably bi — k, and X x Y2 is not even sequentially fc.

DEFINITION 1.4. [3] If S is a subset of a topological space X
and (Si) is a nested sequence of subsets of X, then (St) is an S-
sequence if whenever (s^ is a sequence of points with s€ e Sέ for
each i, then (ŝ ) has an accumulation point in S.

DEFINITION 1.5. A space X is a bi — k space if whenever &~ is
a filter base containing the open sets around a point p e X, there is
a compact set SaX and a nested sequence of sets (Sέ) such that

meshes with ^ and (S{) is an S-sequence.

DEFINITION 1.6. A space X is a countably bi — k space if when-
ever (Ft) is a nested sequence of sets accumulating at a point p
(i.e., peel(2^) for each i) there is a nested sequence of sets (S^
accumulating at p and a compact set S such that S< c 2^ for each
i and (S<) is an S-sequenee.

DEFINITION 1.7. A space X is a singly bi — k space if whenever
p e cl (F), there is a compact set S and a nested sequence of sets
(S^ accumulating at p such that SidF for each i and (Sy is an
S-sequence.

DEFINITION 1.8. A space X is sequentially k if whenever a set
.F is not closed there is a point p e cl (F) — F, a compact set S and
a nested sequence of sets (S^ accumulating at p such that SiCiF
for each i and (£ )̂ is an S-sequence.

2. Proof of Theorem 1JL In [2], Michael proved that a space
X is countably bi — & if and only if X x I is singly bi — k (where
I is the unit interval). The heart of the proof (in one direction)
involves coding a bad nested sequence (SJ of subsets of X (i.e., a
witnessing sequence to the statement 'X is not countably bi — ky)
as a single bad subset of X x J. This idea of coding is hinted at
in the following proof of Theorem 1.1.

a > b a n d a > c:

The product of two (or even countably many) bi — k spaces is
bi — k [5]. Since compact spaces are bi — k, the product of a bi — k
space and a compact space is bi — k, and thus singly bi — k and
sequentially k.

not a > not b and not α > not c:
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Both implications make use of the following construction.
Suppose X is not hi — k. Then there is a point peX and a

filter base ^~ of subsets of X such that J?~ contains the open sets
around p, but there is no compact S a X and nested sequence of
sets (S^ such that (SJ meshes with &~ and is an S-sequence. Thus,
in particular, there is an F e J?~ such that p $ F and therefore if
F,e^ and F^eJ^, then Fxr\F2~ {p} Φ 0 .

Define a base for a new topology on X as follows. If xeX —
{p}, then {x} is open, and if F e ̂ 7 then F (J {p} is a neighborhood
of p. This refines the original topology on X. Let X' be X with
this new topology. Note that Xr is completely regular.

Let YΊ = β(Xf), the Stone-Cech compactification of X' (actually,
any Hausdorίf compactification will do), and let Y2 be the one point
compactification of X'. Note that Y2 is a TΊ space, but is definitely
not Hausdorff.

Claim 1. X x Y1 is not singly δi — k.

Proof. Let C = {(a?, a?): a e l - {p}}. C is a subset of I x Γ c
I x 7 1 ( If U x F is a basic open set around (p, p), then U and
F n Γ are both in ̂  so Uf] V 0 Xf - {p} ̂  0 . Thus (U x V) n
C ^ 0, i.e., (p, #>) € cl (C) — C. Suppose X x Yx is singly δi — k.
Then there is a compact set KczX x Ylf and a nested sequence (iQ
of subsets of C such that (p, p) e cl (if*) for each i, and (iQ is a
i£-sequence. Then, if πx: X x Γi —> X is the projection map, the
sequence (πx(Kt)) is a ττx(i£)-sequence and πx(K) is compact in X.
Suppose JP7 6 ̂ \ Then there is an open set V dYι such that V Π
X' = F u {p}. But then for each i, there is an xt such that (α?̂  xt) e
Kif)(Xx V). Then ^ e F , so *;.(£,) Π ί7 Φ 0 . Thus (^(Z,)) is a
τrz(iΓ)-sequence meshing with ^ 7 This violates the choice of J^, so
X x YΊ is not singly hi — k.

Claim 2. X x Y2 is not sequentially &.

Proof. Let Γ2 = X' U {a}.

Let C = (X x {α}) U {(?/, x): y e cl x ({a?}) and a? e X' - {p}}. (Nobody
said X was a TΊ space!) As in the proof of Claim 1, (p, p) ecl (C) — C.
Suppose (x, y) e cl (C) — C. Then y Φ a. Suppose y Φ p. Then since
(#, y) 0 C, it follows that x g cl x ({y}) so there is an open (in X) set
U such that xeU but # $ U. But then £/ x {y} is open (in X x F2)
and (?7x {y}) Π C = 0 . Thus y = p.

Gould X x Y2 be sequentially Λ? If so, then there is a point
(z, p) e cl (C) — C, a compact set JRΓ C K X Y2 and a sequence
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such that (z, p) e cl (Kt) and KiCiC for each i, and (Kt) is a K-
sequence. Again, let πx: X x Y2 —> X be the projection map. Let
Di — {x: there is a # e πx(K%) such that ?/ e clx ({a?})}. Suppose a?, e Z),.
for each i. There is, for each i, a point yt e πx(K^) Π clx ({α J). Since
(π x(lQ) is a τrx(iΓ)-sequence, the sequence {y%) has an accumulation
point keπx(K). But, since any open set containing yi also contains
xτ9 k is an accumulation point of (Xi). Thus (Di) is a τrx(iΓ)-sequence.

Suppose F 6 J^T Since F U {p} is open in F2, for each i
( I x ( f U {p})) Π i^i ^ 0 . But a£FU{p} so there is a point (y, x) eKt

with xeF and # e clx ({x}). Thus a G A n ί 7 . Therefore Dt is a
7Γx(if)-sequence meshing with ^ 7 a n ( i πχ(K) is compact. As in the
case of Claim 1, this contradicts the choice of ^ 7 so I x 72 is not
sequentially-^.
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