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Given compact, connected Lie groups G, and G; and given
h: Gy — G, a homomorphism with kernel K, let Ph*: PH*(G,)—
PH*(G,) be the homomorphism of the primitives in the real
cohomology induced by 2. We prove that if the rank of G,
is greater than or equal to the rank of G,, then the dimen-
sion of the kernel of Ph* is greater than or equal to the
rank of K. We discuss when the inequality is an equality
and we use the inequality to study when the hypothesis that
Ph* is an isomorphism implies that /% itself is an isomorphism.

1. Introduction. This paper was initially motivated by a quite
specific question. Let G be a compact, connected Lie group and let
h:G— G be an endomorphism of G, then % induces an endomorphism
h*: H*(G) — H*(G) of the real cohomology of G. The question is:
if A* is an automorphism, does it follow that % is an automorphism?

The answer to this question is “no” in general. Represent the
circle S* as the complex numbers of norm one and define #: S'— S*
by h(z) = 2. Then for h**: H(S') — H*(S') = R (the reals) we have
h*Y(x) = 2z, so h*: H*(S*) — H*(S*) is an automorphism even though
the kernel of % contains two points. However, as we shall prove
below (Corollary 5.1), if A* is an automorphism then the differential
dh of h is an automorphism of the Lie algebra of G. Consequently,
the example illustrates the worst that can happen because if dh is
an automorphism then % is onto and its kernel, though not neces-
sarily trivial, is finite. (For this and other facts from Lie group
theory, see [6].)

We wish to restate the relationship between h* and h above in
a form which will lead us in a natural way to a statement of the
basic problem of this paper. We still have the endomorphism #&:
G — G that we assume induces an automorphism i*: H*(G) — H*(G)
of real cohomology. However, our results will be easier to describe
if, instead of considering all of H*(G), we restrict our attention to
elements which generate H*(G) as an algebra. Let m:G x G—G
be the group operation, then m induces m*: H*(G) — H*(G) ® H*(G).
An element w € H*(G) is primitive if m* (@) =1Q ® + © ®1. Now
let Ph*: PH*(G) — PH*(G) be the restriction of A* to the primitives
in H*(G), then h* is an automorphism if and only if Pr* is an
automorphism. Stating the hypothesis another way: the dimension
of the kernel of Ph* is zero. (The dimension of a graded vector
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space W, written dim W, is the sum of the dimensions of the in-
dividual vector spaces that make up W.) The conclusion that the
kernel of h is finite can be expressed by saying that the rank of
the kernel of & is zero. (The rank of a compact Lie group G,
written 7k(G), is the dimension of a maximal torus.) The basic
problem of this paper is to determine the relationship between the
dimension of ker Ph*, the kernel of Ph*, and the rank of the kernel
of h.

Since Corollary 5.1 implies that when the dimension of the kernel
of Ph* is zero the rank of the kernel of h is also zero, one might
wonder whether the two numbers are always equal. Again represent
S' as the complex numbers of norm one and let S® be the quater-
nions of norm one. Let G = S'x S? and define h: G— G as follows.
For a complex number a + bi and a quaternion ¢ -+ ut + vj + wk,
set

e + bi, ¢ + ut + vj + wk) = @ + 04, @ + bt + 05 + 0k) .

Now & is homotopic to the constant map on G so the dimension of
the kernel of Ph* is two because that is the dimension of PH*(G).
On the other hand, the kernel of k is isomorphic to S? which is of
rank one. Therefore, equality does not hold in general.

In the next section, we will show that rank the of the kernel K
of an endomorphism h: G— G is always less than or equal to the
dimension of the kernel of Ph*. This inequality will follow from a
corresponding inequality for homomorphisms between (possibly dif-
ferent) Lie groups. Section 3 examines how the one-dimensional
cohomology contributes to the inequality. In §4, we state sufficient
conditions for the inequality to be an equality. Finally, in §5, we study
homomorphisms %: G, — G, with the property that A*: H*(G,) — H*(G)
is an isomorphism.

The results of this paper are most naturally stated and proved
in the context of Lie algebras. Consequently, §§82, 3, and 4 each
begin with a theorem concerning homomorphisms of Lie algebras.
The corresponding results for homormophisms of Lie groups follow as
corollaries.

In order to avoid frequent repetitions of the same hypotheses,
we adopt the following

conventions: (1) all Lie groups are compact and connected (2)
all Lie algebras are the Lie algebras of compact Lie groups (3) all
homomorphisms of Lie algebras are differentials of homomorphisms
of Lie groups.

2. The main inequality. For a Lie algebra ®, let PH*(®)
denote the primitives in the cohomology (see [5]). The rank of &
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(written rk(®)) is the dimension of a Cartan subalgebra [6, p. 264].
It follows from a theorem of Hopf [4] (or see [1]), via the de Rham
theorem [3], that 7k(®) is equal to the dimension of PH*(®).

THEOREM 2.1. Let &, and ®, be Lie algebras such that rk(®,) <
rk(®,). Let 7: &, — ®, be a homomorphism with kernel & inducing
Pp*: PH*(®,) — PH*(®)). Then

dim ker Pp* = rk(8) .

Proof. Since & is an ideal in &, it follows from [6, p. 213]
that & is a direct summand of ®&,. Therefore, the homomorphism
Pe*: PH*(®,) — PH*(®) induced by inclusion is onto. Let m =
dim ker P7n* and suppose that the dimension of PH*(R) were greater
than m. We can choose {2, 2, ***, Zu, #mns1}, @ linearly independent
set of elements of PH*(R) - and then a linearly independent set
Yy Yoy ** %y Yms Yms} Of elements of PH*(®,) such that ¢*(y;) = z; for
all j. Let V be the vector subspace of PH*(®,) spanned by
Wy ***y Ymss)e Since 7k(®,) < rk(®,), the dimension of PH*(®,) is
no larger than the dimension of PH*(®,). Consequently, the dimen-
sion of the intersection of V and the image of P%* must be at
least one. So there exists ¥y = >,/ a;y; in the image of P»* with
some «; nonzero. Let xe PH*(®, such that »*(®) = y. Now the
composition

/6 6,
is trivial and yet

m+1
F*n*(x) = ; a;z; # 0

which is a contradiction, so rk(&) < m.

The conclusion of Theorem 2.1 is false for the trivial homomor-
phism 7: &, — @, if rk(®,) > rk(®,), so we do require a restriction
on the ranks.

COROLLARY 2.2. Let G, and G, be Lie groups such that rk(G,) <
rk(G,). Let h: G,— G, be a homomorphism with kernel K inducing
Ph*: PH*(G,) — PH*(G,)). Then

dim ker Ph* = rk(K) .

3. One-dimensional cohomology. For a Lie algebra &, we
write ® = 3P 2O where 3 is the center of ® and 2® is semisimple.

LEMMA 8.1. Let &, and &, be Lie algebras such that dim (3,) =
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dim (8,) and let n: ®, — O, be @ homomorphism. The dimension of
the kernel of the induced homomorphism 7*': H(®,) — HY(®,) is equal
to dimension of the Lie algebra n ' (=Z2®,) N 3.

Proof. Define 7: B, — 3, to be the composition

7] T
3—8"6— 3
where ¢ is inclusion and 7 is projection. Since ¢*' and 7*!' are
isomorphisms, then ker n*' = ker 77*'. (See [5] for the cohomology
of Lie algebras.) Since B, and 3, are abelian Lie algebras of the
same dimension, it follows from the definitions that the dimension

of the kernel of 7*' is equal to the dimension of the kernel of 7).
The fact that

ker 77 = 77_](9’@2) N3

completes the argument.

THEOREM 3.2. Let &, and &, be Lie algebras such that rk(®,) <
rk(®,) and dim (3,) = dim (8,). Let 7: &, — G, be ¢ homomorphism
with kernel K. If dim ker Pp* = r&(R), then 7(B,) S B..

Proof. Let 9n: 26, — =G, denote the restriction of 7. For
® =G, or ®,, define

PH*(®) = 3, PH(®)

so PH*(®) = HY(®) @PH*(@). Then 7 induces 7™ HY(®,) — HY(S)
and Pn*: PH*(®,) —» PH*(®,). Furthermore,

dim ker Pn* = dim ker 7** + dim ker Py* .

The inclusion of &2®, into ®, induces on isomorphism between
PH*(®,) and PH*(Z2®,), so since H(=ZS,) = 0,

dim ker Pp* = dim ker P(27)* = dim ker P(Z7)* .
Lemma 3.1 then implies that
dim ker Py* = dim (™ (=26,) N 8,) + dim ker P(27)* .
Since & N 2@, = ker (277), Theorem 2.1 states that
rk(& N 26, < dim ker P(Z27)* .
If 7(3)NZG, 0 then 8N 3, &7 (ZG)N 3B and so

dim ker Py* = dim (p"(=2®, N 8,)) + dim ker P(27)*
= dim (7 (=26, N 8)) + rk® N 26)
> dim (RN B) + rE(®& N 26) = rk(SK) .



COHOMOLOGY OF HOMOMORPHISMS OF LIE ALGEBRAS AND LIE GROUPS 329

Denote the identity component of the center of a Lie group G
by Z°.

COROLLARY 3.3. Let G, and G, be Lie groups such that rk(G,) <
rk(Gy) and dim Z9 = dim Z. Let h: G,— G, be a homomorphism
with kernel K. If dim ker Ph* = rk(K), then h(Z°) < Z.

Corollary 3.3 explains why, in the example h:G—G = 8*x §°
of §1, we found that dim ker Ph* > rk(K). The reason is that the
center S! of G was not mapped into itself by h. There can be other
reasons why dim ker Pr* > rk(K), as the following examples show.

Let 7:SO(8) — SO(9) be defined as follows. For 4 a matrix in
SO(8), let

0
A= A :
0
l0-..0 1
Then j is one-to-one, but there is an element of H"(SO(9)) in
PH*(SO(9)) while H®@[O(8) = 0. For an example where G, = G,,
let G = SO(8) x SO(9) and define h: G — G to be the composition

SO@®) x SO(9) —— SO(8) —— S0(9) —— SO(8) x SO()

where 7 is projection and 7 is inclusion. Now the kernel of Ph*
contains PH*(SO(8)) and H*(SO(9)) which implies that it is of dimen-
sion at least 5. But the kernel of & is isomorphic to SO(9), a group
of rank 4,

4. Sufficient conditions for equality. The previous section
suggests that strong hypotheses will be required in order for the
inequality of §2 to be an equality. The next results employ such
hypotheses.

THEOREM 4.1. Let &, and &, be Lie algebras such that rk(S,) =
rk(®;). Let 7: 8, — &, be a homomorphism with kernel & If 7(G,)
1s an ideal of &,, then

dim ker (P7*) = r5(®) .

Proof. Let $ = n(®,) then by hypothesis  is an ideal of @, so
the kernel of the homomorphism Pc*: PH*(®,) — PH*(9) induced by
inclusion is isomorphic to PH*(®,/9). Let 7: 8 /& — 9 be the iso-
morphism induced by 7. Then the diagram
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G, 6,

1 I

@1/'@ - @
7

where ¢ is the quotient homomorphism, can be used to show that
ker Pn* = PH*(&,/9) .

Since 7k(®,) = rk(®,), it follows that »k(®) = rk(®,/H) and that com-
pletes the proof.

COROLLARY 4.2. Let G, and G, be Lte groups such that vk(G,) =
rE(G,). Let h:G,— G, be @ homomorphism with kernel K. If M(G,)
1s @ normal subgroup of G,, then

dim ker (PR*) = rk(K) .

If we mimic the example at the end of §3 with SU(2) x SU(3)
in place of SO(8) x SO(9) then h(G) = ij7(G) is not a normal subgroup
of G and yet dim ker (Ph*) = »&(K) = 2. Consequently, the sufficient
conditions of this section are not necessary conditions for equality.

5. Homomorphisms that induce isomorphisms. We come now
to the result promised in the introductory section.

COROLLARY 5.1. If h:G,— G, is ¢ homomorphism of Lie grouns
such that h*: H*(G,) — H*(G) 1is an isomorphism, then the dif-
Jerential of h is an isomorphism of Lie algebras.

Proof. Let K be the kernel of #. Since A* is an isomorphism,
so also is Ph*: PH*(G,) — PH*(G,) and, by Corollary 2.2, the rank
of K is equal to zero. Let dh:®, — &, be the differential of %, then
&, the kernel of dh, is trivial because it is of rank zero. We con-
clude that di is an isomorphism.

A homomorphism %: G, — G, induces a homomorphism h.: 7,(G,) —
7(G,) of the fundamental groups.

COROLLARY 5.2. If h:G,— G, is @ homomorphism of Lie groups
such that h*: H*(G,) — H*(G) s an isomorphism. Then

(1) h.:7(G) — 7 (G.) is one-to-one

(ii) & vs an isomorphism if and only if h. is an isomorphism.

Proof. Corollary 5.1 implies that & is a local homeomorphism so
h.: G,— @, is a covering space with fiber K, the kernel of 2. Thus
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we have the exact sequence

T(K)— 1,(Gh) —5 1,(Gy) — 1K) — 7 G)

and observe that %, is one-to-one. The homomorphism % is an iso-
morphism if and only if K is trivial, that is, if and only if z,(K) = 1.
By exactness, 7,(K) = 1 if and only if k. is onto.

COROLLARY 5.3. Let G be a semisimple Lie group and let h:
G — G be an endomorphism such that h*: H*(G) — H*(G) is an 1iso-
morphism, then h ts an isomorphism.

Proof. Since G is semisimple, 7,(G) is finite, so the result is a
consequence of Corollary 5.2.

An inner automorphism h:G— G, defined by h(z) = axa™ for
some @ € @, is homotopic to the identity map because G is pathwise
connected, so % induces the identity isomorphism on H*(G). Our
final result shows that the converse is also true.

COROLLARY 5.4. Let G be a compact, connected Lie group and
let h: G— G be an endomorphism such that h*: H*(G) — H*(@) 1is
the identity isomorphism, then h ts an tnner automorphism of G.

Proof. We write 7,(G) = Z" @ T where Z™ is free abelian and
T is finite. By Corollary 5.2, h.:Z"P T —Z" P T is one-to-one
and therefore its restriction to T must be an isomorphism of T to
itself. The fact that A*': H'(G) — H'(G) is the identity isomorphism,
together with the Universal Coefficient Theorem and the Hurewicz
Homomorphism Theorem, imply that the restriction of &, to Z™ is
the identity transformation from Z™ to itself. Therefore, by Co-
rollary 5.2, h is an isomorphism of G inducing the identity isomor-
phism on H*(G). Proposition 4 of [2] thus implies that h is an
inner automorphism.
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