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NOETHERIAN FIXED RINGS

DANIEL R. FARKAS AND ROBERT L. SNIDER

One of the basic questions of noncommutative Galois
theory is the relation between a ring R and the ring S fixed
by a group of automorphisms of E. This paper explores
what happens when the group is finite and the fixed ring S
is assumed to be Noetherian. Easy examples show that R
may not be Noetherian; however, in this paper it is shown
that R is Noetherian with some rather natural assuptions.
More precisely we prove the Theorem 2: Let S be a semi-
prime ring. Assume that G is 4 finite group of automorphisms
of S and that S has no | G |-torsion. If S¢is left noetherian
then S is left noetherian.

Theorem 2 answers a question raised by Fisher and Osterburg [4].

This result rests on calculations which can best be described as
belonging to noncommutative Galois theory. The basic theorem here
may be of independent interest.

THEOREM 1. Let R be a semisimple artinian ring. If G is o
finite group of automorphisms of R and |G| is invertible in R then
R is a finitely generated ring Rf-module.

The proof of Theorem 1 follows the spirit of Karchenko’s work
on polynomial identity rings ([6]).

1. A proof of Theorem 1. We will repeatedly need Levitzki’s
fixed ring theorem ([8]): Suppose R is a semisimple artinian ring.
If G is a finite group of automorphisms of R with |G| invertible in
R then R¢ is semisimple artinian.

LEMMA 1. If Theorem 1 is true when G is a simple group then
it is true for an arbitrary finite G.

Proof. By induction on the length of a composition series for G.

If G is not already simple choose HAG with 1+ H=+*G. By
Levitzki’s theorem R¥ is semisimple artinian. G/H acts on RZ and
RZ has no |G/H|-torsion; by induction RZ is a finitely generated
right R®-module. Again, induction shows that R is a finitely generat-
ed right R7?-module. The lemma follows.

We eventually assume that G is simple. In that case either G
consists entirely of outer automorphisms or entirely of inner auto-
morphisms.
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LEMMA 2. Let B be a simple artinian ring and let G be a
finite group of outer automorphisms of B. Then B is a finitely
generated right B®-module.

Proof. By [1], B¢ is a simple ring and B is a free module over
B¢ of rank [G|. (Cf. [5] for the case of a division ring.)

LEMMA 3. Let B bée a simple artintan ring and let G be «
JSinite group of immer automorphisms of B. Assume |G| is invertible
in B. Then B is a finitely generated right B®-module.

Proof.. Let F' be the center of B.

For each g € G pick one 2 € B such that % = xbx™ for all be B.
Call the finite set so chosen, G. Then collection of sums, FG, is a
finite dimensional algebra over F. Since 1/|G|< F, Maschke’s theorem
for twisted group algebras ([9]) states that FG is a separable
algebra. Thus there is a finite extension field K of F such that K
is a splitting field for each simple constituent of FG.

K@, B is a simple artinian ring with center K. G acts on
K@®: B by

Qb)) =k®%b.

Obviously this action, too, is induced by inner automorphisms. A
straight-forward calculation shows that (K @ B)* = K B°. Similar-
ly, if K@ B is a finitely generated right (K& B)*-module then B is
a finitely generated B%-module.

Thus we replace B with K@, B and assume each simple con-
stituent of F'G is a total matrix ring with entires in F. Let & be
the set of centrally primitive idempotents in FG.

The crux of this lemma is to show that if ec & then eBe is a
finitely generated right B°-module. An element of B® commutes with
elements of F'G so it certainly commutes with e; hence eBe is a right
B°-module. Let ¢,; be a set of matrix units for ¢FG. If w is in
¢Be, set

T (@) = ; Er 5y

7;;(x) commutes with each of the matrix units. Since F is the center
of B, it commutes with ¢F'G. Thus it commutes with FG. In other
words, 7,;(x) is in B°. The map 7;;: eBe — B is a right B®module
map by the argument at the beginning of this paragraph. We claim
that the map

N7 eBe — P >, B
) 2%
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is injective. For if >, ¢€,.2¢;, = 0 for all ¢ and j, multiple on the
right by ¢,;;:

€.0€;; =0 for all 7 and j.

Hence exe = 0. But x € eBe implies exe = 2. We finish this paragraph
by noticing that Levitzki’s theorem says that B¢ is right noetherian.
Since eBe is isomorphic to a submodule of a finitely generated B¢-
module, eBe is finitely generated.

Next we show that if e and f are different elements of & then
fBe is a finitely generated right B®module. (Of course it is a B%
module as above.) Since B is simple, BeB = B. Thus we can choose
v, € fBe and u, € eBf so that

=2 vu,.

Define @: fBe— @ 3., eBe by o(y) = (w;%), a right Bmodule map.
o(y) = 0= wu,y = 0 for each t = (3, v;u;)y = 0= fy = 0. But fy = v.
Hence @ is injective. Finish the argument as before.

Because B = 3, ;.. fBe, B is a finitely generated right B®-module.

Proof of Theorem 1. Induct on the order of G. Assume G is
simple.

Let ¢ be a centrally primitive idempotent in R. eR is a simple
artinian ring. Moreover the stabilizer H = Stab, (¢) acts on ¢R and
1/|H|eceR. By Lemmas 2 and 3, eR is a finitely generated right
(eR)?-module.

Clatm. (eR)* = e(R°).

Certainly e(Rf) < (eR)”. Let G = U,.r YH be a coset decomposi-
tion of G with1eI'. G permutes the centrally primitive idempotents
of R and for ¢ = B in I', % +# fe. Equivalently, if Y% 1 is in I,
e(e) = 0. If xe(eR)? define t(z) = 3,.,(2). If ge@G, {g7|vel}
are also coset representatives for H. Thus %q(x) = t(x). That is,
tr(x)e R°. But ety (x) = 2 by the remarks above about multiplying
idempotents. Thus (eR)? < (eRF).

We now know that eR is a finitely generated right e(R¢)-module.
That means eR is a finitely generated R®-module. Since R = Y, ¢R,
we are done.

2. Theorem 2 and its relatives.

LEMMA 4. Let A be o semiprime ring. Assume G 1s o finite
group of automorphisms of A and A has no |G|-torsion. Then tr,
does not vanish on any monzero right ideal of A.
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(Here trg(a) = >, (‘a).)

ged

Proof. Suppose I is a right ideal of A4 with ¢re(l) = 0. If
J = ;e¢?I then J is a G-invariant right ideal of A with try(J) = 0.
By [2], J is nilpotent. But the only nilpotent right ideal in a semi-
prime ring is 0.

Proof of Theorem 2. S¢ is left Goldie, so according to [6], S
is (semiprime) left Goldie. Let R be the left quotient ring for S;
R is semisimple artinian. By Theorem 1 we can find a finite set of
generators z,, ---, z, for R as a right R%module. Choose a regular
t and s, both in S such that z, = t's,.

R=37t"'s;R°=1tR = >, s,R° ButtR = R since{ is invertible.
Thus we assume z,¢S.

Define T: S—@P 32, 8% by T(a) = [tre(lex,)],. T is clearly a
left S%module map. We will be done once we prove that T is
injective.

T(z) = 0 implies try(ax;) = 0 for all 4. But tr, is a right R°-
module map. Thus érg(aR) = 0. By the previous lemma, a = 0.

We have actually proved that S is a finitely generated S%-module!

One might well ask whether the requirement that S have no
{G|-torsion can be dropped. Consider the following counterexample.
Let F be a field of characteristic p > 2 and let @ be the free group
on 2 and y. If S denotes the ring of two-by-two matrices over the
group algebra F[®] then S is semiprime but not noetherian. Let G
be the multiplicative subgroup of S generated by

o Lo lo e [o ]

G is isomorphic to the semidirect product of Z/p P Z/p @ Z/p with

Z[2. Since char F = 2, S[‘l’ il is the collection of diagonal matrices.

The only diagonal matrices fixed by [é ﬂ are the scalar matrices.

Now a simple calculation shows that S¢ consists of those secalars in
the center of F[®]. But it is well known that the center is F, a
patently noetherian ring.

However, the |G|-torsion restriction is not needed when S is
(semiprime) commutative or, more generally, when S has no nilpotent
elements. There are several difficulties in proving the last statement
along the lines of Theorem 2. First, there are division rings on
which ¢tr, vanishes. Even if this objection is met, our induction and
restriction techniques all ignore the question of fidelity of action.
Reconsider, for instance, Lemma 4. The Bergman-Isaacs theorem
states that if H is a group of automorphisms of J and trz(J) =0
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then J = 0. Thus implicit in our argument is the proposition that
tre(J) = 0 =trgx(J) = 0 where K is the kernel of the action of G
on J. The implication is true because J has no | K|-torsion.

We avoid these complications (and, of course, replace them with
other complications) by refining the notion of trace. Let G be a
finite group acting on a ring R. If A is a subset of G define ¢,:
R— R by

ta(r) = 3, ().
AEA
t, is an R%Dbimodule map. Notice that ¢r; = t..

LEMMA 5. Let G be a finite group acting on the division ring
D. Then there is a subset N S G such that t, is a mapping from
D onto D°.

Proof. Suppose we can find A such that ¢, is a nonzero func-
tion from D into D% Say de D such that ¢.(d) = w = 0. If ze Df,
t(@dw'x) =t (d)w 'z = z. Thus t, is surjective.

We argue by induction on the length of a composition series for
G. If G is simple and does not act faithfully then G acts trivially;
choose A\ = {1}. If G is simple group of automorphisms, a result of
Faith ([3]) shows that t; is not identically zero.

When G is not simple choose HAG with H+#1 and H+ G. By
induction there is a subset A & H such that ¢,: D — D7 is surjective.
G/H acts on D¥, so we can find C £ G/H such that ¢, D7 — D¢ is
surjective. If B consists of representatives in G for elements of C
then t; = t;. Now &z, = tp-t, is the desired map.

Let S be a ring without nilpotent elements. Suppose G is a
finite group of automorphisms of S such that S¢ is left noetherian.
By [7] S is a semiprime left Goldie ring. By the Faith-Utumi
theorem the quotient ring, B, of S has no nilpotent elements. Let
¢ be a centrally primitive idempotent of R.

LEMMA 6. SNeR is a finitely generated left S-module.

Proof. We first observe that the left quotient ring of SNeR
in eR is the entire division ring eR. Choose z and s in S with z
regular such that e = z7's. Then s =zecSNeR. If zeeR choose
q and w in S with ¢ regular such that gx = w. Then (sq)xr = sw.
But sq and sw are in SN e¢R with sq¢ regular when considered as an
element in eR.

H = Stabg (e) is a group which acts on SNeR. Pick a trans-
versal, G = I'-H. As in Theorem 1, if a€S” N ¢R then
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t(e)e S and e-ty(a) =a.

Thus t, is an injective left S®-module map from S¥ N e¢R into S¢.

The Galois theory for division rings ([5]) as applied to eR implies
that eR is a finite dimensional right (¢R)“-vector space. As in the
proof of Theorem 2 we can choose a basis %, -+, 2, in SNeR. Use
Lemma 5 to find A & H so that ¢, is nondegenerate on e¢R. Define
T:SNeR—P >, 8% by

T(a) = [tr.a(az)]is -

It is easy to check that T is a well defined left S%module map.
The lemma is completed by showing that T is injective. Suppose
o+ 0 and T(a) =0. Then ¢-t\(ax;) =0 for each ¢. Since ¢, is
injective, t,(ax,) = 0 for each i. That is, t.(a-eR) =0. But eR is
a division ring: a-eR = eR. We have contradicted the nonvanishing
of ¢,.

THEOREM 3. Let S be a ring without nilpotent elements. If G
s a finite group of automorphisms of S and S¢ is left noetherian
then S is left moetherian (in fact, is finitely generated as an S%
module).

Proof. So far we have proved that >,,(SNeR) is a finitely
generated left S®-module, where the sum is taken over the centrally
primitive idempotents of R.

As observed in the first paragraph of Lemma 6, SN eR contains
an element invertible in eR. Consequently there is an element
de2(SNeR) which is invertible in B. Define f:S—23(SNeR) by
f(s) = sd. Since f is an injective left S®-module map, S is a finitely
generated left S%module.
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