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In this paper, we give a formula for the normal part of
the Laplace-Beltrami operator with respect to the second con-
nection on a foliated manifold with a bundle-like metric. This
formula is analogous to the formula obtained by S. Helgason.

l Itroduction* We shall be in C°°-category and manifolds are
supposed' to be paracompact, connected Hausdorff spaces.

Let M be a complete (p + <7)-dimensional Riemannian manifold
and H a compact subgroup of the Lie group of all isometries of
M. We suppose that all orbits of H have the same dimension p.
Then H defines a ^-dimensional foliation F whose leaves are orbits
of H, and the Riemannian metric is a bundle-like metric with res-
pect to the foliation F. A quotient space B = M/F is a Riemannian
F-manifold [5]. Let LD be the Laplace-Beltrami operator on M
with respect to the second connection D[8], and let Δ{LD) denote the
operator defined by (*) in § 4. Our goal in this paper is the follow-
ing theorem:

THEOREM. Let LD be the Laplace-Beltrami operator on M with
respect to the second connection D and LB the Laplace-Beltrami
operator on B with respect to the Levi-Civita connection associated
with the Riemannian metric defined by the normal component of
the metric on M. Then

A{LD) = δ~1/2LBoδ1/2 - δ~1/2LB(δ1/2)

where δ is the function given by (**) below.

This theorem is analogous to the following result obtained by
S. Helgason [2]: Suppose V is a Riemannian manifold, H a closed
unimodular subgroup of the Lie group of all isometries of V
(with the compact open topology). Let WaV be a submanifold
satisfying the condition: For each w eW,

(H-w) nW={w}, Vw = (H w)w 0 Ww ,

where 0 denotes orthogonal direct sum. Let Lv and Lw denote the
Laplace-Beltrami operators on V and W, respectively. Then

Δ(Ly) = δ~1/2Lwoδι/2 - δ~1/2Lw(δ1/2)
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where Δ(LV) denotes the operator called the radial part of Lv and
d is the function given by dσw = δ(w)dh (dσw is the Riemannian
volume element on the orbit H w and dh is an H-invariant measure
on each orbit H w = H/{the isotropy subgroup of H at w}).

2. Definition of F-manifold [1, 6, 7]. The concept of F-mani-
fold is defined by I. Satake. Let M be a Hausdorίf space. A C°°-
local uniformizing system {U, G, φ) for an open set U in M is a
collection of the following objects:

U: a connected open set in the m-dimensional Euclidean space
(or C°°-manifold).

G: a finite group of (^-transformations of U.
ψ\ a continuous map from U onto U such that φ°σ = φ for

all σ € G, inducing a homeomorphism from the quotient space
UJG onto U.

Let {U, G, φ}, {U', G\ φ'} be local uniformizing systems for U,
U' respectively, and let UaU'. By a C"-injection X:{U, G, φ}->
{U\ G\ φ'} we mean a C°°-isomorphism from 0 onto an open subset
of ϋf such that for any σ e G there exists σf e G' satisfying relations
φ — φΌ\ and λoσ = α"'°λ.

A C°°-F-manifold consists of a connected Hausdorίf space M and
a family &~ of C^-local uniformizing systems for open subsets in
M satisfying the following conditions:

(I) If {ϋ, G, φ}, {Ur, G\ φ'}e^ and Ua U', then there exists
a C°°-injection λ: {ϋf G, φ) ->{ϋ', G\ φ\

(II) The open sets U, for which there exists a local uniformi-
zing system {U, G, φ} e άf, form a basis of open sets in M.

The set R of all real numbers is regarded as a F-manifold
defined by a single local uniformizing system {R, {l}, 1}, then a
CMunction on a F-manifold (M, ̂ ~) is defined as a CTO-mapM^i2
defined by a C°°-F-manifold map (ΛΓ, ̂ )^{R, {R, {1}, 1}).

A C°°-F-bundle over C°°-F-manifold is also defined, and in par-
ticular the tangent bundle (TM, J^*) of a (T-F-manifold (M, ^)
is defined. Let (Λf, &*) be a C°°-F-manifold, then an fe-form ω on
(M, ^ * ) is a collection of A-forms {ω }̂, where α>̂  is a G-invariant
A-form on C7 such that α>£ = α)̂ /oλ for any injection λ: {U, G, φ}—*
{U',G',φ'}{{U9G,φ}9 {U',G',φ'}eJϊ~), and if the support of ω is
contained in U — φ(U),

where NG denotes the order of G. A Riemannian metric g on (ikf,
^~) is a collection of Riemannian metrices {gu}, where ^^ is a Cr-
invariant Riemannian metric on ZJ satisfying some condition with
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any injection λ: {ϋ9 (?, φ) -+{U'9 G\ φ'}.

3* Review of the results from [4, 5]. Let M be a complete
(p + g)-dimensional manifold with a "bundle-like matric" with respect
to a ^-dimensional foliation F. We suppose that each leaf of the
foliation F is closed.

The quotient space B = M/F is the space formed from M by
identifying each leaf to a point, and let π: M—>B denote the identi-
fication map. H(S) denotes the holonomy group of a leaf S. Since
M has the bundle-like metric with respect to F and all leaves are
closed, H(S) is a finite group for any S and B is a metric space
defining the distance between two points of B to be the minimum
distance between them considered as leaves is M. B is a connected
Hausdorίf space, since it is metric space and is the continuous
image [of M under π. Given any point b e By let S = π~\b). Let
U be a flat coordinate neighborhood of some point of S. Since H(S)
may be considered as a group of isometries of the sphere of unit
vectors orthogonal to the leaf S at some arbitrary point of S, H(S)
operates the g-ball orthogonal to S. Thus we may consider that
H(S) operates on U such a manner that {Z7, H(S), π) is a local uni-
formizing system for the neighborhood π(U) in B. The natural
injection map of two such local uniformizing systems are of C°°.
Thus B is a C°°-F-manifold. Since H(S) is an isometry on the
normal vectors at a point of S, the normal component of the metric
of M defines a Riemannian structure on B. Thus B is a Riemannian
V-manifold.

4* Laplace-Beltrami operator with respect to the second
connection* Let M be a (p + #)-dimensional manifold with a Rie-
mannian metric < , > and a p-dimensional foliation F. Let {U, (x\
• , xp, y\ , yp)) be a flat coordinate neighborhood system, that
is, in U, the foliation F is defined by dya — 0 for 1 ^ a ^ q. Here-
after we will agree on the following ranges of indices: 1 ^ i, j ,
k ^ p, 1 ^ α, β, 7, § ^ q.

We may choose in each flat coordinate neighborhood system
(C7, (x\ " , xp,y\ , 2/α)) 1-forms w\ , wp such that {w1, , wp

9

dy1, •••, ώ̂ /9} is a basis for the cotangent space, and vectors v19 •••,
vq such that {3/dα;1, , d/dxp, vί9 , vg} is the dual base for the
tangent space. Then we may get

wu. = dx* + Aidya , va: = ——— A«-—- .

We may choose A*a such that (d/dx*, va) = 0, then the metric has
the local expression
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ds2 = giβ{xy y)wiw3' + gaβ(x, y)dyndyβ

where

9Λ- = ( 7 7 , τrγ) > 9ah = (v«f vβ)

\dxτ dx3 I

and x: = (a;1, , of), y: = (3/1, , yq).
We may uniquely define the "second connection" D on M as

follows (cf. [8]);

/ r, \ Π d _ pk O Γ) 9 __ pk O

Sα;̂  dxh dx3 dxk

Dd/δxivβ = Γ; ̂ r , A^^s = Π ^ r ,

d d \ / Ώ . d 8 \ I 3 n , 3. d 8 \ I 3 n , 3 \

va(vβ, vr) = < D V α v ^ v r> + <^^, J5V αv r> »

( c )

dxk

where T denotes the torsion of D, that is, for any vector fields X,
Y on M, T(X, Y): - DXY - DYX - [X, Y] ([ , ] denotes the usual
bracket operator). Note that, in general, the torsion of D doesn't
vanish. If the metric has the local expression

ds2 = gid(x, y)wiwj + gaβ{y)dyadyβ ,

the metric is called a "bundle-like metric" with respect to the folia-
tion F. Hereafter we suppose that M has a bundle-like metric
with respect to F. Then we get

—— (va, vβ) = (Dd/dxiVa, vβ) + (va, Dd/dxiVβ) .
dx1

For a vector field X on M, div^X is defined by

div^X: = Trace (Y > DYX) ,

for any vector field Y on M. For a function / on M9 grad^ / is
defined by

gradB/: ^
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where (gίj) and (gaβ) are inverse matrices of (giS) and (gaβ) respecti-
vely. We define the Laplace-Beltrami operator LD with respect to
the second connection D by

LD(f): =

that is,

LD(f) = 9iS/τ(/(/)) PnJτ
dxι \dXj I dxh

+ g"βva(vβ(f)) - g«βΓMf) .

Let B be the (Γ-F-manifold M/F. Let &{B) (resp. &(B) be
the space of C°°-functions (resp. C°°-functions of compact support)
on By and let & S{M) be the space of C°°-functions on ikf which are
constants on leaves. We may define a map Φ: &S(M)~->%?{B) by
Φ(f)(π(m)): = f(m) where fe^s(M), meM and π:M—>B, then Φ
is of one-to-one. Let ξ?°s(M): = Φ " 1 ^ ^ ) ) .

It is clear that fe&s(M) if and only if 3/3aj'(/)=0 for l ^ i ^ p .

LEMMA. If feϊ?s(M), then LD(f)eξ?s(M).

Proof. For fe&s(M), we get

Since gα̂  = p^G/) and Γ^ = (Il2)gr'{va(gδβ) + v̂ (grαδ) - vβ(flrα/ί)}, we get
g«β = gr^(y) and so dlBx\LD(f)) = 0. Thus we get LD(f)eϊ?s(M).

REMARK. Let L be the Laplace-Beltrami operator with respect
to the Levi-Civita connection associated with the bundle-like metric.
In general L(f)$&8(M) for feϊ?s(M).

For LD and / 6 &(B), we define Δ{LD) by

( * ) A{LD){f){b): = LD{φ-\f)){π-{b)), b e B .

This is well-defined by lemma. Roughly speaking, Δ(LD) seems to
be an operator projected on B of the normal part of LD.

5* Proof of theorem* Using the same notations as above
sections, we give a proof of our theorem.

The isotropy subgroup Hm at each point meM is compact and
the orbit H m is compact. We fix a Haar measure on H and a
Haar measure on Hm, we get an iϊ-invariant measure dh on each
orbit i ϊ m = H/Hm. Since M has the bundle-like metric, ds2 =
ffisfa y)™*™5 + gaβ(y)dyadyβ, the volume element dM of M is given by
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dM = G(x, y)dx1 A Λ dxp A dy1 A Λ dyq

(= G(x, y)wγ A Λ wp A dy1 A Λ dy9)

where

For a flat coordinate system (U, (xι, , xp, y\ , yq)) and the
projection π: M—>B,

dσ = G\y)dyι A Λ dyq ,

where G\y)\ = l/ |det (gαi9)|, is regarded as the volume element dΰ
of B, since {E7, JΪ(S), π} is a local uniformizing system for π(U) in
5. Also we get

G(x, y) -

However

i/| det (̂ -(a?, ί/))| ^ 1 Λ Λ ^ p

is the volume element ώSw on the leaf Sm through a point m — (x, y)
(that is, on the orbit H m). Thus, if fe&°s(M) we get from the
Fubini?s theorem that

fdM = \ \\ fdsJdB(π(m))

where " ?? denotes the image under Φ. dSm is invariant under H,
so it must be a scalar multiple of dh,

dSm = δ(m)dh .

Then the function δ belongs to &S(M). We put

(**) δ: = Φ(δ) .

Thus we get

fdM = ( Γί f(h-m)dh\π(m))dB(π(m)).
'. JBLJH-m J

The normal component of the bundle-like metric ds* = gij(x, y)wιwjjr
gaβ(y)dyadyβ is ds\ = gaβ(y)dyadyβ, thus LB is defined by the Levi-
Givita connection associated with the metric defined from dS2

N.
Thus we observe that

Δ{LD) — LB + lower order terms .
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The operator LD restricted to &°S(M) is symmetric with respect to
dM{cί. [8]), that is,

(***) ( LD{fγ)f2dM =
J

for Λ, /2 e gf %(M).
For feξfs(M) and meM, we get

ί /<Z/i = f(π(m))c
JH m

where c denotes a nonzero constant I dh. Putting fι — Φ{f^), /2 =

Φ(Λ) for /„ /2 e &%{M), we get

LD(f1)f2dM= \ \\ LniA
M JBLJH'm

= c* \
JB

Thus we get from (***)

JB

for /„ / 2 e8Ί(Λί) . By the definition of A{LD) we get LD(f) =
A{LD){f) for feξ?s(M), so

= \ fΛLD){f

This expression implies that Δ{LD) is symmetric with respect to
MB. Since LB is symmetric with respect to dB, δ~1/2LB°d

1/2 is
symmetric with respect to δ dB and it clearly agrees with LB up
to lower order terms. The symmetric operators Δ{LD) and δ~1/2LB°δ

1/2

agree up to an operator of order ^ 1, thus this operator, being
symmetric, must be a function. By applying the operators to the
constant function 1, we get

Δ{LD){1) - δ~1/2LBod1/2(l) = -δ~1/2LB(δ1/2) .

Thus

A{LD) - δ~1/2LBoδ1/2 - δ~1/2LB(δ1/2) .

This completes the proof of our theorem.

REMARK. The example of "iϋS-manifold of almost fibered type"
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given by S. Kashiwabara (Apendix 5 in [3]) is a foliated manifold
with a 1-dimensional foliation and bundle-like metric. Each leaf of
the foliation is a "S-geodesic." This example is constructed from
the space D which consists of all points x1eι + x2e2 + x3e3 + te± such
that \χt\^l{i =z 1, 2, 3), 0 <£ t <£ 1, where (eL, e2, e3, β4) denotes an
orthonormal frame with origin o in Euclidean 4-space. If S-geode-
sics are of direction of eif a leaf through the origin o has nontrivial
holonomy group. Then δ = 1.

REMARK. The semi-reducible Riemannian space are a special
class of foliated manifolds with bundle-like metrices. The metric
of such a space has the local expression

d s2 = σ(y)qij(x)dxidxj + gaβ(y)dyadyβ

(cf. [4]). Then δ is defined from σ.
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