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Any complex valued function F with F(0)=0, which is
Lipschitz continuous at 0 operates on all weighted Orlicz sequ-
ence algebras. If the weight increases sufficiently rapidly the
class of functions which operate is strictly larger than the above
class.

In this note we investigate the functional calculus of weighted Orlicz
sequence algebras. We show that such an algebra has non Lipschitz
continuous functions operating on it, if the weight increases sufficiently
rapidly. On the other hand one knows: Let & be a commutative
semisimple complex completely regular Banach algebra with identity and
hermitian involution. Assume a function F: (- 1,1)— R with F(0)=0
and lim,_,|F(t)/t| = © operates on &. Then & is the algebra of all
continuous functions on its spectrum [1, Corollary 8.5]. This note was
motivated by a paper of F. Gulick [2], who investigated the functional
calculus of commutative ,-subalgebras of €,(#), 1 = p <=, the algebra
of all compact operators x on some Hilbert space # with |x|, =
(Tr(x*x )PP < oo,

Let & be a commutative *-subalgebra of 6,(¥),1 = p <, for some
Hilbert space #. By the spectral theorem the elements of & can be
diagonalized simultaneously, i.e. there exists a sequence of finite dimen-
sional projections (P,).c;, such that each x € o can be written as
x=2A((x)P, and |x|=(Tr(x*xy?)" =E|A(x)[ dimP)". Clearly
the spectrum of & can be identified with I. The Gelfand representation
of & leads then to the following class of Banach algebras. Let I be a set
and e a real valued function on I with e(i) = 1, the weight function. Let
A =1,.(I),1=p <o be the system of all complex (real) valued functions
x on I with x|, = (Z|x(i)[e(i))”? <. Such an algebra one may call a
weighted [?-algebra. Hence in [2] Gulick actually studied the functional
calculus of weighted [?-algebras. It is natural to investigate the problem
of the functional calculus in the context of the larger class of Orlicz
sequence algebras, since it is essentially determined by the weight
(Lemma 4) and depends to a lesser extent on the Orlicz function. OQur
results are considerable extensions of those in [2, §5], even in the case of
weighted [”-algebras.

Let M be a continuous nondecreasing convex function on [0, ®) with
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(1) M@0)=0, M(x)>0 for x>0 and M(»)=oo.

We may normalize M by
) M()=1

because of {3, Prop. 1.4.2]. Moreover we shall assume that M satisfies
the A,-condition at 0 [3, prop. 1.4.1] i.e.

(3) lim sup M(2x)/M (x) <<=

It suffices to require the A, condition at 0 only, because we only study
algebras of sequences. Because of (3) we may moreover require M to
be continuously differentiable, [3, Remark on p. 68]. A function M
satisfying these requirements we shall call an Orlicz function
henceforth. Let M be an Orlicz function. Then M’ is

increasing. This and M(x) =f M'(t)dt yields immediately
0

4) M(kx)= kM(x) for k=1.
Later we shall also need
(5) lim M~'(h,r,)/M~\(r,) = = for each sequence r, \\0 and h, .

By r, \\0 we mean that r, is a sequence of positive numbers with
r, > r,., and limr, = 0.

If (5) were not true, choose a subsequence {r,} with M~'(h,r, )=
ssM™'(r,,) and s, = K. To this apply M and set y, = M '(r,.). We get
h.M(y.)= M(Ky.)= K'M(y,) by (3), a contradiction.

Let M be an Orlicz function and let I be a set. Further let e be a
real valued function on I with e(i)= 1. For a complex valued function x
on I we can then define

(6) due (x) = 2 M(1x(D)])e (i)

If such a function x satisfies ¢y, (x) < one also has ¢u.(Ax) < for all
complex A because of (3). Similarly one shows with (3) that
Do (X), dume(y) <o implies ¢y . (x + y)<o. Hence the set ly,(I) of all
complex (real) valued functions x with ¢y, (x) < is a linear space. It
can be normed by

) nxu=inf{t¢¢M,e (%x)él}.
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Let x,y € ly.(I) with |[x|[=1and|ly||[=1. Then |x(i)|=1foralli and
bue(x - y)=ZM(x(D)y()De(D)=ZM(y@))e(()=1 or [x-y[=1
Thus [,,.(I) is even an algebra.

LEmMA 1. Let M, e and o = I, (I) be as above. Then A is a
complex (real) semisimple Banach algebra with spectrum 1. It is separa-
ble iff 1 is countable.

The proof of this lemma is rather easy and therefore omitted. Such
an algebra o = Iy, (I) we shall call a weighted Orlicz sequence algebra
with weight e and Orlicz function M. Since any x € & satisfies: supp x
is countable and x(i)—0 as i — «, the algebra & is generated by its
minimal projections. This holds also for each closed subalgebra % of
o. Let B CA besuch asubalgebra of o and let {p,},; be its system of
minimal idempotents. Then p, is the characteristic function of some
finite subset I CI Hence we can write I=1,UU, I, where U
denotes disjoint union. Thus B is of the form I, (J) with f(j)=
Zene(i).

Let S be an open set in R or C and let F be a real or complex valued
function defined on S. We say that F operates on the function algebra
A, if Fea € A for each a € o with range in S. The set of all functions
operating on & defines the functional calculus of .

For the remainder of this paper we shall fix M and the weight e and
consider only complex algebras, though the results are true also in the
real case. Since ly.(I) has the functional calculus of all complex
functions, if I is finite, we shall assume from now on that I is
infinite. Regarding the functional calculus of &/ = ;. (I) one can easily
show.

LEmMmA 2. (i) Let F operate on o then F is continuous at 0 and
F(0)=0.

(i) Let %, be the class of all functions F with F(0)=0, which are
Lipschitz continuous at 0, ie. |F(z)|= K|z | for 0<|z|= 8 for some
o >0 and Kr >0. Then ¥, operates on A.

(ii1)) If F operates on o also the absolute value of F operates on .

(iv) If F operates on o and if G is a function with |G(z)|=|F(z)|
for all z, then also G operates on .

Assume a function F& ¥, operates on &{. Then there exist z, € C
with |z,| N0, such that |F(z,)/z,| = n. Because of Lemma 2 (iv) also
the function
nz, z-=z,

G(z)= {

0 otherwise
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operates on . Then also the function H with

nlz.| z=|z]

H(z)={

0 otherwise

operates on &. Hence we may assume without loss of generality that F
has the form

®) F(z)= {

nz, 2z =2,
0 otherwise

for some sequence z, with z, 0. Let {n} be a strictly increasing
sequence of natural numbers. By Lemma 2 (iv) also the function G with

kz,, z =2z,

G(z)={

0 otherwise

operates on &. Since we shall use this technique quite often in the
sequel we say that G is obtained from F by pruning. Though the
functions F (8) are rather discontinuous, the continuity of functions
operating in & is not an essential condition, with the exception of
continuity at 0.

LEmmA 3. Assume a function F & ¥, operates on . Then there
exists a continuous G & ¥, operating on A.

Proof. We may assume that F has the form (8). Now let §, =
imin(z, — Z,.1, 2,1 — z,) and define the function G by

nz, z =2z,
G(z)= 4 linear on I, =(z,— 6, 2, +6,)
0 otherwise.

Then G is continuous and G %,. Let x € . We want to show
Gx € o. For this it suffices to assume x(i)=0 or x(i)€ UI,. Now
define y by y(i)=0if x(i)=0 and y(i) = z, if x(i)E I, Then ix(i)=
y(i)=2x(i) and y€ . By assumption Gy=Fy€&€ . Since
(Gx)(iI)=(Gy)(i) we see Gx € 4.

By [,.(I), 1 = p <, we shall denote the algebra I, (I) with M = x?.

Lemma 4. of = ly . (I) has the functional calculus of ¥, only iff
l,.(I) has only &, operating on it.
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Proof. (a) Assume a function F & ¥, operates on &. We may take
F to be of the form (8). Then the function G with

M(nz,) z=M(z,)
G(z)= {
0 otherwise
operates on [, (I). By (4) G & %,.
(b) For the converse replace M by M~ and use (5).
This lemma will simplify our computations considerably.

LEMMA 5. (i) Let JCI and A(J)={x € o |support x €J} then
A (J) is an ideal and each function operating on { also operates on s (J).

(i1) Let e and f be weight functions with (1/K)e = f = Ke for some
K >0. Thenly.(I)= ly;(I) and both norms are equivalent. In particu-
lar both algebras have the same functional calculus.

(i) If e is bounded ly.(I) has only the functional calculus of %,.

(iv) Ewvery nonseparable l,.(I) has only the functional calculus
of L.

Proof. (i) and (ii) are trivial (see also [3], p. 68) (iii) has been shown
by Gulick [2] for [,,(N) but this proof extends easily to this case. It is
also possible to adapt the proof of Theorem 1 below to this situation.

(iv) Since e(i)= 1 and because of (ii) we can replace e by an
equivalent weight function with integer values only. Hence there is not
loss of generality to assume that e has only integer values. If [, (1) is
nonseparable I is uncountable. Now let I, ={i € I|e(i)=n}. Then
I = UI, and some I, must be infinite. By (iii) only ¥, acts on «(I,),
hence by (i) only %, operates on 4.

Because of this lemma we shall assume from now on:

I is countably infinite.

e is integer valued.

Each I, = e¢”'(n) is finite,
since otherwise & has only the functional calculus of £,. Thus we may
identify I with N. Moreover this identification may be constructed such
that the sets I, I,, - - - are mapped onto successive intervals on N. In this
way e is mapped onto an increasing function on N with valuesinN. For
the remainder we shall make these assumptions on I and e and denote
lM,e (N) by lM,e«

Let ey, e,, - - - be the values of ein increasing order. By assumption
there exist a strictly increasing sequence n, of natural numbers with

9) e(n)=¢ for nm_,=n<n, k=1,---

where ny, = 1.
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The number m, = n, —n,, we shall call the multiplicity of
e.. Clearly the set {(e,, m,)} determines e uniquely. For this we write

e~ {(ek’ my )}

LEMMA 6. (i) Let e ~ {(er, mi)} and f ~{(e, L)}  If only &, oper-
ates on ly, and m, <, for all k, only £, operates on l;.

(i) IfK'=m/l =K for some K >0 and all k, then ly,, and ly;
have the same functional calculus.

Proof. (i) Follows immediately from Lemma 5(i).

(i) We may assume m, = [, otherwise we use {(e,, min (m,, )} as
an intermediate weight. By Lemma 5(i) any F operating on ly, also
operates on ly,. Conversely let F operate on /,,, andlet x € ly;. Since
L/m, =K we can write x = x,+---+x, with x,-x; =0 for i#] and
suppx; Ne '(e,) has less than m, elements. Then Fx = Fx,+---+
Fx, € ly;; since each x; belongs to a subalgebra of [, ;, which is of the form
D -

With these preparations we can now show

THEOREM 1. Lete ~ {(ex, m)} be a weight. Then s{ = Iy, has only
the functional calculus of ¥,, if these exist a constant K >0 with
ek+,/€k =K for a” k.

Proof. The proof is indirect and divided into two steps. In the first
step we modify the weight and the function and in the second we
construct a suitable x € .

(a) Without loss of generality, we may assume & = [,, with m, =1
for all k (Lemma 5, 6). Assume a function F & ¥, operates on &. We
may take F to be of the form (8) for some positive sequence z, \y 0 with
z,/z,.:1= 2K even. Since e,.,/e, = K for all k, there exist a strictly
increasing sequence of natural numbers [(n) with 1=z, e/, =
K. Then also the function F with z, = ey}, operates on &. By using
the pruning procedure if necessary we can even achieve [(n)= n’ and
el(n+1)/6’1(n)z n'.

- (b) Since e;../er = K there exists for each n = K a natural number
r(n) with I(n)=r(n)<l(n+1) and
—_—< << __1_
Kni= er(n)/el(n+1) =2
If we choose r(n) maximal with this property, r(n) is even unique. Now
let x € o be defined by

einey m=r(n), n=12--:
x(m):{

0 otherwise.
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Then [x|i=Zeme:n<® but |Fx|, =2 (n+1)emeinn =, which
gives the desired contradiction.
This result is a considerable extension of Theorem 5.4 of [2].
Above we had already considered the normalization of the weight
e. This normalization can be carried further. In fact one can easily
show that for any weight e and constant K >1 there exist a weight
f~{(fo, )} with (1/2K)f <e <2Kf and f.../f. = K for all k.

THEOREM 2. Let e ~{(e,, m,)} be a weight and assume e,.,/e, =
K>1 and me, -e;s,, =K' for some K and K' for all k and
liminf meceiti=0. Then there exists a continuous but not Lipschitz
continuous function F operating on o = l,.

Proof. Define inductively a sequence r, of natural numbers by
i r=1
(U) Foo1 > 1y
(i) m,_ e, e, =2"
If r, is defined in this fashion, let for each [ € N p, denote the smallest
number in {r,/n EN}N{l+1,1+2,---}. Then the series

o et~ !

12]7’}'11616;,1 = 2 z mleler_klﬂ

k=0 I=r

converges, since for r, =1 <r.,, we have the estimate

m;-ee; = (meeil)(emer) (e, e,

= K’K‘('kﬂ’l“z)?’_k.

Hence there is a positive sequence h, /e such that £7;mhee,' con-
verges and such that

(10) en+1 g hn+1

. h n=12--+ h,=1

(b) With {r,} and {h,} determined as above let now F be defined by

h, -e;! ifz=e;
F(z)=

0 otherwise

then F& %,. If F operates on & = [,,, there exists also a continuous,
not Lipschitz continuous, function operating on %. Now let x =
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(x.)El,,.. Wewanttoshow Fx € [,,. For this it suffices to assume that
x, €Esupp FU{0}. Hence we may write x, =€, - e, with €, =0,1.
Then we have

n—1

x| = ; > ecenl e <.

n=nj—i

This is only possible if €,# 0 implies r, > for almost all n with
n_-=n<n. Neglecting this exceptional set, we may thus assume
rm>1 for all n_,=n <n,. Then however we can estimate

® m—1

[x =D €., e =D mee,; <.
) =1

=1 n=n,_

Moreover we have

Ea -1

'FX '1 = Z Z enhmn)e r—ulnyel

I=1 n=m-

x m-l
=SS ety oo,
n h ptp Y
=1 n=n1- P, Ti(n)

n—1

éi > eh,e,'e; by (10)

1=1 n=m-

Hence Fx € [,, and the proof is completed.

Theorem 2 shows that the results in [1, Chapter 8] are close to
optimal. In fact the algebra l,, with identity adjoined is a normal
conjugate closed function algebra on which a continuous non
Lipschitz continuous function operates. (I thank the referee for point-
ing this out.)

This result also covers the last example in {2]. The conditions of the
theorem are not necessary for an F € &, to operate. For the proof one
only needs the existence of a sequence r, such that Tmee,’ <
. Nevertheless Theorem 2 is close to optimal, because

THEOREM 3. Let e ~ {(ew, m)} with eeiii—0 and mee;’ =€ >
0. Then only &£, operates on ly,, 1=p <.

Proof. (a) Because of Lemma 6 (ii), we may take € = 1 and because
of Lemma 4 we may take & = [,,. Assume F of the form (8) operates
on &. Now we have to distinguish two cases regarding F.



FUNCTIONS ACTING ON WEIGHTED ORLICZ ALGEBRAS 27

(b) Assume there exist a K > 1 and subsequences /(n) and k (n) of
natural numbers, such that K™' = ez, = K, then the function

e X = e
G(x)=

0 otherwise

operates on %. G can be obtained from K - F by pruning. Applying
the pruning procedure again if necessary, we may assume in addition that
€imy1° €m=2". Now define

e,‘(L) if n,(,.H:_<—m = n,(,,,_1+q(n)
x(m)=
O lf n’("),]+q(n)+1§m <n[(")—1

where ¢, is a natural number with q, = my,,-, such that g, - € )€1 1S
approximately 1/n* with an error of less than 2°". By our assumptions
this is possible. Clearly x € &, but Fx & o a contradiction.

(c) Assume now F as above. For every z,, there exists a natural
number f(n) with e, = z, < e By applying the pruning procedure
again, if necessary, we may assume even that each interval [e .1, €
contains only z,. Because of (b) we may assume that {z.e,.} and
{z'e;m} contain no bounded subsequences. Hence in particular z,'e;y,
diverges. By using the pruning procedure again if necessary we may
even assume 2.6, =2". Now define

z, if R =M < Ny 1 4,
x(m)=
O lf n,(")+ q,, é m é n[(")_ﬂ - 1

where the natural number g, is chosen such that q,z.e, is approximately
1/n* with an error of less than 27". Because e, <z, and
€rim1€mMimy = 1 this is possible. Then x € &f but Fx & A.
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