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This paper discusses absolute continuity of integrals, and
proves a version of the Radon-Nikodym Theorem and its con-
verse, within the framework of the constructive measure theory
of Bishop and Cheng.

1. Introduction. There can be few mathematicians who
remain unaware of the fact that much of their subject, as commonly
presented, has little or no computational significance. It will be conve-
nient to refer to such mathematics as 'classical', in contrast to the
alternative 'constructive' mathematics, in which

'every mathematical statement ultimately expresses the fact that if we
perform certain computations within the set of positive integers we shall get
certain results." [1, p. 2].

In other words, the constructive philosophy (that adopted throughout
this paper) insists that mathematics should be characterized by numerical
content and computational method.

A simple consequence of our philosophy is the recognition of the
familiar 'least upper bound principle' as an essentially nonconstructive
proposition: an algorithm for computing the suprema even of sequences
in {0, 1} would provide at a stroke a method for deciding virtually all the
outstanding unsolved problems of number theory [1, pp 6-7]. The
effects of this situation appear throughout the development of construc-
tive analysis. Thus, for example, we have no guarantee that the norm of
a given bounded linear functional on a normed linear space will be
computable (if it is, we call the functional normable); this means that we
have to adopt the following as our constructive version of

THE RIESZ REPRESENTATION THEOREM. A bounded linear func-
tional f on a Hilbert space H is normable if and only if there exists a

{unique) element ξ of H such that f(x) = (x\ξ) for each x in H.

The current revival of interest in the practice of constructive
mathematics is due largely to Bishop, in whose fundamental book [1]
there is developed a substantial portion of constructive functional
analysis and measure theory. More recently, Bishop and Cheng have
produced a much more elegant, and surely definitive, treatment of
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constructive measure theory [2]. In this paper we show how, within the
framework of that theory, the classical argument of von Neumann and
Stone [5, Ch 7] can be adapted to prove a constructive version of the
Radon-Nikodym Theorem for absolutely continuous integrals. This
both improves and extends Bishop's version of the Radon-Nikodym
Theorem [1, Ch 7, Thm 2], which applies only to measures on a locally
compact space.

Before proving our main theorem, we need some preliminary
material on absolute continuity and certain constructions with integrals
(§§2-4). Our definition of absolute continuity provides another illustra-
tion of the difference between the constructive approach and the
classical: the classical definition in terms of null sets is of little computa-
tional value—it is not so much null sets as their complements that are of
importance in integration theory—and so we are forced to adopt the
more positive 'e - δ ' definition, classically equivalent to the 'null sets'
definition in the case of a Σ-finite integration space.

Our proof of the Radon-Nikodym Theorem in §5 is another place in
which the failure of the least upper bound principle is effective: in order
to apply the Riesz Representation Theorem, we are obliged to assume
the normability of certain bounded linear functionals on Hubert spaces of
square-integrable functions. A second difficulty arises in connection
with domains of integrable functions: because there is no constructive
procedure for deciding whether or not a given point is in the domain of a
given integrable function, we are unable to extend such domains as freely
as can the classical mathematician. This situation is reflected in the
rather complicated form of the Corollary to the Radon-Nikodym
Theorem (which should be compared with the second half of the classical
proof given in [5]).

2. Integration spaces. Throughout this paper, X will be a
nonempty set with equality = and apartness ^ , F(X) the set of all
real-valued functions / defined partially on X and such that x^y
whenever f(x)^ /(y), and dmnf the domain of such a function /. We
assume familiarity with the material of [2].

Let L be a linear subset of F(X) such that \f\EL and / Λ 1 E L
whenever / £ L, and let I be an integral on L. We also write / for the
extension of this integral to the completion L,(/) of L with respect to the
seminorm | |/| |-* / j / | ; the extended integral I is then called the complete
extension of the original integral / on L, and L is known as an initial
integration set for the extension /.

We adopt the following notational conventions. Where no limits of
summation appear, Σn will always denote Σ"=1; similar remarks apply to
Vn, Λn, Un, Πn. If (αn) is a sequence of nonnegative numbers, we write
Σnαn < oo to mean 'Σnan is convergent'. We write / ^ g to indicate that
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f(x) ^ g(x) on a full subset of X (relative to the integral in question). If
Λ is a complemented set with indicator (characteristic function) χA, we
write A1, A0 for the subsets χΆι (0) of X respectively, and I A for
the measure IχA in the case that A is integrable.
(/ ^ r) is the complemented set

If / E F(X), then

({jcEX:/(x)^r} r {* e X :/(*)< r});

we give the obvious corresponding meanings to (/>r), (/=r) ,
(/ < r). Note that if / E L^/), then (/ ^ r) and (/ > r) are integrable
and have the same measure for all but countably many r > 0 [2, Thm 3.6].

We shall find good use for

LEMMA 1.

of fin L, φ0 =
Let f be nonnegative and integrable, (/„) a representation

- \Σn

k~=\ (n^ 2).
a representation of the integrable function Σnφn, Σn φn = f on the full set on
which Σn \fn I <oo? and (Σ^β, φn)Nsi converges in measure to f

Proof. As

and

= 1/1 =

throughout the full set F on which Σπ \fn \ < <χ, all but the last assertion of
the Lemma is clear. On the other hand, given e > 0 and an integrable
set A, we choose in turn a positive integer v so that

an integer N ^ v; and a number α with e < a < 2e and CN

(/- Σ^., φn ^ α) integrable. Then

e2 > l(f - 1 Iφn) S l(χCN(f - t

and therefore ICN < a 'e2 < e. Setting BN = A - CN, we now have BN

integrable, BN < A, I(A-BN)<e and \f ~ Σ^., φB |^BN < a < 2e.
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The integration space (X, L, I) is said to be finite if the function
x —• 1 is integrable; and X-finite if there exists a sequence X{ < X2 <
of integrable sets such that (χXn) converges in measure to 1. By abuse of
language, we also speak of X as being finite or X-finite. Note that our
definition of X-finite is different to that of Bishop and Cheng [2, Propn
4.4]. In the X-finite case, for each f in L the sequence (χxj) converges
in measure to /, whence (by the Dominated Convergence Theorem—
henceforth referred to as DCT) I(χxJ)-^If as n -*°°; in particular, if A
is an integrable set, then I(Xn Λ A)—>IA. We therefore may repeat the
proof of [1, Ch. 7, Thm 4] to obtain

PROPOSITION 1. If the integration space (X,LJ) is X-finite and (fn)
is a sequence of measurable functions which is Cauchy in measure, then
(fn) converges in measure to some measurable function /, and a subsequ-
ence of (fn) converges to f pointwise on a full set.

It follows from this that if X{ < X2 < is as sequence of integrable
sets with (χXn) converging in measure to 1, then UnX

ι

n is full.
Perhaps the most important example of an integration space occurs

when X is a locally compact (metric) space, L the space C(X) of
continuous, real-valued functions on X with compact support, and / a
nontrivial positive linear functional on C(X). The proof that (X, L, /) is
then an integration space is given in [2, pp 67-74]; a considerable
simplification of the most difficult part of the proof—the verification of
the constructive equivalent of countable additivity of the integral—is
described in [4]. To prove that the complete extension of such an
integration space is Σ-finite, choose a in X and a sequence (rfc) T °° of
positive numbers such that the closed balls B(α, rk) are compact [1, Ch. 4,
Thm 8]. Define functions gn (n ^ 1) in C(X) so that 0 ̂  gn ^ 1, gn(x) =
1 for x in B(a,rn) and gn(jc) = O when d(a,x)> rn+I. Then choose β
with 0< β < 1 so that Xn=(gn = β) is integrable for each integer
n ^ 1. Then Xx < X2 < and U n δ l X i = X. Let A be an integrable
set, e > 0 and choose h in C(X) so that I\χA - h | < e. Let K b e a
compact support of /ι, choose v so that KCXl, and set B =
A Λ Xv. Then B < A and

Also, if n ^ v, then 11 - χXn\χB

 = 0. Hence χXn f 1 almost everywhere
and (X, Lλ(I), I) is X-finite.

3. Absolute continuity. Let (X, L, /) be an integration
space, and / the complete extension of another integral originally defined
on L. We say that / is I-absolutely continuous if there is an operation
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δ: R + ->R+ (called a modulus of I-absolute continuity for /) such that,
for each β > 0 and each complemented set E that is both J- and
/-integrable, IE < δ(e) entails JE < e. (The meaning of such expres-
sions as "/-integrable", "/-full" should require no explanation.)

LEMMA 2. /// is I-absolutely continuous, f E Lγ{I) and (fn) is an
I-representation of f in L, then the sequence (Σn

k=ιfk)n^λ of J-integrable
functions is Cauchy in 3-measure.

Proof Given e > 0 and a modulus δ of /-absolute continuity for /,
we assume without loss of generality that δ(β)<€, and choose in turn
Ne, m, n and a so that Σ^e+1 / | fk | < β2, m ^ n > N€, e < a < 2e and

x k Σ + i Λ
Then

IC<a~ιe2<e<δ(el

and so JC < e. With A any /-integrable set and B = A - C, we now
have B E U{J), B < A, /(A - B) < e, and | Σ^+i Λ | χB < a < 2e on the
/-full set ( ^ U B ^ n ί n ^ d m n / k ) .

PROPOSITION 2. /// is I-absolutely continuous and X is ^-finite with
respect to /, then

(i) every I-full set is J-full;
(ii) every I-integrable function is J-measurable.

Proof Let fELx{I), and choose an /-representation (/„) of / in
L. From Lemma 2, Proposition 1 and the fact that (Σ£=1 |/k \)n^λ is
increasing, it follows that Σ J / J converges pointwise on a /-full set
G. Hence Σnfn converges to / on G.GCdmnf and dmnf is /-
full. Conclusion (i) is now immediate. On the other hand, again by
Lemma 2 and Proposition 1, there exist a strictly increasing sequence (nk)
of positive integers, a /-measurable function </>, and a /-full set G b such
that (Σ7% /7)k>i converges pointwise to φ on Gλ. It follows that / = φ on
the /-full set G Π G , ; whence / is measurable. This proves (ii).

COROLLARY. Suppose that X is finite with respect to /, and that there
exists a sequence XX<X2< ••• of sets in Lλ(I)CλLλ(J) such that (χXn)
converges to 1 in I-measure and in J-measure. Then every I-measurable
function is J-measurable.

Proof. We first note that every /-integrable set is /-
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integrable. Let A be a /-integrable set, / an /-measurable function,
and 6 a positive number. We choose in turn a positive integer N so that
/(I - χXN) < 6/2; a sequence (/„) of /-integrable functions converging to /
in /-measure on XN; and a positive integer v such that, for each n ̂  v,
there exists an /-integrable set Cn < XN with J(XN- Cn)<e /2 and
l/-/n|#G. < €. (The choice of N is possible by the Monotone Con-
vergence Theorem—henceforth referred to as MCΓ; that of v by a
simple application of the definition of absolute continuity.) Then, with
n g v and Bn = A Λ Cn, we have B,, e L,(J), Bn < A,

and \f-fn\χBn < e- Thus (/n) converges to / in /-measure on A, and / is
/-measurable.

REMARK. Suppose that X is Σ-finite with respect to /, finite with
respect to /, and that / is /-absolutely continuous. Let X{< X2< be
a sequence of /-integrable sets such that (χXn) converges to 1 in
/-measure. Then (Proposition 2) each χXn is /-measurable; whence, as
χXn g 1 throughout its /-full domain, χXn is /-integrable, JXn ^
/ I . Classically, we immediately deduce from the fact that each /-full set
is /-full and MCT that (χXn) converges in /-measure to
1. Constructively, we cannot use this argument, although we can say
(from Propositions 1 and 2) that χXn f 1 pointwise on a /-full set.

4. Two important constructions. If A is an /-
integrable set, then the mapping f->I(χAf) is an integral on L. Let IA

denote its complete extension, and f E LX{I). Then it is easy to show
that / E Lι(IA), IAf = I(χAf), and each /-full set is IA -full. Moreover, if
F is an /^-full set, then F U A 0 is /-full: for, with (/n) a sequence in L
such that Σn/|^A/n j < oo and the set S on which Σπ |/Λ j < « is contained in
F, T the /-full set on which Σn \χAfn \ < <», we have Γ C S U A ° C F U A ° .

LEMMA 3. //A is foί/ι /- and J-integrable, and J is I-absolutely
continuous, then JA is IA-absolutely continuous.

Proof. Let the complemented set E be both /Λ- and JA-
integrable. We first show that

E=^(EιΠA \ (E° Π (A ' U A °)) U A °)

is /-integrable, with IE= = IAE. To this end, let (/„) be an /A-
representation of χE in L, S the set on which Σnj/n |<oo? and C the
complemented set
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(SΠEιΠA\ (Sn£ f l n(A'UA°))UA°) .

As C1 U C°CEl U El and χE_ = χc on C1 U C°, it will suffice to prove
that C ' U C 0 is /-full and C is /-integrable, with IC = IAE. That
C1 U C° is /-full follows from the identity

C]UC° = ((S Π(EιU E0)) UA°)n(A'UA°)

and the remark preceding this Lemma. On the other hand, the set G on
which Σn\χAfn\<oo is /-full, ΣnχAfn is /-integrable, and

XΛfn) = Σ
/ n

As χ c = ΣnχAfn on (C1 U C°)ΠG, it follows that C is /-integrable and
IC = 1AE. In the same way, E is /-integrable, JE = JAE. The proof is
completed by a simple application of the definition of absolute con-
tinuity.

On a rather different tack, we now note that f—> If + // is an integral
on L, and so gives rise to a complete integration space
(X, Lχ(K), K). We say that K is the integral sum of / and / It is
straightforward to show that Lι(K)CLι(I) Π LX{J), and hence that every
iC-full set is both /- and /-full. Moreover, if / is /-absolutely continu-
ous, then so isK\ while if, in addition, X is Σ-finite with respect to/, then
/ is K-integrable if and only if it is both /- and /-integrable (in which case
Kf = If + //), and a set is X-full if and only if it is /-full (and therefore
/-full). Of these assertions, the first is trivial and the last follows from
the above and Proposition 2; to prove the remainder, we need only
consider / ̂  0 in Lλ(I) Π L{(J), and apply Lemmas 1 and 2, Proposition 1
and MCT. When / is /-absolutely continuous, we write / + / for K.

Note that if X is finite with respect to both / and /, then it is also
finite with respect to K; moreover, we then have L2(K)CLι(K) (where
L2(K) = {f: / 2 E Li(X)}), and Schwartz's inequality shows that for each
f = fί in L2(K),

\Jf\^J\f\^K\f\^K(lf (K\f\2f.

Hence / is a bounded linear functional on the real Hubert space L2(K)
(with scalar product (/, g) = K(fg)). When this linear functional is
normable, we shall say that the integral / is normable with respect to
/. A necessary and sufficient condition for this is that

|: f2GL2(K), K\f \^

be computable.
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5. The Radon—Nikodym theorem. Taken together
with its corollary and converse, the following theorem is the main result
of this paper.

THEOREM 1—THE RADON-NIKODYM THEOREM. Let J, / be the

complete extensions of two integrals defined on the same initial integration
set L, such that J is I-absolutely continuous and X is J-finite. Suppose
that there exists a sequence Xx < X2 < of I-integrable sets such that χXn

converges in I- and J-measure to 1, and JXn is normable with respect to IXn

for each n έ l . Then there exists an essentially unique I-integrable
function f0 such that, for each f in LX(I) Π LX{J), ff0 is I-integrable and

Proof With K the integral sum of / and /, we first suppose that
χXn = 1 for all n ^ 1 (so that X is finite with respect to J, / and K), and
apply the Riesz Representation Theorem to obtain an essentially unique
function g in L2(K) such that // = K(fg) for each / in L2(K). We now
prove that there exists a X-integrable set A with KA = 0 and g ^ 0 on
A0. Let (rk)k^ι be a sequence of positive numbers decreasing to 0 such
that each set ( - g g rk) is K-integrable. Supposing that K( — g ^ rk)>
0, we obtain the contradiction

Hence K(- g ^ rk) = 0, and so [2, Proposition 2.10] the complemented
set A = V k (-g ^ rfc)isK-integrable, KA = 0 and, clearly, g ^OonA 0 .

Next, we let / ^ 0 belong to L^K), and show that fg E LX(K) and
// = K(fg). For each n ^ 1, / Λ n belongs to L2(K) (as X is K-finite); so
that (/ Λ n)g G LX(K) and J(f Λ n) = K((/ Λ n)g). It follows from MCT
that K((fΛn)g)ϊ Jf whence (MCΓ and Proposition 1) ((/Λn)g)B>,
converges increasingly in X-measure, and pointwise on a K-full set, to a
K-integrable function /i with Kh = Jf. But ((/Λ n)g) converges point-
wise to fg on the K-full set dmnf Π dmng. Hence fg = h, fg is
K-integrable, and K{fg) = Kh = //.

To complete the construction of f0, we first note that, for / ^ 0 in
L2(K) and p a nonnegative integer, fgp G L,(K) and /(/gp) = K(fgp+]);
so that
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In particular, choosing e > 0 and then r > (1 + /(I)"1)"1 so that (g ^ r) is
X-integrable, we have

n = l

Letting n—><χ>, we get

We therefore can construct a sequence of positive numbers rk such that
r k f l , ( g S r k ) is K-integrable, and I(g^rk) lθ. By [2, Proposition
2.10] the complemented set C = Al=ι(g^rk) is /-integrable, /C =
0. Thus C°—on which it is clear that g < 1—is /-full.

We now show that fgn JO /-almost everywhere for each /SO in
L2(K). 'To do so, we choose α, β, N so that 0 < α, 0 < β < 1, the sets
( |/ | i=α), (g^j3) are /-integrable; / ( | / | ^ α ) < β , I(g^β)<e; and
β"<α~ 1β for all n^N. Then, with A as above and B =
(I/I < or)Λ(g </3)Λ -A, we have β and - J5 /-integrable, / ( - B ) < 2 e ,
and

It now follows from the Corollary to Proposition 2 and DCT that
J(fgn) I °5

 a n d therefore that (/(/Σ£=1g
n))pi£l converges to //. By MCT

and Proposition 1, (/Σ£=1g
n)psi converges increasingly in /-measure, and

pointwise on an /-full set, to an /-integrable function ψ with Iψ =
//. But (/Σ5=1g

π)p^1 converges pointwise to /Σ n g" on the /-full set
A° Π C° Π dmnf. Defining fo = Σng

n on A° ΓΊ C°, we therefore have Ĵ o

/-integrable, /(^o)= //. Moreover, this obtains when / g 0 belongs to
L. For then / Λ n G L2(K) for each n ^ 1, /((/ Λ M)/0) = /(/ Λ n) | //,
and so (MCT and Proposition 1) ((/Λ n)fo)n*ι converges increasingly in
/-measure, and pointwise on an /-full set, to an /-integrable function θ
with Iθ = Jf. The desired result follows because ((/ Λ n)fo)n^ clearly
converges pointwise to ff0 on the /-full set dmnf Π dmnf0.

To extend this to / ^ O in Li(/}n L^/), we choose an /-
representation (/n) on / in L, and note that

ΛI-l/ il,
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is both an /- and a /-representation in L of the iί-integrable function
Σnφm and (Lemma 1) that f = Σnφn on the J-, /-, and K-full set F on
which Σn I φn I < oc. As

we see that ff0—equal to Σnφnf0 on the /-full set F Π dmnf0—is /-
integrable, with

I(ffθ) = Σ
n

In particular, we note that f0 is /-integrable, If0 = //.
Returning now to the general case, we define the integrals /„ = IXn,

Jn = Jχn for each n ^ 1. Given N ^ 1, and bearing in mind Lemma 3, we
can produce an IN-integrable function hN^0 such that, if
/ G L,(/) Π L,(/), then fhN is JN-integrable and JNf = IN(fhN). We now
define

( hN(x) (x EXι

NndmnhN)

0 (xGX°N).

Note that dmnψN—a superset of ((Xι

NU X°N)Π dmnhN)U X0^—is I-
full. Let f E.L\{I)C\LX{J). Then there exists a sequence (φn) in L
such that

fhN = Σnφn on the /N-full set Γ on which Σ n | φn | < °°, and

) = Λ / = /N(/ΛN) = Σ

Clearly, the set G on which Σn\χXNφn\<^ is /-full, ΣnχXNφn is /-
integrable, and

( A'XNΦΠ)
 = Σ !(Xχ»Φn) = J(XχJ)

Now

(G n r) u (G n x°N) D G n (ΓuX°N),
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whence (GΠΓ)U(GΠ X°N) is /-full. As fψN = ΣnχXNφn on this set, fφN

is /-integrable, and I(fψN) = J(χXNf).
In particular, as XXN^,ΦN = A^X^N on the /-full set

(XJ^UXN) ΓΊ dmn ψN, we see that, for any /-integrable set /?,

I(XX»XEΨN+I) =

Hence χXNψN+ι = χXNψN on an /-full set FN. Thus there is a unique
function f0 defined on the /-full set

N ) n ( \ J

and such that, for each N ^ 1 and each x in // Π X^, /0(x) = ψN(x). In
fact, (ψn) converges in /-measure to f0: for, given e>0 and an /-
integrable set JB1, choosing Ϊ/ SO that IE - I(XV ΛE)< € forn^v, and
defining B = Xv Λ £, we have β E L,(/), β < £, /(£ - β ) < e and

Thus /o is /-measurable. Note also that f0 ^ 0, and that

It follows that I(χχJ0)
 = Jχχn, and therefore (from MCT and Proposition

1) that /o is /-integrable. The identity I(fψn) = J(Xχj), MCT, Proposi-
tion 1 and the foregoing combine to show that, when /SO belongs to
Li(/)Π L^/), then ffQ is /-integrable and I(ffo) = Jf. The extension to
the case of general / in Lι(I)Π L{(J) is trivial.

We omit the straightforward proof that /0 is essentially unique, in the
sense that, if /0' is another nonnegative function in />,(/) such that
fJΌEL^I) and I(ff[) = Jf whenever / belongs to Lλ{I)PιLx(J), then
/o = /ό on an /-full set.

COROLLARY. For each r > 0 and each f with J-full domain, define

(f(x) if x edmn f and fo(x)^r
fr(x) =

lθ iffo(x)<r.

Let Γ = {r > 0: (f0 ^r)<Ξ L,(/)}. TΛen / is J-integrable if and only if /,/,,
is I-integrable for each r in Γ and (fr/oW converges in I-measure to an
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I-integrable function g as r —>0; in which case Ig = //, g = ff0 on a J-full
set, and g = 0 whenever f0 = 0.

Proo/. We first show that, for each /-full set F and each r in Γ,

F^({x E X : fo(x)^ r}Π F)U{x E X :fo(x)< r}

is /-full. We suppose without loss of generality that F = Eι U E° for
some /-null set E. Let (φn) be a /-representation of χE in L, and write
χr = X(fo^r) for each r > 0 . Then, as χr S r~7o on the /-full set

({x E X: fo(x)^ r}U{x E X: fo(x)< r})Π dmnfo,

we have

Thus the set H on which Σn /γ r | φn \ < °° is /-full. But, as Λ: E H if and
only if either χr(x) = 0 or Σn | φn(x)\ <™, H = F=.

Now let E be an /-integrable set, and e > 0. Choosing in turn p, r
in Γ with pIE < e and r ̂  p, we see that ^ £ ( 1 - χ r) E L2(K); whence

/ ( £ Λ (/0 < r)) = / ( ^ E ( l - x,)) = I(χE(ί - *)/o

< 6.

In particular, if we choose N so that J(l- χXN)< e, and set E = X N ,
B^(f0^ p), we have B G L,(/),

<6+/(XNΛ(/0<p))

<2e.

On the other hand, for each r i p in Γ and each x in the /-full set
(J51 U B°) Π dmnf, we clearly have /Γ(JC) = f{x). Thus we have shown
that (fr)rer converges in /-measure to / as r—>0.

Supposing that r EΓ and that fr is /-integrable, with /-
representation (φn), we see that Σ n ^ r φ n = χrfr = fr on the /-full set F on
which Σn I φrt I < oo, and therefore that Σnχrφnf0 = /r/0 on the /-full
F=. But



THE CONSTRUCTIVE RADON-NIKODYM THEOREM 63

so that Σnχrφnf0 is /-integrable, Σnχrφn is /-integrable, and

Hence frf0 is /-integrable, /(/r/0) = Jfr. On the other hand, as

on the /-full set

({x G X: /O(JC) ^ r) Π dmnf) U {JC G X : /0(x) < r},

if /r/o is /-integrable, then f is /-integrable, and so /-integrable. Thus,
frfo is /-integrable if and only if fr G Lλ{I) Π /^(Z), in which case //f =

To complete the proof, we suppose without loss of generality that
/ ^ 0. If / is /-integrable, then (as /, = χrf on a /-full set) fr is
/-integrable for each r in Γ; whence frf0 is /-integrable, I(frf0) = Jfn and
(MCT) /(/r/o) t /f as r 4 0 through Γ. Applying MCT once again, we
see that (/r/0)rer converges in /-measure to an /-integrable function g as
r ^ O , and that Ig = Jf. Conversely, suppose that frf0 G LX{I) for each r
in Γ, and that (f,fo)rer converges in /-measure to an /-integrable function
g as r—>0 through Γ. Then, for each r in Γ, fr G L](/), //r = /(/r/0) and
so (MCΓ) Jfr f /g as r | 0. It follows from this, MCT and Proposition 1
that, as r I 0, (/Γ)rer converges increasingly in /-measure, and pointwise
on a /-full set, to a /-integrable function φ with / ^ = /g. It is clear from
the foregoing and Proposition 1 that ψ = f on a /-full set; so that / is
/-integrable, Jf = Jψ = Ig.

REMARKS.

1. Let / ^ 0 be defined on a /-full set, and suppose that there exists
/-integrable g ^ 0 such that g = f 0 o n a /-full set F and g = 0 on
{x G X : fo(x) = O}n dmng. Given r in Γ, we have frf0 = χrg = g;
whence frf0 is /-integrable, f is /-integrable, (/Γ)rer converges in /-
measure to / as r—»0, and / is /-measurable (cf. proof of the above
Corollary).

Note that / is classically /-integrable: for we have Jfr] as r [ 0
through Γ, and Jfr = I(frf0) = /g. Unfortunately, we have been unable to
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produce a constructive proof of the /-integrability of / except in the
trivial case where / is bounded, and that in which χr converges in
/-measure as r—>0 through Γ. In the latter case, we see that χr must
converge to the indicator χ0 of the complemented set (/0>0); so that
dmnχ0 is /-full. Choosing an /-integrable set E, positive e, R > 0 so
that I(g ^ R)< e, and p > 0 such that, whenever r E Γ and r ^ p, there
exists an /-integrable set Cr < E with I(E - Cr) < e, \χ0 - χr \χCr < R ~ιe,
we set Br = Cr Λ (g < R) to obtain Br G L,(/), £ r < £, I(E - Br) < 2e,
\(Xo-Xr)g\χBr<€. Thus

/r/θ = ΛTrg ΐ Xθg = g

in /-measure as r j 0 through Γ. The above Corollary now ensures that
/ is /-integrable, // = Ig.

In general, it is easily seen that if / is /-integrable, then // = Ig.
2. A simple argument, which we omit, shows that, up to equality on

/-full sets, /o is the unique nonnegative /-integrable function with the
property stated in the above Corollary.

We still have to show that the conditions of the Radon-Nikodym
Theorem do obtain in a non-trivial context. That this is so is the
substance of the following converse of Theorem 1.

THEOREM 2. Let (X, L, /) be an integration space and f0 a non-
negative element of Lx(l) such that // 0 >0, and ffo^Lx{l) for each f in
L. Then f—*I(jfo) is an integral on L whose complete extension J is
I-absolutely continuous. Moreover, if there exists a sequence X, < X2 <
--of l-integrable sets such that χXn f 1 in I-measure, then each Xn is
J Antegrable, χXN f 1 in J-measure, X is J-finite, and JXn is normable with
respect to IXN for each n ^ 1.

The proof follows the lines of the well-known classical analogue
(with obvious modifications where the classical argument succumbs to the
lure of nonconstructivity), and is left to the reader.
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