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In this paper Lipschitz spaces of distributions are defined
and various inclusion relations are shown. Certain properties
such as completeness, separability, and the density of the testing
space for appropriate Lipschitz spaces are proved. The
Littlewood—-Paley function is defined and used to prove inclusion
relationships between Lipschitz and Lebesgue spaces.

This paper is the second in a series of papers by the author of which
[1] will be used extensively in this paper. As a result, a knowledge of [1]
would be useful to the reader. In [1] the discussion was limited to
Lipschitz spaces of functions. Here we extend the definition of a
Lipschitz space to Distributions.

Conventions and notation.

R' will denote the real numbers.

Ri={x=(x, ,x):x€R,i=1-- n}

S..={x ER":|x|=(x}+---+x2)"=1}. All functions are com-
plex valued unless otherwise stated.

C*(3,-,) is the set of indefinitely differentiable functions on X, _,.

All statements about continuity, bounded, finiteness, etc., are made
modulo sets of measure zero unless otherwise specified. By this we
mean that a function that can be modified on a set of measure zero to
have the property will be said to have the property.

If f(x, r), where x € 2, , and 0 < r <1, is differentiable with respect
to r, we define Tf(x,r)=d/dr(rf)(x,r) and T*f(x,r)= T(T*'f)(x,r)
where k is an integer greater than 1. We say f(x)=0(g(x)), x — a, if
f(x)/g(x) is bounded as x — a.

f(x)=o0(g(x)), x—a, if f(x)/g(x)—0 as x = a.

f(x)=g(x), x—a, if f(x)/g(x)—>1as x —>a.

For a real, @ will denote the smallest nonnegative integer larger
than a If f(x) is measurable on 2, we define [f(x)|, =

U f (")"’]Wv 1=p <, and || f(x)[. = esssup,cs,_. | f(x)| where dx is

nonnormalized Lebesgue measure on 3,_,. If f(x, r) is measurable in x
and r where x €2,_; and 0 <r <1, we define
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[ veora]” it 1=p<e
£ =

esssup |f(r )| T

([ el =+ it 12 <>
£(r, ), = J

esssup [ f(r¥)e  if q=c

If a>0and 1=p, g =, we say f€ A(a;p,q) if

1 laina = NGO, + HA = r)* =T f(r, x)

is finite.
The Poisson kernel is the function P(rx,y)=1/c,(1—=r")/|rx —y|"
where |x|=]y|=1, 0=r<1, and ¢, is a constant so that

P(rx,y)dy =1 for each x. We shall also use P(r,x-y)=

2n-1

Ve (1= )1 =2rx - y + 7],
If f(x)e L,(2,.,), 1 =p =, then the Poisson integral of f is defined

as f(x)= | FIPCx 9.

{Y®}, l~'= 1,---,n(k), denotes an orthonormal basis for the spheri-
cal harmonics of degree k. Z{" denotes the zonal harmonic of degree k
with pole y.

If F(x)€L,2,.,) and G(s)€ L,([—1,1],du(s)) where du(s)=
(1— s> the spherical convolution of F and G is the function

FxG()= [  FOIGG& vy,

ot

CHAPTER 1. Lipschitz Spaces, a Real.

In this chapter the notion of a Lipschitz space for « real is
defined. For this a brief discussion of distributions is necessary.

Let the testing space S ={¢: ¢ € C*(Z,.))}. Let Y¥(x), [=
1,---,n(k), be an orthonormal basis for the spherical harmonics of
degree k. ¢ € C*(2,.)) if and only if ¢ = Z,,a, Y with a,, = 0(k ™) for
all reals. For a proof of see Seeley [3]. ¢ can be considered to be in
C*(R" —{0}) by noting that
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d(x)= z a,Y(x)= 2 ar *P{(rx)

where P{ are harmonic polynomials of degree k.

Let D*f = 3"f/ax -+ - dx 2 where a = (a,, - - *, ), ; nonnegative
integers, and |a|=a;+ - +a,. It is easy to see that D°¢ =
DY and the convergence is uniform. A topology can be
defined on S by letting

Nu)= (b€ CC)s 3 1076 <]

be a neighborhood system at 0. A standard argument shows that with
respect to this norm, S is complete.

Let the distributions S’ be the set of continuous linear functionals on
S. The action of fE S’ on ¢ € S will be denoted by f(¢). If pES
and ¢ = Z,,a,Y{", then the Poisson integral of ¢,

¢(rx) = 2 aur*Y{9(x)

also isin S for fixed r <1. Itis easy to see that ¢(rx)— d(x)asr—1-
in the topology of S.

If f€S' and P is the Poisson kernel, define f* P by (f* P)(¢) =
f(P*¢). Wecall this the Poisson integral of the distribution f. In view
of the above, if f,g € S’ and if f and g have the same Poisson integral,
they are equal as distributions.

If fEL, (%), 1=p =, f defines a distribution by letting f(¢) =

L f)é(x)dx. Tt fELG.), define Jf by Jf(d)=

f(nzkjak,(k +1)*Y¥®) where « =0 and ¢ = Z,,a,Y".
Clearly 2 ay(k +1)*Y¥ € S.  An easy check shows that this does
define a distribution. Moreover,

J-f(rx) = Lzo (k + 1) Z% % f] (x)

is the Poisson integral of J~*f.

In view of the above J*f(rx)=Z, bur*(k +1)Y{¥(x) for a real
where f~ 2., b,Y{". This is easily seen to be harmonic on {Z €
R": |Z|<1}.

The above definition of J™°f agrees with the J °f defined in
Proposition 5.10 of Greenwald [1] for f € A(a + B;p,q). Hence,

ProrosiTiON 1.1. J? maps A(a;p,q) isomorphically onto
A(a + B ; p,q) provided only a,a + B >0,1=p,q =o.
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DeriNniTION.  The  Lebesgue  space  L,,(Z,.)={f€S" f=
Jy, ¢ € L,(3,-))} for a real, 1=p =w. Define |f|,.=¢],. Thus
L,. is a Banach space that is an isometric image of L,(%,-)).

DEeriNITION.  For @ =0, 1=p, q =, let A(a;p,q) be the set of
distributions f € L,, 1 for which [[(1—=r)**T*f(rx)|l,, is finite. For a« =
0, define |[fllapq = [l flla—t + 11 = r)* T (rx) 0.

Note. We are essentially defining A(-a;p,q) to be
J[AG;p,q)]- The choice of }is arbitrary. Any 8 >0, would work as
well.

REMARK. Let a berealand1=p,g=». Letf€L,,s. Thenif
k is any nonnegative integer greater than «, the following norms are
equivalent:

() (= )Ty + ] f e

() =)y T () g + 11 f -

Proof. Thisis an immediate consequence of (2.3) of Greenwald [1].

PropoOSITION 1.2. Let « be real and 1=p, q =». Then the set of
distributions f € L, .1+ for which ||[(1—r)**T*f(rx)|,, <® normed with
) == r)y* T (rx)|lpg + | fl,a-t is topologically and algebraically
equal to Aa;p,q).

Proof. For a =0 this is the definition. Hence it suffices to con-
sider the case a > 0.

(a) Assume that f€ L,,s and that (*) <. We want to show that
f€A(a;p,q). Thereisa g€ L,(%,,) such that

f(rx) = [g * G*7(r, )] (x).

Hence [|f(rx)la = M. |Ig[l, = M. || fll, s if r =1,

By Proposition 5.1 of Greenwald [1], f(rx) is the Poisson integral of
a function h € L,(2,.,) and ||h |, = M,(*). Now h and f have the same
Poisson integral and thus are equal as distributions. Hence f is a
function andisin L,(2,-,). Therefore f € A(a;p, q) and | f|lapy = M(*).

(b) Let fE€ A(a;p,q). The proof of this part is essentially the
same as that for Lemma 8 of Taibleson [18; p.438].

The proofs of the following Propositions 1.3, 1.4, 1.5, and 1.6 are
analogous to the proofs of Theorems 6, 7, 8, and 9 of Taibleson [7; p.
437-443]. The appearence of the (n — 1) in Proposition 1.6 comes from
the estimate ||P((1+r)2x)|, = A(1—r)*™™" where 1/t +2/t'=1. See
Greenwald [1;(1.8)].
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ProrosiTiION 1.3. Leta, Bberealand 1 =p,q =x. ThenJ? maps
A(a; p, q) isomorphically onto A(a + B;p, q).

ProrosiTION 1.4. Let f&€S' and f(rx) be its Poisson
integral. Then for each integer k = & and real number B < a, the norm

I =y T () o + 1 f s

is equivalent to ||f|.,, where 1=p, q =co.

ProrosiTION 1.5.  Suppose f € A(e,; pi, q;) wherei =0,1 and 1 = p,
g=x. Let 0=t=1 and define a=({1-t)atta, 1/p=
(1-1)/po+t/p,, and 1/q =1 —1t)qo+t/q.. Then fE€ A(a;p,q) and

1f e = Mol f e ™ (U f o)

Also, () [[fllos ZNfboisll f s for B < eto, .
() [ (A= r)y =T (rx) |5y
= (1= 1) T () na) ™ (L= 1) T (rx) [0 for k < e, .

ProrosITION 1.6. Let 1=p =q,=». Then A(ai;pi,q)C
AMayy paqy) if ai—(n—=1)/p,>a,—(n—=1)/p, or if a,=(n—-1)/p,=
a,—(n—1)/p,and 1= q, = q,=». Moreover, the inclusion map is con-
tinuous.

ProrosiTioN 1.7. (i) A(a;p,q) iscomplete if 1 = p, q <. (i) Sis
dense in A(a;p,q)if l1=p=omo,1=qg <o Weshall need the following
lemma.

Lemma 1.1. If fE€ A(a;%,q), 0<a <1, then f is uniformly con-
tinuous.

Proof. 1t suffices to show that || f(rx)— f(x)|...c =0 as r—1". By
1
Proposition 1.6, f € A(a;», ). f(rx)—f(x)= f f,(px)dp for almost

every x €%, .. Hence [[f(rx)—f(x)|:a = Zf lof, (px)|leaxdp if r=

i, Thus

(1= 1) 1) = @) 220 =17 [ A= p)dp = M,

r

Hence || f(rx) = f(x)|l-.ex = M.(1 - r)* and thus tends to zero as r—>1".
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Proof of Proposition 1.7. (i) The proof is similar to the proof of the
corresponding part of Theorem 11 of Taibleson [7; p. 444]. (ii) It is easy
to see that J°s = S. Hence, it suffices to consider the case 0 < a < 1. We
claim that S CA(a;p,q). Let ¢ €S with ¢ =2, ,a,Y". Then ¢(rx) =
Ziiaar Y (x) and To(rx) =2 au(k + DrrYH(x).

Since aq = O(k™) for every s >0, [ To(rx)| =
Sl an(k + 1) YR rk =M <. So, ¢ € A(a;p,q). Let fe
AMa;p,q). f1=p <o, f(rx)—>f(x)in L,(2,.)asr—1".

If p=o, f is continuous by Lemma 1.1 and so f(rx)— f(x) in
L.Z..) as r—1. We claim that for each r, (1-r)" | Tf(rsx)—
Tf(rx)|lpaee = 0 as s > 1.

Let g(x)=Tf(rx). Then g(sx)= Tf(rsx). By the above,
g(sx)—>g(x)in L,(3,-) as s > 17, Also, [ Tf(rsx)la = Tf(rx)]pe-

If g <=, by applying the Dominated Convergence Theorem we have
that ||(1—r)~[Tf(rsx)— Tf(rx]|,, >0 as s > 1".

Thus f(sx)— f(x) in A(a;p,q) if g <. For fixed s <1, f(sx) is
clearly in S. This finishes the proof.

REMARrks. Let A ={¢ € S: a,, are rational}. It is clear that A is
dense in A(a;p,q) if g <. Hence A(a;p,q) is separable if g <oo.

Let B={a €S:2,,a2,,a,Y{" consists only of a finite number of
terms}. It is clear that B is dense A(a;p,q) if g <.

Lastly, before finishing this chapter we would like to relate the
Lipschitz spaces defined here to those defined by Ragozin [2]. For this
we will need the notion of a derivative in the distribution sense.

DeriniTiON.  If f is differentiable on 3,., and D is a skew-
symmetric n X n matrix then we define Df(x) = (d/dt)f[(exp tD)(x)]|.-o.

See Rogazin [2] for a more complete discussion of this topic.
Let f, ¢€&€S. Then an easy argument shows that

L". Df(x)¢p(x)dx = L", f(x)(—= D)¢(x)dx. This leads to the follow-

ing definition.

DerINITION. Let fE€S’. We define Df to be the distribution
defined by Df(¢)=f(— D¢) for ¢ € S.

If i <j, let D; be the n X n matrix with a 1 in the (i, j) place, a (— 1)
in the (j, i) place, and zeros everywhere else. See Ragozin [2].

DEeriNITION.  We define (D;)* to be the result of applying some
k -fold product of D;’s to f in the distribution sense where f € S'. This
is clearly ambiguous but we shall be summing over all possible k-fold
products. Hence, no problem will arise.
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ProposiTiON 1.8. Let «a >0 and 1=p, q=x. Then the norm
IO, + 2N (D) f |l pq is equivalent to ||f||asx ., where the sum is over all
k-fold products of the D;’s.

Proof. The proof is essentially the same as that used by Taibleson
for the analogous result in R". See Taibleson [7; Theorem 10, p.
444]. The proof uses (1.3) and Proposition 5.1 of Greenwald [1].

CHaPTER II. The Relation of Lipschitz Spaces to Lebesgue Spaces.

In this chapter certain inclusion relations between Lipschitz Spaces
and Lebesgue Spaces are proved. The chief tool is an analogue of the
Littlewood-Paley function. The proofs are, for the most part, direct
analogues of those used by Stein [4], [5] for the Littlewood-Paley
function in a compact Lie group. The reader is referred to Zygmund [8;
Chapter XIV] for the one dimensional version of the Littlewood-Paley
function.

DEerINITION. Let f*(x) = supoci=. t "' f |f(y)|dy if
d(x,y)=t
fE L(Z.-).

REMARK. IffE€L,(2,.,);1<p =, then f*€ L,(X,.,) and|[f*|, =
Al £l

(21) Let fE€L(Z,-1). Then sups,«|f(rx)|= A,f*(x) for all
XEZ, ..

Proof. We may assume that f(x)=0. Letx €X, , and let g(8)=

f _f()dy and G(t)sz’ sin""6g (0)do.

The proof now proceeds in a manner similar to the proof of
Theorem 3.4 of Stein and Weiss [6; p. 101].

(22) Iff€ L\(Z..)), then supoe,<; r In(1/r)|(rf). (rx)| = A.f*(x).

Proof.
(DO, () | = 11011 [ F0) 1P (rx -y)l dy
=B.[ IfOIIPCx-y)ldy = Af(x)

by (2.1) above.
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(2.3) I fe LX), then |[Vf(rx)| = A.f*(x)if r =} where V is
the gradient in R".

Proof. The proof is similar to proof of (2.2) above.

(24) Let feL,(2,.) and F(rx)=[f(rx)]? where 1<p<
w. Then |F,(rx)| = A,.(1-r)'(f*(x))y.

Proof. F.(rx)=p[f(rx))""'f.(rx). As in (2.2), [f.(rx)] =
A,(1-r)'f*(x). The result now easily follows.

DEeFiNITION.  Let f€ L\(2,.,). Define

/2

D@ = [ rmamivserar]”

REMARK. The map f— g(f) is sublinear. This will enable us to
apply the Marcinkiewicz Interpolation Theorem later in the chapter.

ProrosiTiON 2.1. Let fE L,(2,-1), 1 <p <2. Theng(f)€ L,(X.-))
and |[g(f)(x), = A [ fll

Proof. 1t suffices to prove this for f strictly positive. In view of
1/2

(2.3) we need only consider [fl rin (1/r)|Vf(rx)!2dr} .
1/2

Let F(rx)={f(rx)]>. An easy calculation shows that [Vf(rx)|’=
p(p = D)) A[(f(rx))]. So

fl rin(1/r)|Vf(rx)['dr=p'(p - 1) f: rin(1/r)[f(rx)] P AF (rx)dr

1

= [f* ()] *A,. rin(1/r)AF(rx)dr.
Let I(x)= fl rin(1/r)AF(rx)dr.

LM I(x)dx :L‘z rln(l/r)LM AF(rx)dxdr

—_ ] -n+l _é n-1 _8
—,{1 rln(l/r)L“ r o <r p F(rx)) dxdr

2

! 0 d
— -n+l n-1
LM ﬁ/z rin(1/r)r o (r o F(rx)) drdx.
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Now

J'l 'l (1/)_,,+1i<n—1_iF >d
1 n(1/ryr ot o (rx)) dr

/2

= fl rin(1/r)F,(rx)dr + (n — 1)J’I In(1/r)F,(rx)dr.

The second integral is bounded by B, ,.f*(x)* by (2.4) since In(1/r) =
A(1-r)if r=1/2. Upon integrating the first by parts, one gets

= Gulf*®))

1 -n+l1 i n-1 _a_
, J’Uz rin(1/r)r o <r o F(rx)) dr
Thus
| 1wa=c.  @reora= s

Hence

172

= A U; y [ x )]I/Z(th)p[l(x)]plzde "’

= Ap.n ”f*(x)”(l)/z(Z—p)P”f

“ U/ ’ ‘“(1/r>lVf(rx)Vdr]

P

p?12
P

by Holder’s inequality.
The above is bounded by A",|/f|,- The result for an arbitrary f
now follows from an easy limiting argument.

ProposITION 2.2. Let f€L,(2,,), 2=p<wo. Then g(f)€
L,(3.-) and [g(O)l, = A, [ fl»

Proof. By the Marcinkiewicz Interpolation Theorem it suffices to
prove this for p=4. Choose g such that g'+(p/2)"=1. Then

1<qg=2.|gHIE= supf g°(f)(x)h(x)dx where the sup is over all
Zn-a
h =0 such that h € L,(S,.,) and |[h]|, = 1.

[ geon@a=[ ([ rmamivsepar] hedx

Let w(rx)=|Vf(rx)|>. Since each partial derivative is harmonic, w is

subharmonic. Thus w(rpx)éj w(py)P(rx - y)dy since the right

n—1
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side is harmonic in rx and converges to the continuous function w(px) as

r—17. Hence w(rzx)éf w(ry)P(rx - y)dy. Hence
Sn-1

L" ‘ g (f)(x)h (x)dy §4LM U’Ol r’ln (lr)lVf(rx)[zh(rx)dr] dx
Now [Vf(rx)[' = 3Af(rx) and
ALFR ()] = 0N () + BEAF(R) + 3, 7 () 2 h (o)

where x,,---,x, are the Cartesian Coordinates. Since h(rx) is har-
monic, Ah = (0. Thus,

4L"‘ U}X r’ln (l/r)]Vf(rx)]Zh(rx)dr} dx

=2

L",, Uol r3ln(l/r)A[fz(rx)h(rx)]dr] dx

+4nL | U, P In(1/r) | f(m)| | V£(rx)| th(rx)[dr] dx

The second integral is bounded by A, f *(x)g(f)(x)g(h)(x)dx

by Schwartz’s Inequality since | f(rx)| = A ,f* (x) By Holder’s Inequal-
ity, this integral is bounded by A, [f*[llg(N),lg(r); =

ALl fl, Ng(Dll, since g (h)lly = Bugllh [l = By for 1<q=2. The first
integral equals

1 3 —n+1 J n-1 d 2
I= ! J;M Uo r’in(1/r)r r (r o lf (rx)h(rx)]dr] dx
since spherical part of the Laplacian vanishes.
f’ r*in(l/ryrm" —é; [r"'1 g fz(rx)h(rx)] dr
_ f' Pin(1/r) o (fz(rx)h(rx))dr
Jd o
t(n- 1)f P In(1/r) 2 (F(rx ) (),

In the second integral use [rIn(1/r)f.(rx)| = B.f*(x),
[rin(1/r)h,(rx)| = B,h *(x), | f(rx)| = B.f*(x), and | h(rx)| = B,h *(x).
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Hence, the second integral is bounded by B, f*(x)’h *(x). The first
integral equals

r’in(l/r) a_ar (F(rx)h () |5 — fo] [3rIn(1/r)—r? a_ar (f*(rx)h(rx))dr

= P’In(1/r) a—ar [F2(rx )k ()]
= [3r*In(1/r) = r?)[f*(rx)h (rx)] |6
+ fol [6r In(1/r)—5r][f*(rx)h (rx)]dr.

Using the above estimates one gets that the absolute value is
bounded by B f*(x)’h*(x). So

I=B%|  fr(xyh(x)dx = B, [f* A"l = G I FI5-

o ”?ﬁus leNlr= ALl fl: gDl + Cor [ I Hence g, =

DEFINITION.

&) = emamien.eyaremam]”

for f(rx) harmonic on B, if 1=p <.

g-(N(x)= sup rin(1/n)|(rf), ().

ProposiTioN 2.3. Let f€ L,(2,.,) and q = max[p,2]. Then for
1<p=e, gl = Aulfl-

Proof. Case 1. 1<p=2. Then q =2 and

12

olf) (x) = U rzln(l/r)lf,(rx)fzdr]m+ U rln(l/r)]f(rx)lzdr] .

The second integral is bounded by B,.f*(x). Since |f(rx)|=
|Vf(rx)|, the first integral is bounded by g(f)(x).

Thus gAf)(x)=B,.f*(x)+ g(f)(x) and so by Proposition 2.1,
8:f)(x) € L, (Sa-1) and || g(f) (x)ll, = By [If*[l, + 18 (H) (), = Apallf-
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Case II. 2=p=w. Thengq=p. If p=wx,

= Apn | fl--

x dx

le() ()l = | sup rin (/)| (), ()|

If p <, then
&)= [ [ 11 e, eOF I @ ). ()P |

= C,.[f*(x)]e>" [Ll [rIn(1/r)(rf), (rx)Pdr/r ln(l/r)]”p
= Gl f* ()8 f) (x )"
Hence [g (I} = G llf* 7"l g(HIF" = Apn [ fll, by Holder’s in-

equality, Proposition 2.2, and the argument above in Case I. We have
the following converse.

ProposiTiON 2.4. Let f(rx) be harmonic on B,. Let ¢ = min[p, 2]
and g, (f)€ L,(2,-1). f(rx) is the Poisson integral of a function f(x)€
L,(2.-) and |[f], = A,.[lg, (N, for 1=p <.

We will need the following lemmas.

LemMA 2.1. Letf€L,(2,.,) andh € L,(3,-,) where 1/p +1/p’ =1
and 1<p <. Then

f f(x)g(x)dx = 4L J] rin(1/r)(rf), (rx)(rh), (rx )drdx.

Proof. 1t suffices to prove this for f€ L,(2,-,) and g € C*(Z,-))
since C*(3.,-,) is dense in L,(Z,-,). Let 0<s<1. Then

[ romar=tm [ fsemisoa

Let f(sx) = Ek,l ak,SkYﬁk)(x) and h(sx) = sz kaSkYSk)(.x) where bk( =
O(k™*) for all t since h € C*(Z,-)).
Thus fz f(X)g(X)dx = Ek,,ak,bkl.

An easy argument shows that

4 L f " In(Ur) (rf), () (rh), (rx )drdx = S aubu



LIPSCHITZ SPACES OF DISTRIBUTIONS 175

REMARK. This Lemma shows that the map f — 3g,(f) is an isometry
of L,(2,-1).

LEmMMA 2.2, Letf€ L,(Z,.\) and f(rx) be its Poisson integral. Let

;1 =min[p,2] and g(f)EL,(2.-)). Then |fll, =A..lg ), for
Ep <>,

Proof. Case I p=1. rf(rx)= L' (of), (ox ) dp.

S0 11()|= [ 16N, (o)l dp = ()(x). Thus ()l =
I8l and so I Z gDl

Case II. 1<p=w. Then q=p. |f],=sup . fOoh(x)dx

where the supisoverall h € L,(3,.,) where || h{, = 1 andi"/;l) +1/p'=1.
By Lemma 2.1,

'L“ f(x)h(x)dx =‘4LH fol rin(1/r)(rf), (rx) (rh), (rx)drdx

=4] (@& N@d =48l I W,

= Apvn ” 8p (f)”p “ h ”p’ = 'An.p ”gp (f)”p
by Proposition 2.3 since p’'= 2.

Case IIl. 2=p <w. Then q=2. An argument similar to the
one above applies here.

Proof of Proposition 2.4.

Case I. p=1. Inview of Lemma 2.2, it suffices to show that f(rx)
is the Poisson Integral for a function in L,(Z,-,). rf(rx)= f (of),(px)dp

and so || rf(rx)|ie =) g:(f)(x)|;. The result now follows from an easy
argument.

Case II. 1<p <x. Inviewof Lemma 2.2, it suffices to show that
f(rx) is the Poisson Integral of a function in L,(X%,-,). An easy variant of
Lemma 2.2 shows that if f€ L,(2,.,), then [[f], = A,.[g((f)l, for
1<p <. Astraightforward argument finishes this part of the proof.

We have the following easy corollaries.
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CoroLLARY 2.1. Let f(rx) be harmonic forx €%,.,,0=r <1, and
let g,(f)€ L,(%,-)) for 1 <p <. Then f(rx) is the Poisson integral of a
function f(x) € L,(2,-) and | f(x)ll, = A,.l[&:(f) (x)],

COROLLARY 2.2. Let f(rx) be harmonic forx €%,.,,0=r <1, and
let g(f)€ L,(2,-1) for 1 <p <. Then f(rx) is the Poisson integral of a
function f(x) € L,(2,-) and || f(x)], = A, [ g (f) ()]

ProrosiTiON 2.5. (a) L,, CA(a;p,q), g =max[p,2], 1<p =0,
(b) A(e;p,q)CL,., q=min{p,2], 1=p <=,

(c) Li.CA(a;1,)

(d) A(a;»,1)CL...

The inclusion maps are continuous.

Proof. With minor changes the proof of Theorem 15 of Taibleson
[7; p. 452] can be apllied here to give the result.
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