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Let E be a locally convex lattice and X a completely regular
space ordered by a closed order relation. We study E-valued
(resp. E’-valued) measures on an algebra or a o-algebra of
subsets of X with respect to which every increasing continuous
real (resp. E-valued) function with relatively compact range has
positive integral.

Introduction. In 1951, Nachbin [11} proved the following
Theorem: Let X be a compact ordered space and m a Radon measure on
X with respect to which each increasing continuous real-valued function
on X has a positive integral. Then, there exists a positive Radon measure
w on the locally compact space G — A (where G is the graph of the order
relation and A is the diagonal of X x X) of finite total mass || || = || m ||/2
such that

[ gam =] 0)= oMy

for each continuous real-valued function f on X.

The definition of Radon measure is as in Bourbaki [2]. Recently,
Hommel [4] proved the same Theorem for locally compact spaces under
an additional assumption which always holds for compact spaces.

In this paper, we examine the question of whether a Theorem of this
type holds when the measures take values in a locally convex lattice
E. We also look at E’-valued measures, defined on an algebra or a
o-algebra of subsets of X, with respect to which the integral of each
increasing continuous E-valued function on X, whose range is relatively
compact, is positive.

1. Preliminaries. Throughout this paper, X will denote a
nonempty completely regular Hausdorff space ordered by a closed
relation whose graph will be denoted by G. By A we will denote the
diagonal set in X X X. On all concepts related to ordered topological
spaces we follow the terminology of Nachbin [13]. We will denote by E
a real locally convex Hausdorff lattice. If f is an E-valued function on
X, the function f* will be defined on G by f*(x,y)=
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f(y)—f(x). Clearly f*= 0iff fisincreasing. Let C(X, E) be the space
of all continuous E-valued functions on X and let C.(X, E) denote the
space of all f in C(X, E) whose range is relatively compact in E. We
will denote C(X, R) and C,.(X, R) by C(X) and C*(X) respectively (R
is the space of reals). When E is a normed space and f a bounded
E -valued function on X, we define

£l = sup{ll f(x)l: x € X}

Let B(X) denote the algebra, of subsets of X, generated by the zero
sets (see Varadarajan [16]). By Ba(X) and Bo(X) we will denote,
respectively, the o-algebras of Baire and Borel subsets of X. The
spaces of measures M(X), M,(Bo(X)), M(B(X),E"), M,(Ba(X),E")
and M, (Bo(X), E’) are as defined in [5] while the space M,(Bo(X), E’),
of all tight members of M,(Bo(X), E"), is as defined in [7]. Integration
of functions, with respect to members of the above spaces of measures, is
also defined in [5] and [7]. The spaces M(B(X), E'), M,(Ba(X), E’)
and M, (Bo(X), E') become lattices under the order relation m, = m, iff
m(A)= my(A) for every member A of the algebra on which the
measures are defined (see [5], [6] and [7]).

2. Members of M(B(X), E’) positive on increasing
functions in C,. (X, E). Hommel [4] has studied properties of the
Radon measures on an ordered locally compact space with respect to
which every increasing real continuous function has positive integral. In
this section we look at those members m of M(B(X),E’) such that

f fdm =0 for every increasing f in C.(X,E). We begin with the
X

following Theorem.

THEOREM 2.1. Let X be a normally ordered space and m a tight
member of M,(Bo(X), E’) such that f fdm =0 for each f in C.(X, E)

increasing. Then, for each increasing Borel subset F of X we have
m(F)=z0 and for each decreasing member A of Bo(X) we have
m(A)=0.

Proof. Assume first that F is an increasing closed subset of X and
let s=0in E. Given € >0, there exists K CX — F compact such that
Ims|((X — F)— K)<e. By Nachbin ([13], Proposition 4), the decreas-
ing hull d(K) of K is closed. Also d(K)CX —F because X — F is
decreasing. Since X is normally ordered, there exists (see Nachbin [13],
Theorem 1) a real increasing continuous function f on X,0=f = 1, with
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f=1on F and f=0 on d(K). Now, the function fs: X — E is an
increasing member of C,.(X,E) and hence j fsdm =0. If F,=
[X — d(K)] = F, then |ms|(F,)< e and thus

Oéfx fsdm = L fsdm +L, fsdm = m(F)s + €.

Thus m (F)s =2 — € foreach € >0. From this follows that m (F)s = 0 for
each s =0 in E and hence m(F)=0.

Suppose next that A is an arbitrary increasing Borel subset of
X. Let s=0 be in E. Given € >0, we can choose K;CA compact
such that |[ms|(A — K,)<e. Let F be the increasing hull of K;. Then
F is closed and K,CFCA. Thus |ms|(A —F)<e and therefore
m(A)s>m(F)s —e= —e. It follows that m(A)=0.

To prove the last assertion, we first observe that, for each s € E, we
have

m(X)s :J’

X

sdm =0 and —m(X)s=f (—s)dm =0
X

and thus m (X)=0. Now the result follows from the fact that if V is a
decreasing subset of X, then X — V is increasing.

THEOREM 2.2. Letm € M(X) be such that m(X)=0and m(A)=
0 for each increasing member A of B(X). Then j fdm =0 for every
increasing member f of C*(X).

Proof. Let f€& C’(X) be increasing. Since m(X)=0 we may
assume, without loss of generality, that 0<f<1. Let n be a positive
integer. For each k, let

Vk:{xEX:f(x)>k/n}, Ak:Vk—Vk+1-

Each V, is increasing and the sets Ay, Ay, - - -, A,_; form a partition of X
into members of B(X). Since |f—k/n|=1/n on A,, we have

' L fdm —%kzo km (Ay)

:2; ) (f— k/n)dm

lIA
:]H

S Iml(A) = ml/n.

Since

n

2] km(A) =Y, m(V,)z0,

k=1
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we have f fdm =z —|m|/n. This proves that ffdm =0 and the proof

is complete.

THEOREM 2.3. Assume that E is finite dimensional and let m €
M(B(X), E') be such that m(X) =0 and m(A) = 0 for each increasing set

A € B(X). Then, f fdm = 0 for each increasing f in C.(X, E).

Proof. There exists a base e, -+, e, for E such that an element
x =27, ¢e is in the positive cone of E iff each ¢;=20. Let T;: E— R,
x=2",¢emc, i=1,--- n Each T, is positive. Let now f: X > E

be an increasing bounded continuous function. Each f, = T,°f is an
increasing member of C*(X) and f=Z2_,fe. Let m; = me. Then
m;(X)=0 and m;(A)=0 for each increasing A € B(X). By Theorem
2.2, we have

jfdm=§ff,dm,;

which was to be proved.

THEOREM 2.4. Let E be a Banach lattice and assume that there
exists a sequence {e,} in the positive cone of E and a sequence {¢,} in the
positive cone of E' such that x = Z;,_, ¢,(x)e, for every x of E. Let
m € M,(B(X),E") be such that m(X)=0 and m(A)=0 for each

increasing A € B(X). Then j fdm =0 for each increasing
f€ C.(X,E).

Proof. For each positive integer n, define T,: E—E, T,(x)=
2.1 ¢ (x)e.. By the principle of uniform boundedness, we have that
sup{| T.|:n=1,2,---}=M <. Let now f be an increasing member
of C.(X,E). Each f,=T,of is an increasing member of
C.(X,E). Moreover, for each x € X we have |f,(x)|= M| f| and
fu(x)— f(x). Since m is o-additive, we have

f fdm = lim f fdm =1lim S f fedm =lim S f fd(me)=0
noe k=1 ne k=1

n—sw

by Theorem 2.2. Hence the result follows.

COROLLARY 2.5. Let E=1°, 1=p <o, be the space of all real
sequences x = {x,} for which ||x|, = (Z|x,|")" <, ordered by the cone
P={x=(x,):x.=0 for each n}. If m € M,(B(X),E’) is such that
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m(X)=0 and m(A)=0 for each A € B(X) increasing, thenf fdm =0
for each increasing f € C.(X, E).
Proof. Take e,=(0,0,---,1,0,---) with the 1 in the nth

position. For each n, let ¢,: E— R, (x,)~ x,. Now apply the preced-
ing Theorem.

THEOREM 2.6. Let X be a compact ordered space and E = |” (space
of real sequences), 1 = p <, with the usual norm and ordered by the cone
{x=(x,)EI”: x, =0 for each n}. Let m € M,(Bo(X), E') be such that

f fdm = 0 for each continuous increasing E -valued function fon X. For

each positive integer n, let m, = me, where e, = (0,0,---,1,0,---) with the
1 in the nth position. If the sequence {||m,|} is in I', then there exists
0=p EM,(Bo(G —A),E’) such that

J’X fdm N J’G—A fd'u
for each f in C(X, E).

Proof. Suppose that {|m,|} € I'. For each positive integer n and
each increasing member f of C(X) we have j fdm, = j fe.dm =0. By
Nachbin’s Theorem, there exists a u, € M,(Bo(G — A)), u, 20, ||, || =
L fdm, = L . f*du, for each f€ C(X). For each

n, let ¢,: E—R, (s;)~ s, For each s € E, the series 2, ¢,(s)u,
converges in M,(Bo(G — A)) since 2| ¢, (s)||u.[|=|sll, |pn ]| < and
the space M,(Bo(G —A)) is a Banach space under the total variation
norm. Define u: Bo(G —A)— E’ by

.

w(A)s = 2 uls)n(A).

For each sE€E, we have wus=2¢,(s)u. € M,(Bo(G —A)). Let
A, -+, A, be afinite partition of G — A into Borel setsand s,,- - -, s, € E
with ||s; ]|, =1, then

n

31 =3 (| S aomn)|)=2 S ma)

2 (2 (A ) Z (T ll=§ [ m. ||/2 < co.

k=
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This proves that u € M,(Bo(G — A), E')= M,(Bo(G - A), E') where the
last equality holds since G —A is locally compact. Finally, let f&
C(X,E) and put f, = ¢, °f Then

f= 2 f.e. and f*= 2 fre.

Therefore,
N N
f fdm :limsznd(me,,)=lim2f frdu,
X N—= 27 N=e 0% JG-a

N
=lim >, . f*e.du =f \ f*du.

N== 1 Jo- G-

Hommel has shown in [4] that if m is an increasing Radon measure
on a locally compact space X and if u =0 is a Radon measure on the
graph G of the order of X such that j fdm =J f*du for each

X G

f € C*(X), then for each compact subset K of X we have
n(KXK)NG)+|p|zIm]|(K).

The following Theorem gives a similar result for operator valued
measures.

THEOREM 2.7. Let E be a Banach lattice with a unit element e and
let p denote the norm of E. Then:
1) IfmeM(B(X),E') and if un 20 is a member of M(B(G), E")

such thatJ fam =f f*du for each f€ C.(X, E), then
X G

(*) Tl + 1, ((V X V)N G)Z my (V)

for each cozero set V of X.
(2) If meM,(Bo(X),E') and if 0=u € M,(Bo(G),E’) is such

thatf fdm = f f*du for each f € C.(X, E), then (*) holds also if V is
X G

open or compact.

Proof. Let m, u be asin (1) and let V be a cozero subset of X. By
[8]1, Theorem 2.2, we have

(@ m,(V)=sup {ffdm:fe C.(X,E), IfllI=1, f=0o0n X - V}.
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Let now f€ C.(X,E) with |[f|[=1 and f=0 on X—-V. Put g=
sup{0,f*—e}. Then 0=g=e, f*—g=e and g=0 on
G-(VxV)NG. Hence,

[ san=[  etw=pm(vxvnG)=a
G (VXVING
Thus,
| fam—a=] pran-a=| ¢*-g)au
X G G
=| edu=lul,
G

Now the (*) follows from (a).

Next, assume that m, u are asin (2). Then (a) also holds for each V
openin X. Now, the same argument which was used to prove (1), shows
that (*) holds for each V open. Finally in the same case, let K be a
compact subset of X. Given € >0, there exists an open subset W of G
containing (K X K)N G and such that u,(W)<b+e where b=
w,((K X K)NG). Let V, be an open subset of X such that VN G =
W. Theset V,= V,U(X—-G)isopenin X and V,N G = W. Since
KxKCYV, and K is compact, there exists V O K open such that
VX VCV, Now

Tl + (KX K)YNG)Z|u ], + w1, (VX V)NG)-€
z2m,(V)—-ezm,(K)—¢€

which completes the proof.

3. Linear operators from C(X) into E positive on
increasing functions.

THEOREM 3.1. Let X be a compact ordered space and let C(X) be
equipped with the uniform norm topology. Let ¢: C(X)— E be a con-
tinuous linear map which is positive on the increasing members of
C(X). Then, the following are equivalent:

(1) There exists a positive linear map ®: C(G)— E such that
®(f*) = ¢(f) for each f € C(X).

(2) There exists u=0 in E such that ¢(f)€[— u,u)] for each
f€C(X) with |[f|=1.

If the order interval [ — u, u] of (2) is weakly compact, then there exists
u: Bo(G)— E positive such that:
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(@) For each x' € E', x'ou € M,(Bo(G)).
(b) For every bounded Borel function f: G—R and any A €

Bo(G) there exists an element of E, denoted by f fdu, such that
A

(] )= o
for each x' € E'.

© [ fdu= o) for each f€ C(X)

Proof. (1> 2). Let ® be as in (1) and let f€ C(X), |f]|=
1. Then —1=f*/2=1 and hence —®(1)= ¢ (f)/2=P(1).

2=>1). Let u€E be asin (2). Let fe C(X) with f*=1. If
x =y, then (= f)(x)=(—f)(y)+1. By Nachbin [11], Theorem 6, there
exists an increasing member g of C(X) such that | g + f|=1/2. Hence

e(f)=e(ftg)-e(@)=e(@+f)=u/2.
Let G, be the subspace of C(G) spanned by the set
{f*: fe cx)ufl}.
On G,, we define
d: G,—E, f*+Ap o(f)+ Au/2.

Then @, is well defined, it is linear and positive. In fact, if f*+ A =0
(where f € C(X)and A € R), then A =0 because f*=00on A. If A >0,
then —f*/A =1 and thus ¢(— f/A)=u/2 which gives ¢ (f)+Au/2=
0. Also,if A =0, then f*=0. Thus, in this case, f is increasing and so
¢(f)=0. It follows that ®,(f*+A)=0if f*+ A =0. Now, there exists
(see Peressini [14], page 83, Proposition 2.9) a positive extension @ of ®,
to all of C(G).

Finally, assume that the order integral [— u, u] of (2) is weakly
compact. As in the proof of (2), there exists a positive linear map
®: C(G)— E such that ®(1)=u/2 and &(f*)=¢(f) for each
fE€C(X). Ifge C(G)issuchthat|g|=1,then —1=g =1andhence
®P(g)E[—u/2,u/2]. By hypothesis, the interval [ — u/2, u/2] is weakly
compact. It follows that ® is a weakly compact operator. By Lewis
([10], page 163, Theorem 3.1) there exists u: Bo(G)— E having proper-
ties (a), (b) and such that

[ faw =)
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for each f€ C(G). In particular (c) holds. It remains to show that
w(A)=0for each Borel subset A of G. To this end, assume first that A
is a zero subset of G. There exists a sequence (f,) CC(G),0=f, =1,
f. =1on A and (f,) decreases pointwise to the characteristic function of
A. From the

)= fdw+ | fdu=na)e [ fau

and from the fact that f f.du — 0 weakly in E, it follows that

G-A
®(f,)— n(A) weakly. Since the positive cone of E is convex and
closed, it is weakly closed. Thus u(A)=0.

Assume next that A is an element of B(G). Given x'€ E' and
€ >0, we can find, by the regularity of x> u, a zero set Z CA such that
|x'ou (A —Z)<e. Thus |x'(u(A)—pun(Z))|<e This, by the first
part of the proof, shows that u(A) belongs to the weak closure of the
positive cone of E and hence it is positive.

Suppose now that F is a closed subset of G and let x’€ E’ and
€ >0. From the regularity of x'ou and from the fact that the cozero
sets form a basis for the open subsets of G, we can find a cozeroset VD F
such that [x'(w(V)— u(F))|<e. This again proves that u(F)= 0.

Finally, using again the regularity of x'o u, for x' € E’, we show that
w(A)=0 for each A € Bo(G) and this completes the proof.

CorOLLARY 3.2. Let X be a compact ordered space, E a Banach
lattice with a unit element e and ¢: C(X)— E a continuous linear map
such that ¢(f)= 0 for each increasing f € C(X). Then, there exists a
positive linear map ®: C(G)— E such that ¢(f) = ®(f*) for each f in
C(X). If E is in addition reflexive, then there exists a positive
w: Bo(G)— E such that:

() For each x' € E', x'ou € M,(Bo(G)).

(b) Forevery bounded Borel function f: G — R and any Borel subset

A of G, there exists an element J fdu of E such that x' (j fdu>=
A A

f fd(x'on) for each x' € E'.
A

(c) For each f € C(X), we have ¢(f) :f f*du.

G

Proof. 1t ||f|=1, f€ C(X), then o(f)€E[—u,u] where u=

lelle. Also, if E is reflexive, then [ — e, e] (being the closed unit ball of

E) is weakly compact. Thus the result follows from the preceding
Theorem.
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