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Recently, there is an increasing interest in studying the nth
order differential equations involving the so called nth order
r-derivative of x

(ra-1 () (raao () (- - - (R () (ro(O)x (2))) - -+ ))')
which causes damped terms. Here, the asymptotic behavior of
nonoscillatory solutions of such general differential equations

with deviating argument is studied and, more precisely, sufficient
conditions which guarantee that

fim x(1)= 0

for the bounded nonoscillatory solutions x(¢) are established. A

basic theorem is obtained for the general case and then it is

specialized into four corollaries concerning the particular case
r=1 for jZAn—N and r.n=r (1=N=n-1)

which is of special interest. Finally, some examples are given to
illustrate the significance of the results.

In this paper we consider the nth order (n > 1) differential equation
with deviating argument of the form

(rai () (o (B) (- - - () (o) x (2))) -+ )))
+a(OFx[e)=b@t), t=4

(E)

where the functions r, (i =0,1,---, n — 1) are supposed positive at least
on the interval [#,®). The continuity of the functions involved in the
above equation (E) as well as sufficient smoothness to guarantee the
existence of solutions of (E) on an infinite subinterval of [#,®) will be
assumed without mention. In what follows the term “solution” is always
used only for such solutions x(¢) of (E) which are defined for all large ¢.
The oscillatory character is considered in the usual sense, i.e. a continu-
ous real-valued function which is defined on an interval of the form [T, »)
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222 CH. G. PHILOS AND V. A. STAIKOS

is called oscillatory if it has no last zero, and otherwise it is called
nonoscillatory.

Furthermore, the conditions (i) and (ii) below are assumed to hold
throughout the paper:

(i) lim_o.o(t)=x

(i) y#0= yF(y)>0.

The results of this paper are included in a general theorem given in
§2, which establishes sufficient conditions in order that all bounded
nonoscillatory solutions x (¢) of the differential equation (E) tend to zero
as t > . This theorem extends a recent result given by the authors in
[9, Theorem 3] concerning also the equation (E). Also, it unifies and
extends two results by Kusano and Onose [5, Theorems 3 and 4]
concerning, in particular, the differential equation

Dn) [ MOI+ a@F o) =b(), 21,

where 1 = N = n — 1 and the function r is continuous and positive at least
on the interval [, «).

The technique used in the proof of our theorem is based on three
lemmas which are given in §1. Lemma 1 is fundamental and has been
proved by the authors in [9], Lemma 2 is proved here and it is an
extension of a result due to Hardy and Littlewood [4], while Lemma 3 is
new and it is rather technical.

In §3 our main theorem is specialized for the differential equation
(Dx), which is obtained from the equation (E) by setting

r=1 for jAn—N and r.y=r

and which is of special interest. Thus, four corollaries are obtained, from
which Corollary 1 is the main result of a recent paper by Kusano and
Onose [S5] while Corollaries 2, 3 and 4 are new and are illustrated by
examples.

1. Preliminaries. Letg (i =0,1,---, m)be positive continu-
ous functions on an interval I of the real line. For a real-valued function h
on I and any u =0,1,---, m we define the uth g-derivative of h by the
formula

Dk = qu(gu-1(gu-o- - - (qi(goh )Y -+ ))Y

when obviously we have
D®h = q,h

and
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Dglj)h=q/(Dgil)h)l 02172"”’”’)'

Moreover, if D{"h is defined as a continuous function on I, then h is said
to be m-times continuously q-differentiable. We note that in the case
where q,=¢q,=---=4¢q, =1 the above notion of g-differentiability
specializes to the usual one.

By using this shorthand notation, the differential equation (E) can be
written

(E) (D™Wx)()+ a(®)F(x[a(t)]) = b(2), t=t,

where r, = 1.

Now, let p be a real-valued function which is defined and positive at
least on the interval (¢, ) and let R, (i =0,1,---, n) be the functions
defined as follows:

R,=p
and for every j=n-~1,n-2,---,0
R/:r/R;”'

The function p is said to be of the type r{k], 0=k =n — 1, if:

() the functions R; (j=k +1,---,n) are defined at least on
(tO, oo)’

(B) Ry, is a constant nonzero function on (¢, ),

(y) if k<n-1, then forevery j=k+2,---,n

lim R, (?) exists in {— ®, 0, + o}

and
(8) if k <n -2, then for every j=k +2,---,n—1

R,(t)#0 for all ¢t > ¢,

For some interesting examples of functions of the above type we refer
to [9].

The technique used here is based on the following lemma, which has
been proved by the authors in [9].

LEMMA 1. Let p be a function of the type r[k],0=k =n—1, and h
an n-times continuously r-differentiable function of [T, ), T > t,.
If the improper integral
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[ ey

exists in the extended real line R*, then so does the lim,...(D"h)(¢).
Moreover,

fm p()(DWh)(t)dt = £ implies 1‘1_{2 {(D®R)(1)| = .
T

In order to obtain our results we need further the following lemma
which is an extension of a result due to Hardy and Littlewood [4].

LEmMmA 2. Let g (i=0,1,---,m), where m >1, be positive con-
tinuous functions on an interval [T,®) such that

lirlninf q:(t)>0 (i=12,---,m)
and
limsup q:(t) <o (i=12,---,m-1).

Moreover, let h be an m-times continuously q-differentiable function on
[T, ).
If DYk is bounded on [T,~) and

lim (D§"h)(1) =0,
then
im (DPh)(H)=0  (=1,2,---,m—1).

The above lemma follows immediately from the following proposi-
tion, which in the particular case q,=¢,=---=¢, =1 is an improved
version of a result due to Landau [6] (cf. also Coppel [2, p. 140]).

ProrosiTiON. Let g (i=0,1,---,m), where m >1, be positive
continuous functions on an interval I such that

A= _nl1in inIf q:(t)>0 and B= max_ sup qi(t) <.
i=1l,m 1€ i=1,--m- el
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Moreover, let h be an m-times continuously q-differentiable function on I
with

[(DPh)()|=K and |(D{h)(t)|=M  foreverytE€ L

If L is the length of the interval I and
1/m
(a) Iisclosed and L =2A (——5)

or
K 1/m
() L>2A<M) ,

then for every t € 1
[(DPh)()|= c.K'""'"M'"™ G=L.2,---,m—-1),

where

2B\
Cn = (‘K-) .

Proof. 1t suffices to prove the proposition in the case where (a) is
satisfied. Indeed, if (b) holds, then for any ¢t € I we can choose a closed
subinterval J of I with length L'=2A (K/M)"" and ¢t € J. So, applying
the proposition for the closed interval J we obviously obtain

[(DPh)(t)|= c,K'"'"M'"™ G=1,2,--,m-1).
Now, we suppose that (a) is satisfied and define

G)
S = max {c max max M}

™ o< <m 1€l Klgl/mM'”m

Obviously, for every j =0,1,---,m —1

1 é (21‘—?‘3)2”1_2 é <%4_B>2"'-2 —c

lIA

S,

by which, after some manipulations, we derive that

(1)

where y, =1-27".
We shall prove next that for j =0,1,---,m —1
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2 Y . )
) [(DPh)(t)| = <4ABZ S) K''m"M"""™ = K; for every t € L

Indeed, (2) is valid for j =0, since
[(DPh)(t)|= K = K, for every t € L
We suppose that (2) is satisfied for j =1 0=1<m —1, i.e.
(3) [(DPh) (1)) = K, for every t € L
For this [ we have that
4) [(D{™®h)(t)|= SK'"PmM"2m = M, for every t € I

which, by the definition of S, is obvious for I < m —2 and follows from
the inequality

[(D{h)(t)|=M = MS = M,,_, for every t € ],

when [/ =m — 2. Since, by (1),

KI 12 K 1/m
_— < | —
(3) =)

and because of (a), there exist t,, t, in I with t,—t,=2A(K,/M,)"”* and
t,=T,=t, where T, is such that

(DS h)(T,)] = max [(D§" k) (1))

It is easy to verify that

(DR ()~ (DPR)(T) = (DYR)N(T) [ =5

To QI+1(S)

1, 1 R 1
+ (1+2)
f ) ) aaowy (PE7h) (w)dwds

and

(DPR) ()~ (DPh)(Ty) = (DEh)(T;) f q,fffs)

L3} 1 fs 1
+ (1+2)
fTﬂ ql+1(s) To ql+2(w) (Dq h) (W)deS,
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when, by subtraction, we get

(DPR)(1)— (DPR)(1) = (D"”’h><T°)f TR

1 1 s
D(I+2)h d d
+JT0 qiei(s) Jr q,”(w)( ) (w)dwds

—L qm(s)fs qm(w)(va””h)(w)dwds.

Thus, we obtain

ds

(DRI |~ =

=[(DYR) ()| +[(DPR) ()]

+fr” 1 f“ L1 (DEh) (w)| dwds
. (II+1(S) s CI1+2(W) 4

51 [ 1
+ Dy dwd
]) q:+1(s) To q:+2(W)I( ¢ h)(W)' was

Te

and consequently, by (3) and (4),

1 Ty 1 T, 1

DY) (Ty)| S e {21( M, U j

’( q )(To)l f!z ds ! { . ql+1(s) . ql+2(w) deS
n CII+1(S)

f2 1 s 1
+
fn G I q,+2(w)d“’ds]}'
Hence,

(D) (TY| = 2 {2+ 355 (T 0P + (= T

B M, 2]
<< K —— —_
tz'_' t] [2 ! * 2A2 (tz tl)

_p|2K |
=B [tz— L 2AH (f2- t)]

—_ %4_B(KIMI)1/2.

But, it is a matter of calculations to verify that

2B
—A" (KIMI)I/Z = K1+1,
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when
(D{Ph)(To)| = Ki,

which proves (2) for j = [ + 1 and consequently forallj =0,1, -, m — 1.
From (2) it follows that

max max

[((DPR)(D)] _ (4B ™
0<j<m (€l Kl‘i/’"Mi/m = .

AZ

Also,

2B 2m-2 4B2 Y -1 4B2 Ym-1
o=(%) =(hre) =05

Therefore, by the definition of S,

2 Ym-—1
S§(4B s) ,

/12
which gives
2B

2m=-2
S= (7() =c, le. S=c,

Hence, by the definition of S, we have that for every t € I

(DOR) (1) = e, KM (j=1,2,+-,m ~1).

Finally, for our purpose we need one more lemma.

LEMMA 3. Letq (i =0,1,- -+, A) be positive continuous functions on
an interval [T, ®) such that for A >0,

* o dt .
I f —— = i=1,2,--A
D 0 ( )
and let
1, if A=0
OO,\(t; T)= ' 1 s . 1
fr Q1(51) JT Q2(52) f'r qA(s/\) S 52451

if A>0.
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Moreover, let h be a A-times continuously q-differentiable function on the
interval [T, ). Then we have:

(a) If

liminf (D WDh)()>0 or limsup (D{h)(1)<0

and
() j TQutT) 4y
qo()
then
r h(t)dt = .
B) If
lim (D$h) (1) =0
and
(1) lim sup Qu(t; T) < o,
I qo(t)
then
lim h(t)=0.

t—x

Proof. Since the lemma is obvious for A =0, we suppose that
A >0. Foranyintegersi and j,0=i =j = A, and for every u and v with
v=uz=T, we define

1, if i=j

Q,(v;u)=

v 1 J‘S.n 1 f’/l 1
——ds; * * * dsidsiy,
J’u q.+1(sz+1) u qt+2(sl+2) u q] (s]) ! : :
if i <j.
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Then, taking into account condition (I), we have that forevery T*= T,
lim Q;(1; T*) = O=i<j=s))
and consequently, by L’Hospital’s rule,

) lim g4 =0 =01

and

. Ooagt;T*zz
© o

Moreover, for every ¢t and T* with t = T*= T, it is easy to derive the
following generalized Taylor’s formula

(DYR)(W) = 5, (DYRY(T*)Qq(t; T*)

(7) f 1 f 1 f 1 )
n D®h) (s,)ds, - - - ds,ds,.
- ql(sx) - qz(sz) G (SA)( q ) (S )ds \Y) S‘l‘

(a) Let d>0 and T*> T be chosen so that

(D{h)(t)= d for every t = T*
or
(DPh)(t)= —d for every t = T*.

Then from the formula (7) we have respectively

OO o e QT . 0BT o
On:n =2 PTG G Y onan (=T

or

DI S ho o Qu(t; T Qu(t;TY) =T*
o =& @MIN G e dona: 2T

and hence, by virtue of (5) and (6), we obtain

o @M> . @M<
BRGNS R oY (T )
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But this, by condition (II), gives
Jm h(r)dt = +o.
(B) For any arbitrary € >0, we consider a T*> T so that
[(DPh)(t)| < € for every t = T*,

when from the formula (7) we obtain

(DO oy Quts T Qu (1 TY)
QOA(I;T) =;=0 ’(Dg)h)(T )f Qo»\(t;T) e QO*(t;T)

for every ¢t = T*. Thus, by (5) and (6), we have

. (DYh) (1)
hql_’silp NGES) e

and, since € is arbitrary,

. (DPh)() _
IIEEQOA(t;T) 0,

which, by condition (III), gives

lim A(t)=0.

t—>

2. The main result. Our main theorem establishes condi-
tions which essentially guarantee that

lim x(£) = 0

t—c0

for the bounded nonoscillatory solutions x of the equation (E).

THEOREM. Consider the differential equation (E) subject to the
conditions (i), (ii) and

(i) limsup,.. ro(t) <oo.
Let m and k be integers with 1 =m = k = n — 1 so that the conditions (iv),
(v) and (vi) below are satisfied :

(iv) If m <k, then for every j=m +1,---k
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v) fmdt=°0 and limsupM<oo,

r. (1) e+ Ty (2)
where
r1, if m=k
Rmk(’)=J r . .
L Z:(ls—MT) m” F]:SMSJ;Q -;:(ls’(—)dsk--«dsm”dsmﬂ,

if m<k.

(vi) If m >1, then for every i =1,2,--- m —1
0 <liminf r(t)y= linthsmup ri(t) <oo.
Moreover, let there exist a function p of the type r(k] such that:
(€) Jm p()|b(t)]dt <

and
(C,) For some 6 >0,

1+8 ®
lim inf f p(s)a*(s)ds >0 and j p(H)a (t)dt <=
or
(+8 ®
liginff p(s)a(s)ds >0 and f p(t)a*(t)dt < oo,

where

a*(t)=max{a(t),0} and a (t)=max{- a(t),0}.

If the function o is differentiable with bounded derivative on [t,, ®),
then for all bounded nonoscillatory solutions x of the equation (E),

lim (D¥x)(r) = 0 = lim (D" x)/(1

and
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lim (DY%)(t)=0 (I=0,1,---,m —1).
>0

Proof. Let x be a bounded nonoscillatory solution of (E). Without
loss of generality, we assume that x is a solution on the whole interval
[#,®). Moreover, this solution is supposed positive on [t ), since the
substitution u = — x transforms (E) into an equation of the same form
satisfying the assumptions of the theorem.

If, by (i), T > ¢, is chosen so that for every t = T

O'(t) = to,
then from equation (E) we obtain
[ o @ex)s)ds = [ p(6b(s)ds = [ p(s)a*)Fxlo(s)Dds
®)
+[ p(s)a ()F Lo (s)Dds

for every t = T. Because of (ii) and the boundedness of x, the function
Fox oo is positive and bounded on [T, »). Thus, by conditions (C,) and
(C,), we conclude from (8) that the improper integral

[ em@emy @

exists in R* and consequently, by virtue of Lemma 1, the lim,_... (D ®x)(¢)
also exists in R*. Moreover,

) lim (D¥x)()=0.
Indeed, in the opposite case we have
lim inf (D®x)(#)>0 or limsup (D¥x)(t)<O0.

Thus, because of conditions (iv) and (v), we can apply Lemma 3(a) for
h=(D" xY,A=k-mandq, =r,.; (j=0,1,---, 1), when we obtain

[ @y = =, e tim (D)@ =

From this, by condition (vi), it is easy to derive
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lim (D9x)(t)=
1—>oc
a contradiction, since, by condition (iii), Dx = ryx is bounded.
Now, taking into account (9) and conditions (iv) and (v), we apply

again Lemma 3(B8) for h=(D!" "x), =k-m and gq =r,,,
(j=0,1,---, 1), when we get

(10) lim (D& x)(r) = 0.

So, if m > 1, then, by virtue of condition (vi), we can apply Lemma 2
for g =r, (j=0,1,---,m —1) and g, =1, to obtain

(11 llLrg (DYx)(1)=0 Gg=12,--,m-1).
Thus, it remains to prove that

(12) lim (DYx)(t)=0.

To do this, we first observe that

(13) “I,rlinf (Dx)(t)= 0.

Indeed, in the opposite case for some positive constant d, and for every
t = t, we have

(DYx)(t)= d,
and consequently, by (iii),
x(t)= d, for every t 2 1,

where d, = d//sup.z, r/(t). From this and the boundedness of x we
conclude that
F(x[o(®)])=d for every t =T,

where d is a positive constant. Hence, from (8) and on account of
conditions (C,) and (C,), it follows that

fw p()(Dx)(1)dt = *

T
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and consequently, by applying Lemma 1,

lim(D®x) () = +oo,

{—o

which contradicts (9).
To complete the proof of (12), we have verify that

limsup (D®x)(t)=0.
Indeed, in the opposite case we have
limsup (DPx)[o(t)]=Z K

for some positive constant K. Hence, on account of (13) and based on the
arguments of Hammett [3] (cf. also Singh [7, 8] and Staikos and Philos
[9]), we derive that there exist three sequences («,), (B8,) and (y,) with
lim @, = © and such that for every v =1,2,---

T=a <y, <B. =a.
(DOx)[o(@)] =5 = (Dx)[o(B.)
(DOx)[o(r.))> K

(Dx)[o(1)] >§ for every t € (a,, B.).

By mean-value theorem, we have

(D)o ()= PO @ _ L1 (DO Y[o(E)]

‘yl‘_—aV

and consequently

K / ©) 4y
< (£)(DOx)Y[o(£)],

where obviously lim £, = . But, because of (10), (11) and (vi), it is easy to
see that

lim (D¥x)(r) = 0.
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Thus, we obtain
(14) lim(B, — @)= .
Next, we observe that for every v =1,2,---
(D%x)[a ()] = g for every t € [a,, 8.]
and consequently, by (iii),

K _ K
x[o(t)]= 2ro[o(t)] ~ 2sup,z, ro(?)

>0 for every t € [a,, B.].

We have thus proved that the bounded function x ° ¢ has a positive lower
bound on the set US_,[a,, B.]. Hence, because of (ii), we have

F(x[o(t)])= M for every t € CJ [a,B.],

where the constant M is positive.
Obviously,

f: P (OF(x[o (O = 3, ] p(D)a*(O)F(x[o(1)))dt
;Mgﬁﬁmfma

But, by virtue of (14) and condition (C;), we have

2 IBV p(t)a*(t)dt =« or 2 " p(t)a (t)dt = »

and consequently

[ ewa FGlo@d == or [ p(a FGloa =

T T

Thus, from (8) it follows that

fmmmwww=rw
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Finally, by Lemma 1, we obtain
lim(D%x)(t)= * oo,

which contradicts (9).

3. Applications. We shall give now some interesting applica-
tions of our main result for the particular case

r=1 for j#n—N and r,.yx=r,

where N is an integer with 1 = N = n — 1. More precisely, we shall derive
some corollaries concerning the differential equation

On)  [rOx= MOV + aFx[o) = b(1), 12t

All corollaries are new except Corollary 1, which is the main result of a
recent paper by Kusano and Onose [5].

CoRrOLLARY 1. Consider the differential equation (Dy) subject to the
conditions (i) and (i1). Moreover, letk, 0 < k = N — 1, be an integer such
that:

N-1-k

© ¢N-1-k
(a) j L;(t_)— dt = and linLqup tr(t) < oo,
(B) r t1b(1)|dt <o
and

(y) For some 6 >0,

+

8 o
lim inf s*a*(s)ds >0 and J’ t‘a™(t)dt <=

t—x '

or
t1+8 x
lim inf f s*a (s)ds >0 and f tha*(t)dt <.

If the function o is differentiable with bounded derivative on [t,, %),
then for all bounded nonoscillatory solutions x of the differential
equation (Dy),
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tim [r(£)x®(6)] "0 = 0

and
lim x(t)=0 (i=0,1,---,n—N).

Proof. 1t is easy to see that the function p,

p(1)= (¢~ )

is of the type r[n —1— k]. Thus, the corollary follows by applying our
theorem for m = n— N and with n —1— k in place of k.

CoroLLARY 2. Consider the differential equation (Dy) with N > 1,
subject to the conditions (i), (ii) and

0< lir[rlinf r(t) = limsup r(t) <.

Moreover, let k,0=k <N —1, be an integer such that (B) and (y) are
satisfied.

If the function o is differentiable with bounded derivative on [t,,),
then for all bounded nonoscillatory solutions x of the differential
equation (Dy),

lim [r()x™ MO =0 (=0,1,---,N-1-k)
and
lim x(t)=0  (i=0,1,---,n~N).

Proof. 1t follows from our theorem, by taking the same function p
as in the proof of Corollary 1, m =n—-1-k>n—-Nand n—-1-k in
place of k.

CoroLLaRrY 3. Consider the differential equation (Dy) with N <
n — 1, subject to the conditions (i) and (ii). Moreover, let k, 1 =k =
n — N —1, be an integer such that:

@) | ==
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(€) Jm p ()| b(1)]dt <
and for some & >0 either
liminf J,M p(s)a*(s)ds >0 and Jm p(t)a (t)dt <o
or
lir‘rlinf flw pe(s)a (s)ds >0 and fw p(t)a*(t)dt <o,

where

S.

If the function o is differentiable with bounded derivative on [t,, ),
then for all bounded nonoscillatory solutions x of the differential
equation (Dy),

lim x“(r) =0 (i=0,1,---k).

Proof. Here, we have to apply our theorem for m = k and p = p,,
since, as it is easy to see, the function p, is of the type r[k].

CoroOLLARY 4. Consider the differential equation (Dy) with N <
n — 1, subject to the conditions (i) and (ii). Moreover, let k, 1=k =
n— N —1 be an integer such that:

= pn-N-l-k
© [ di<

(n) If N>1, then for every j =1,2,---, N—1

i ® _ n-N-1-k
lim f (t- s)"’f Lrt‘(%)— duds exists in {0, %}

(9) f o (D) b(1)] dt <o

t—x

and for some & >0 either

t+8 *©
1ir[1~1ﬂinff p(s)a“(s)ds >0 and fpk(t)a’(t)dt<oo
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or
+6 Ed
lirrrlinff p(s)a"(s)ds >0 and j pe(t)a’(t)dt <o,
where

x _ n-2-k
Qi—rz—”s)Lds, if N=1

pu(t) = J

t s o \n-N-1-k
f (t—s)'”f gﬁ—rtEuL)——' duds, if N>1.

If the function o is differentiable with bounded derivative on (t,, ),
then for all bounded nonoscillatory solutions x of the differential
equation (Dy),

l,ij{} x(t)=0 (i=0,1,--- k).

Proof. 1t is easy to verify that the function p, is of the type r[k],
when the corollary follows immediately by applying our theorem for
m = k.

The significance of Corollaries 2, 3 and 4 is illustrated by the three
examples below, where in each case exactly one of these corollaries can

be applied and in addition Corollary 1 fails.

ExampLE 1. The retarded differential equation
[A+eHx'(1)] +%x2(log t)sgnx (logt) = ;15+ e '(1+8e™), t=1
has the bounded nonoscillatory solution x(¢t) = e * with the property
lim x(r)=1lim x'(r) = lim [+ e )x'(1)) =0.

Further, as it follows from Corollary 2, every bounded nonoscillatory
solution x of the above equation has this property.

ExampLE 2. By Corollary 3, all bounded nonoscillatory solutions
of the differential equation

[ O + 7 ) = (=327, ez,
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where vy is a positive constant, tend to zero as ¢ — © together with their
derivatives. For example, x(¢) =t is a bounded nonoscillatory solu-
tion of the above equation with lim,_.x(¢) = lim,..x'(¢) = 0.

ExaMpLE 3. Consider the retarded differential equation

%

[£2x"(0)) + x®(VDsgn x (Vi) = — ;15, t=1.

This equation has the bounded nonoscillatory solution x(¢)= 1/¢ with
lim,_. x(t)=lim,.. x'(t) = 0. Further, from Corollary 4 it follows that all
bounded nonoscillatory solutions of the considered equation tend to zero
as t — « together with their derivatives.

REMARK. The results of this paper can be formulated in the case of
more general differential equations of the form

(Dx) (1) + a(H)F(x[o (1)
(E*)
+ G (t; x(7o(t)); (DOxYri (1)), - -, (DO x ) mans () = b(1), 21y

where

g{n() = (g[ru(0)], g[72(1)), - -, g [7 (D))).

From the proof of our theorem, this is obvious under additional
conditions on G, which ensure that for every bounded nonoscillatory and
n-times continuously r-differentiable function u on an interval [T, »),

r p (DG (t; ulto(t)); (DPuX7i(t)), - - -, (D u)mues(2)))| di < o,

where p is the function introduced in conditions (C,) and (C,) of our
theorem. For a such related result to Corollary 1 see Chen [1].
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