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Let T, be the Teichmiiller space and R, the Riemann space
of compact Riemann surfaces of genus g with g =2. The space
R, can be realized as the quotient of T, by a properly discontinu-
ous group M,, the modular group. Various metrics have been
defined for T, which are compatible with the standard topology
for T, and induce quotient metrics for R,. Several authors have
considered the Weil-Petersson metric for T,. A length estimate
derived in a previous paper is summarized; combining this with
the Ahlfors Schwarz lemma, an estimate of N. Halpern and L.
Keen, and an additional argument shows that the
Weil-Petersson quotient metric for R, has finite diameter. A
corollary is an estimate relating the Poincaré length of the
shortest closed geodesic of a compact Riemann surface to the
Poincaré diameter of the surface.

For background material the reader is referred to the articles of L.
Ahlfors [1] and L. Bers [3] and to the article of L. Bers [5] for a survey of
related topics. T. C. Chu [7, 8] and H. Masur [12] have obtained results
related to ours. The author would like to thank Professor G. Kiremidjian
for his assistance.

1. The case of an annulus. Let A ={z|1<]|z|<p}be an
annulus in the plane. Let M(A) be the space of Beltrami differentials of
A endowed with the L™ metric; let Q(A) be the space of integrable
holomorphic quadratic differentials of A. An element of M(A) is a
tensor of type (—1,1) with measurable coefficient.

DEerFINITION 1.1. For ® € Q(A) set

ol = ([1oraz)"

where A, is the Poincaré metric of A. For u € M(A) set

[l = Sup. [, @1/ @]

where [u, P] =f ud.
A
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The metric A, is known to be given by the following expression
(m/log p)csc(mlog|z |/logp)|dz/z|.

We consider a particular deformation of the annulus
A. Fort=1let A ={z|1<]|z|<p'} then the map

(1.1) zpz|z|'=2z,(2)

is quasiconformal with Beltrami differential

(t =1t +1)(z/| z |} dz/dz.

By considering solutions w(z) of the Beltrami differential equation
w; = pow, where w is a Beltrami differential it is seen that the curve of
Riemann surfaces A, is represented by the curve

(t=1/t+1)(z/|z|Vdz/dz CM(A), =1

As described in our previous paper [16] (1/2t)(z./|z|) dz./dz, is the
tangent to this curve at A, expressed as an element of M(A,),t=1. By
Definition 1.1

I(1/2t)(z /| 2. | Ydz./ dz, |

s [ oyl /(] orsz)

12

It is clear that the extremal ® is given by (dz,/z,)’. The value of the
quotient in (1.2) is now equal to

(1.3) Q2m’/t’log p)'”.

Thus the length of the curve A, t = 1is given by the convergent integral

(1.4) f " @mtlog p) " dt.

For a compact Riemann surface R of genus g, g = 2 one can identify
the cotangent space at the point R of Teichmiiller space with the regular
quadratic differentials Q(R) of R and the tangent space at R with the
Beltrami differentials M(R) modulo those which are infinitesimally
trivial, [1]. In this instance the Weil-Petersson metric and cometric are
given by Definition 1.1 on replacing A by R, [15].
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2. Finite diameter of Riemann space. The Riemann
space R, of genus g, g =2 is the space of conformal equivalence classes
of similarly oriented -compact Riemann surfaces of genus g, [14]. A
natural projection m, of T, to R, exists; this projection can be given by
the action of a properly discontinuous group M,, the modular group,
[6]. S. Kravetz showed that every metric d(,) for T, compatible with
the topology of T, induces a quotient metric d(,) for R, defined as

(£,y)= inf d(x,y)

mg(x)=%
e(y)=¥

for x,y € T, and %,y € R,, [11].

DeriNiTiON 2.1, For %,y € R, let

w(x,y)= inf d, ,(xy)
s

where d,_, (,) is the Weil-Petersson metric for T,.

Let H={z|Imz >0} denote the upper half plane and A=
0°/ox*+ 3*/dy*? the Laplacian. The following definition and theorem
are due to L. Ahlfors, [2].

DEFINITION 2.2. A metric p|dz |, p = 0 is said to be ultrahyperbolic
in H if it has the following properties:

(i) p is upper semicontinuous;

(i) at every z,€ H with p(z,) >0 there exists a p, defined and of
class C” in a neighborhood V of z, such that Alog p,= piand p = p,in V
while p(zo) = po(zo).

The Poincaré metric of H is |dz |/y.

THEOREM 2.3. Let p|dz | be an ultrahyperbolic metric for H.  Then
pldz|=|dz]ly.

The following theorem is due to L. Bers, [4] and D. Mumford, [13].

THEOREM 2.4. For ¢ >0, let K.CR, g=2 consist of those
Riemann surfaces R for which each closed Poincaré geodesic has length at
least c. Then K, is a compact set.

THEOREM 2.5. R, has finite diameter for the w(,) metric.

Proof. Consider the following regions in H C(I,6,) ={z|Imz >
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0,1<|z|<expl, 6,<argz<m—6} and 6,<6, C(6,86,)=
C(,6,)— C(l,8,). The Poincaré area of C(l, 8, (resp. C(I 6,,86,)) is
2lcot 0, (resp. 2l(cot 6,—cot 8,)). The self map of H z» zexp! iden-
tifies the boundaries of C(l,6,) such that the quotient A(l 6,)=
C(l, 8.)/{z » z exp l} is conformally an annulus. Let C(J, 6, 6,) denote
C(l, 6,,6,) with the boundaries C(l, 8, 6,)N{z|argz =6} and
C(1, 6, 6,)N{z |argz = m — 6,} identified by the map z P z expi (7 —
26,); the quotient A (L, 8, 8,) = C(l, 8,, 8,)/{z > z exp I} is conformally an
annulus. Let (@) (resp. B(6)) denote the projection to A (I, 6,) (resp.
A(l 6,,0,)) of the curve z =rexpif, 1=r=exp! provided 6,=6 =
m—6, (resp. 6,=60=6,). A quotient metric for A(l 6,) (resp.
A(l, 0, 6,)) is obtained from the restriction to C(l, 8,) (resp. C(, 6,, 6,))
of the line element |dz|/y. The distance between the boundaries of
A(l 6,) (resp. A(l, 61, 6,)) in the quotient metric will be referred to as the
width of A ([, 6,) (resp. A(l, 6,,6,)). Since each curve z =rexpif CH
0 < 6 < is a Poincaré geodesic it follows that the width of A (/, 6,) is

™= 06y
given by the integral J’ rd6/rsin @ = 2In(cot 6,+ csc 6y). The in-
6

o

duced quotient metric for A(/, 6,, 6,) is not differentiable on the curve
B(6,); nevertheless, it is straightforward that the width of A(, 6,, 6,) is

exp!

2In(cot 8 +csc 0)]s;. The curve B(#,) has length dr/rsin@,=

1
lcsc 8,.
The following lemmas of N. Halpern [9] and L. Keen [10] are
essential to our argument.

LEmMMA 2.6. Let R be a compact Riemann surface. For every
¢ >0 there exists a ¢, > 0 such that for y a simple closed Poincaré geodesic
of length | at most c,, the region A(l 6,), 6, =cot™'(c,/2l), can be
isometrically imbedded into R with a(/2) realizing v.

Observe that 2/ cot 6, represents the area of A([ 6,).

Lemma 2.7. Let R be a compact Riemann surface of genus g,
g = 2. There exists a constant ¢;>0 such that there are at most 3g —3
simple closed Poincaré geodesics of length at most c;.

Proof of Lemma 2.7. By Lemma 2.6 one can choose ¢;<c, such
that the width of A (1, 8,) for I =c; is at least ¢;. The conclusion now
follows since there are at most 3g —3 mutually disjoint, homotopically
nontrivial, simple closed curves on R which are mutually not freely
homotopic.

Let @&, =cot™'(c,/4l) and consider the domain A(/, 6,®,). The
width of A(L 6, ®,) is 2In(cot 6 + csc 8)|%, which is bounded from below
for [ = ¢, provided there exists a constant ¢ >0 such that
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(cot 6, + csc 6,)/(cot P, + cscP;)= ¢ for | = c,.
For c; sufficiently small csc ®, =2cot ®, thus
(2.1) (cot 6, + csc 6,)/(cot D, + csc D) = cot 6,/3cot P, = 2/3.
The length of B(®,) is
(2.2) I csc(cot™ (co/4l))= I cot (cot™ (co./41)) = c,/4.
For an annulus A ={z|1<|z|<r} we make the following definition.
DEerINITION 2.8. The extremal length E(A) of A is given by
E(A)=2m/logr.

Now the extremal length of A(6,D,) is E(A(6,P))=
1/2(®, — 6,) = 1/2(cot™'(c,/41) — cot™'(c,/2])) where by I"'Hopital’s rule

(2.3) lim [/2(cot™ (c,/41) — cot™' (¢c./21)) = c./4.

It is now clear that ¢’, 0 <c¢’'< c; can be chosen such that for [ = ¢’

(2.4) 2In(cot @ +csc 0)|4=c’
(2.5) lcscd, = ¢’

and

2.6) 12(®, - 6) = c».

These inequalities will now be used to estimate the diameter of R,. The
region K. CR, is compact and thus has finite @ diameter. Let a
Riemann surface R represent a point in T, such that 7,(R) & K. with
Y1+, ¥ the geodesics of R of length less than ¢’. The object is to
“fatten” R in a neighborhood of each of y,,- - -, vy, thereby obtaining a
surface in K,. By Lemma 2.6 a region A ([, §,) can be considered as a
coordinate neighborhood of y, where [ is the length of y,. A new surface
R* can be formed by removing the part of A(/, 6,) corresponding to
A (I, ®,) and identifying the boundaries by the map z » z expi(m — 2®,).
Thus A (I, 6, ®,) represents a coordinate patch in a neighborhood of the
gluing and the original coordinates are chosen otherwise. In a neighbor-
hood of the gluing Ag | -, the Poincaré metric of R restricted to R*, is
defined in terms of the coordinate patch A(l 6, ®,); for coordinate
patches disjoint from the gluing Ag [g- = Az. Assuming that Ag|g- is
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ultrahyperbolic Theorem 2.3 implies that Ag |z- = Az where Ag. is the
Poincaré metric of R *. To show that A | z- is ultrahyperbolic it suffices to
consider the metric in a neighborhood of the gluing. Define the metric
X(z)|dz| on C(l,6,®,) by setting A(z)|dz|=]|dz|/Imz for 1<|z|<
expl, 6, <argz <®, and A(z)|dz|=|dz|/Im(z expi(2®, — 7)) for 1<
|z|<expl,w—® <argz < — 6; that A(z)|dz ]| satisfies (ii) of Defini-
tion 2.2 relative to the quotient metric of C"(l, 0, ®,) is clear. The
objective is to show that R* is ““fat” in the free homotopy class of y, and
that no new (i.e., other than vy,, - - -, v,) “pinched” free homotopy classes
were introduced. Let y§ CR* be a simple closed Ag- geodesic of length
less than ¢'. If y§ does not intersect the gluing then y§ can also be
considered as a curve y, on R. Since Ag |z = Ag- the length of v, is also
less than ¢’. If v, is freely homotopic to vy, then vy, can be lifted to the
universal cover H of R with initial point z, and end point z, such that
|zo]=1and|z,|=expl By the assumption that y¥ is disjoint from the
gluing the lift of vy, is disjoint from the domain A ([, ®,) and thus by
estimate (2.5) has length at least ¢’, a contradiction. By Lemma 2.7 y§
cannot intersect and yet be distinct from the geodesics y,, -+, ¥.. Thus
vo must be freely homotopic to one of y,, - -, y. CR or vy} intersects the
gluing. If y ¢ is contained in A (I, 6, P,) then it must be freely homotopic
to vy, a case considered above; otherwise vy § intersects the gluing and the
boundaries of A(/, 6, ®,) hence crosses the domain. By estimate (2.4)
v% has length at least ¢’ in terms of the Ag|g-=Ag- metric, a
contradiction. Thus y7§ is freely homotopic to one of y,,- -+, y,.. The
deformation corresponding to the replacing of A (], 6,) by A(l, 6, P,) can
be realized in terms of quasiconformal maps. For A = A(}6,®P,)=
{z|1<]|z]|< p} the domain A (], 6,) corresponds to the deformation of A
given by the element (t — 1/t + 1)(z/|z |}’ dz/dz € M(A(], 6, ,)) where
t=(m—26)/2(® - 6,). We consider (r—1/7+1)(z/|z]|}dz/dz re-
strictedto A(,6,®,)CR*1=r=tasacurvein M(R*). The estimate
for an annulus given by (1.4) can be now applied upon noting that
Arla = A4 and Q(R)|4 CQ(A), [16]. The Weil-Petersson length of
this curve is seen to be bounded in terms of E(A(/, 6, ®,))"”. Estimate
(2.6) bounds the latter quantity by the constant c¢;*. Repeating this
“fattening” process n times a surface R € K. is obtained. By Lemma
27 n=3g-3; the above remarks now yield (R,R)=
(3g —3)cy*. The proof is complete.

3. The Poincaré diameter and length of the shortest
closed geodesic. Let R be a compact Riemann surface of genus g,
g =2. Let I(R) denote the length of the shortest closed Poincaré
geodesic and d(R) the Poincaré diameter of R. The following lemma is a
consequence of the considerations of 2.
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LEMMA 3.1. There exist constants ¢, and ¢, depending only on the
genus such that

In(¢/I(R)) = d(R) = 6g In(&/I(R)).

Proof. Maintaining the constants c,, ¢,, ¢; and ¢’ of §2 we consider
asurface R € K.. As K, is compact /(R) and d(R) are bounded above
and below hence constants ¢, ¢, exist to yield

In(&/I(R)) = d(R)=2In(&/I(R))

for surfaces in K.. Now let RZ K. then clearly d’(R) is bounded below
by one-half the width of A ([, 6,) CR where [ = I(R). Thus

(3.1 In(c,/2l)=In(cot 6, + csc ;) = d(R).

Setting ¢; = min{c,, ¢;} the lower bound is established. Assume that
R¢& K. and has only one closed Poincaré geodesic of length less than
¢’. Forming the surface R* as in 2. by removing A([,®,) from
A(l 6,) CR where | = I[(R) we have that d(R) is bounded by the sum of
the width of A ([, 8,), /2 and d (R *). Specifically for two points x, y of R*
we connect them with a Ag. length minimizing curve v,,. If this curve
intersects the gluing a new curve is formed as the union of the shortest
segment of y,, from x to the gluing, a segment along the gluing and the
shortest segment of vy,, from the gluing to y. Now taking account of the
relation of R to R*d(R) is seen to be bounded by

2In(¢/I(R)) + ¢'+ 2In(G/I(R ™))

where ¢, has been appropriately modified. A constant ¢, can now be
chosen to bound this last quantity by 41n(c,/I(R)). In generallet S be a
surface with exactly n closed Poincaré geodesics of length less
than ¢’. We claim that d(S)=2(n+ 1)In(c,/I(S)) for an appropriate
¢,. Proceeding by induction on n it remains only to consider the
induction step. Let R& K. have exactly n+1 closed Poincaré
geodesics of length less than ¢’. Forming the surface R * and arguing as
above d(R) is bounded by the sum of the width of A (l,6,)CR,[/2 and
d(R*) where I = [(R). Using the induction hypothesis this is bounded
by

2In(é&/I(R)) + ¢'+2(n+ 1)In(¢/I(R*))
which in turn is bounded by

(3.2) 2(n +2)In(&/1(R)).
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Observing that n is at most 3g — 3 the upper bound is now established.
In contrast to the present lemma the constructive estimate

(3.3) d(R)= (g - )I(R)/sinh*(I(R)/2)
where
I(R)/sinh*(I(R)/2)=4/I(R)
for I(R) sufficiently small was given by L. Bers, [4].
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