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DEenNIs F. DE RigGl AND NELSON G. MARKLEY

Let X be a compact Hausdorff space, let R? be p-
dimensional Euclidean space, and let (X, R”) be a minimal
transformation group. It may happen that xH will always
contain flow lines in at least one direction in R” for any discretr
syndetic subgroup H ne matter how sparce. We interpret this
phenomena as some intrinsic shearing motion in the minimal
transformation group. This is quantified in Section 1 and it
turns out that equicontinuous minimal sets have as little shear as
possible. Since distality is also a rigidity condition, it is natural
to investigate the shear of a distal minimal set. We show by
example in Section 2 that distal minimal sets can contain more
shear than equicontinuous ones. o

In Section 3 we show how the topology of xH is locally
determined by local sections and subspaces of R®. Using this
result we prove in Section 4 that a distal minimal action of R"™’
with trivial isotropy on a compact n-dimensional manifold is
equicontinuous.

This paper contains portions of the first author’s disserta-
tion [1] and generalizations of some results in an unpublished
preprint [6] by the second author.

1. Shear. Let X beacompact Hausdorff space and let (X, R?)
be a minimal transformation group. Set I, = {v € R”: xv = x} and note
that it is a closed subgroup of R? which is independent of x because of
the minimality. This group will be denoted by I or I(X, R?) and we will
say that (X, R?) has trivial isotropy when I = {0}. We will frequently
need to assume that (X, R?) is locally free; that is, given x € X there
exists a neighborhood W of 0 in R? such that xv# x for all v in
W. Clearly (X, R?) is locally free if and only if I is discrete.

Let H be a closed syndetic (co-compact) subgroup of R?. It is well
known that (X, H) is pointwise almost periodic and H, = {v: xv € xH} is
also a closed syndetic subgroup of R” such that xH, = xH. [4, Theorem
4.04, Lemma 2.09 and Lemma 2.10.] Again by minimality H, is
independent of x. We will say that H is self-enveloping when xv € xH
implies v € H or H, = H for all xx. When xH= X for every closed
syndetic subgroup of R?, (X,R?”) is said to be totally minimal. Let
¥ = #(X, R?) denote the collection of closed syndetic subgroups of R?
which are self-enveloping for (X, R?). It is obvious that (X, RP") is
totally minimal if and only if ¥ = {R"}.
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If H is a closed subgroup of R?, then H= V@ D where V is a
subspace and D is a discrete subgroup. By the dimension of H we shall
always mean the dimension of V. We now define the shear of (X, R?) as
follows:

s = s(X,R?)=min{dim H: H € ¥(X, R?)}

Note that s(X,R?)=p is equivalent to (X,R”?) is totally
minimal. Consequently s = s(X, R?) is a measure of how near (X, R?)
is to being totally minimal. We will be primarily interested in the
antithesis of total minimality, s(X, R?)=0. Since I is contained in H
for every H € ¥, s can not be zero when the action is not locally free;
that is, dimI = s.

ProposiTiON 1.1. Let ¢:(X,R?)— (Y,R?) be a homomorphism.
Then s(X,R?)=s(Y,R").

Proof. If suffices to show that F(Y,R?)C¥(X,R’"). Let HE
Z(Y,R?) and suppose that xv € xH for some x € X. Then ¢(x)v €
¢ (x)H implies v € H and H € ¥(X, R?).

PROPOSITION 1.2. Let H be a closed syndetic subgroup of R®. Then
H € ¥(X, R?) if and only if there exists an equicontinuous factor (Y, R?)
of (X, R”) such that I(Y,R"?)= H.

Proof. 1f H € ¥(X, R?), then xH= yH defines a closed invariant
equivalence relation on .X [4, Theorem 2.32]. Let (Y,R?) be the
resulting flow on this quotient space. If [x] denotes the point in Y
determined by x € X, then [x]v =[x] iff xvH=xH iff xv € xH iff
vE€ H. Clearly (Y,R?) is equicontinuous because R’?/H is
compact. For the converse note that I(Y,R?)=H implies
He ¥(Y,R?)C F(X,R").

ProrposiTiON 1.3. If (X,R?) is equicontinuous, then s(X,R’)=
dim I(X, R").

Proof. Without loss of generality we can assume that dimI =0, X
is a topological group, #: R” — X is a continuous homomorphism, and
xv =x+6(v). Let x, be a character on X such that x,(6(f,)) # 1 for
some f,#0 in R”. Then exists a linear map T,: R” — R such that
exp 2miT\(v)) = x1(6(v)). Now we can choose f, € ker(T;) and y, such
that x»(6(f.))#1 and then fi€ker T Nker T, with x5(6(f;))#1. Let
¥: X — K” by ¢(g)=(x:(g), ", x,(g)) where K ={z € C:|z|=1} and
let T be the lift of ¢y o6 to R?. Then it follows that the matrix of T with
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respect to {fi, -, f,} and the standard basis is triangular with nonzero
diagonal entries. Therefore, T and hence ¢ @ are onto. It is now
easy to check that H = ker(¢°0) € #(X,R?) and dim H = 0.

PropPOSITION 1.4. The transformation group (X, R?) is not totally
minimal if and only if (X, R?) has a nontrivial equicontinuous factor.

Proof. Suppose H € ¥ such that H# R?. Then the factor (Y, R?)
such that I(Y,R?)= H is nontrivial and equicontinuous because the
compact group R?/H acts on Y with trivial isotropy. Conversely if
(Y, R") is a nontrivial equicontinuous factor, then s(X, R?) = s(Y,R?) =
p — 1 which implies (X, R”) is not totally minimal.

PropOSITION 1.5. Let (E, R") be the maximal equicontinuous factor
of (X,R"). Then s(X,R?)=s(E,R?)=dimI(E,R").

Proof. Let H be an element of ¥(X,R?) such that dimH =
s(X, R?) and let (Y, R?) be a factor of (X, R*) with H = I(Y, R”). Since
(Y, R?) is equicontinuous, we have

dim H = s(X,R") = s(E, R*) = s(Y, R?) = dim H.

COROLLARY 1.6. The maximal equicontinuous factor of (X, R?) is
locally free if and only if s(X, R?)=0.

An immediate consequence of this corollary is that s(X,R?)=0
when (X, R?) is locally free and almost automorphic. However, when
you take (X, R”) to be distal and locally free, things are not so simple.

2. A distal minimal set with nonzero shear. In this
section we will construct a distal minimal transformation group (X, R?)
whose maximal equicontinuous factor is the torus K*>. Then by Proposi-
tion 1.5 s(X, R*)>0.

ProproOSITION 2.1. Let a, B,y € K such that {1,a} and {B,y} are
rationally independent subsets of K, and let S: K*— K* be given by
S(z, wi, wo, w3) = (az, zwy, Bzw,, yzw;). Then (K* S) is minimal and
distal.

Proof. Because it is a group extension of (K, a) it is obviously
distal. By using a Theorem of Keynes and Newton [5, page 66,
Theorem C] to prove minimality, it suffices to show that the only
continuous function y: K‘— K of the form

X(z, Wi, wy, wi) = wiwiw?
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such that yoS =y when m,n p €Z is the constant function y =
1. Thisreducesto z™*"*?PB"y? =1 for all z which impliesm + n +p =0,
n=p=0, and m =0 to complete the proof.

ProOPOSITION 2.2. The maximal equicontinuous factor of (K*, S) is
(K, ) under the map (z, wy, w,, w3)— Z.

Proof. 1t suffices to show that any pair of points which differ in
exactly one of the last three coordinates is in the equicontinuous
structure relation. Since the regionally proximal relation coincides with
the equicontinuous structure relation because the acting group is abelian
[2], this reduces to showing that (z, w) and (z, w') are regionally proximal
in K? under T'(z, w) = (az, 8zw) where § € K. This is a group extension
of (K, a) and hence there exists a closed subgroup G of K such that
(z, w) and (z, w') are regionally proximal if and only if w = w'g for some
g € G. 1If G isfinite, then the maximal equicontinuous factor of (K?, T)
has the form (K? T’) when T'(z, w) = (az, z*w) and k >0 which is not
equicontinuous. Therefore, G = K and the proof is complete.

Define S:K*XR—>K*‘XR by S(z, wy, w,, Wi, X) =
(az, zwy, Bzwy, yzws, x —1). Let X be the quotient of K*X R by the
cyclic group generated by S. Then the canonical projection of K*X R
onto X is a regular covering. We define a flow on K*XR by
((z, wy, wy, Wi, x), t)— (2, Wy, Wy, wy, Xx + t) which induces a flow on X
because it commutes with S. Similarly we define a K*X R action on X
by first defining

((Z, Wi, Wy, W3, x)7 (&1, &, 45, 1))~ (Z, wili, walo, Wals, x + t).

Finally we define an R® action X by mapping R°—>K’XR by
(t1, b, 1) = (¢ (1, 1,), ;) When ¢ is a continuous injective homomorphism
of R? into K°. Next we will show that (X, R’) is minimal distal and
s(X, R*)>0.

The flow (X, R) is the usual imbedding of (K* S) and hence is
minimal distal. It is easy to check that its maximal equicontinuous
factor is (K>, R) when ((z,w),t)— (e’ ™z,e**w) and e’ = a. Let
Q( , ) denote the regional proximal relation. Then clearly
Q(X,R)CQ(X,R>)CQ(X,K’x R). Moreover, Q(X,K’xR)=
Q(X,R) because R is a syndetic subgroup of K’x R. The same
argument works with the proximal relation. Therefore, (X,R?) is
minimal distal and its maximal equicontinuous factor is not locally free
which implies by Proposition 1.5 s(X, R*)>0. In fact, it is obvious that
s(X,R*)=2.

3. Local sections and shear. A closed subset S of X is
called a local section for (X, R?) at x, € X if there exists an € >0 such
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that the restriction of the action to S X B(e) is a homeomorphism onto a
neighborhood of x, where B(e)={v € R":|v|<e}. We will refer to e
as the radius of the local section even though it is not unique. Zippin
first stated without proof in [8, page 204] that Whitney’s proof of the
existence of local sections for flows could be extended to locally free R”
actions. (Recently Thomas wrote down a detailed proof of this in his
thesis [7] which is the only proof we have seen.)

Let S be a local section at x, of radius € and let U be an open subset
of X such that x,€ U CSB(e).] Then there exists an open set S, of S
containing x, and €' € (0, €) such that S,B(e’)CU. Then it is easy to
check that S, is a local section of radius €’ such that the restriction of
(x,v)—> xv to Sy X B(e') is a homeomorphism onto an open neighbor-
hood of x, whose closure is S,B(¢). We will always assume S, is such an
open dense subset of S.

THEOREM 3.1. Let (X,R?) be locally free, let H=V@PHDE S
where V is a subspace and D is a discrete subgroup, and let S be a local
section of radiusr at x,. _Then there exist 6 > 0 and open neighborhoods U
and W of x, in S and xoH such that U X (V N B(8)) is homeomorphic
to W.

Proof. Let {e;," -, ¢,} be a basis for R? such that

H= {2 sie + i me:s; €ER and n EZ}.
1=1

j=m+1

In particular, V is the span of {e,---,e,} and D is generated by
{€m+1, ", €6,}. We will find it convenient to use the norm given by

lvl=l2/\,-e,

Set K ={2¢_,..s¢€:|s|=1/2}. Clearly K is compact, KNV =
0,- K=K and K+ H = R".

LEMMA 3.2. For any y € X, yK N x,H is a finite nonempty set.

= max |A,|.
1sisp

Proof. Since (X, R?) is minimal, there exists v, = h, + k,, h, € H,
k. € K such that x,v,—y. We can also assume that k,—k and
xoh, >x. Then y=xk or y(—-k)=x€&€Xx,H showing that
yK Nx,H# J. Suppose yK Nx,H is infinite and thus contains a con-
vergent sequence yk, — yk with k, — k in K and k, # k. It follows that
k,—k—0, yk(k,— k)= yk, € x,H=ykH, and k,—k € H which is
impossible. This completes the proof of the lemma.
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LEMMA 3.3. There exists a neighborhood N of x, and a continuous
function F: N — K such that yF(y)= yK N x,H for all y € N.

Proof. Suppose x, — x, and x,k, € x,H with k, € K. If k, does
not converge to 0, we can assume by taking a subsequence that
k., — k #0 which implies that x.k € x,H and k € H. This contradicts
the fact that K " H =0 and so k, —0.

It follows that there exists a neighborhood N of x,such thatif y € N
and yk € x,H for k € K, then | k| < 1/4. Consequently for y € N there
is exactly one k € K such that yk € xoH and this defines F. Using
sequences one routinely check that F is continuous to complete the proof
of the lemma.

Returning to the proof of the theorem we choose U an open subset
of x,in S and € > 0 such that € is less than both radius of the cross section
and 1/4, UB(e)CN, and |F(x)|<e€/2 on U. Set W'={(x,s):x € U
and |F(x)—s|<e/2} and note that it is open in S X B(r). Hence
W"={xs:(x,s)€ W'} is open in X and W= W"Nx,H is an open
neighborhood of x, in x,H. It remains to show that W is homeomorphic
to U X(V N B(e/2)). To do this first observe that U X (V N B(e/2)) is
homeomorphic to A ={x(F(x)+v):xEU,v€E€ V, and |v|<e/2} by
mapping (x,v)— (x,v + F(x))— x(v + F(x)), which reduces the prob-
lem to checking that A = W. Clearly A CW. If x € W, then x = ys
where y €U and |F(y)—s|<e€/2. Writing s=v+v' where vEV
and v’ is in the span of D we see that |v| < €/2 and |v'| < 1/4 implying
v'EK. Now yv'€xH(-v)=xH, v'EK, and UCN imply that
v'=F(y), x=ys=y(F(y)+v)E A, and W CA.

COROLLARY 3.4. Let (X,R?) be locally free, let x,€ X, and let
H=V@®DEY There exists a local section S Cx,H, 6 >0, and an
open set S, of S such that (y,v)— yv is a homeomorphism of S,X
(V N B(8)) onto an open neighborhood of x, in x H.

Proof. In the proof of the previous theorem it is easy to check that
S'={xF(x): x € U} is a section at x, in x,H. Now apply the theorem to
S’ noting that F(x)=0 in a neighborhood of x, in §'.

CoROLLARY 3.5. If X is a differentiable manifold, (X,R?) is a
differentiable transformation group, and H € &, then x,H is at least a
topological manifold whose dimension is dim X — p + dim H.

4. Codimension one flows with zero shear. In this
section X will always be a compact n-dimensional manifold and a locally
free transformation group (X, R"') will be called a codimension one
flow. As in the previous sections we will assume that (X,R"") is
minimal. The following lemma will play a key role in this section:
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LemmA 4.1. Let (X,R"") be a codimension one flow and let
xo € X. Then there exists a local section S at x, and a homeomorphism ¢
of [ —1,1] onto S such that ¢(0)= x,.

Proof. Let S be a local cross section at x, of radius €. Clearly the
map 6:xs— x is a continuous open map of XB(e) onto S. Let
D CSB(e) be a compact neighborhood of x, which is homeomorphic to
an n-dimensional disk. Let S;= 6 (IntD). Then S,= (D) is an arc-
wise connected neighborhood of x,in S. Replacing S by S, allows us to
assume without loss of generality that S is arcwise connected. Next let
v:{0,1]— S be a homeomorphism. Consequently (t,v)— y(t)v is a
homeomorphism of (0, 1) X B(e) into X to which we can apply invariance
of domain. It follows that y([0,1]) is a local section of radius € and
v((0, 1)) is an open subset of S. For some s, x,8, € y((0, 1)) from which
it follows that t — y(¢) (— s,) is a local section at x, of the desired kind.

This lemma holds without the assumption of minimality. With a
little more work one can show that x, cannot be an endpoint of every arc
in S [1].

THEOREM 4.2. If (X,R"") is a codimension one flow with
s(X,R*") =0, then (X, R"") is equicontinuous and X is homeomorphic to
K"

Proof. There exists H € & such that dimH =0. From Theorem
3.1 and Lemma 4.1 it follows that x,H is a compact one-dimensional
manifold with a finite number of components C,,---,C. Let Hy=
{h € H: Coh = C,}. After checking that H,€ ¥ and x,H, = C, we can
assume without loss of generality that x,H is a compact connected
one-dimensional manifold, i.e. a homeomorph of K. Since H is
isomorphic to the direct sum of n — 1 copies of Z, (x,H, H) is isomorphic
to some (K,Z@ - - Z). The next lemma reduces the theorem to
showing that (x,H, H) is equicontinuous and the subsequent one com-
pletes the proof by showing that every minimal transformation group of
the form (K,Z & - - - Z) is equicontinuous.

LeMMma 4.3. Let (Y, R?) be a transformation group (not necessarily
minimal) on a compact Hausdorff space, let H be a closed syndetic
subgroup of R?, and let K be a compact subset of R? such that H+ K =
R?. If M is a closed H invariant subset of Y such that (a) (M, H) is
equicontinuous, (b) y E M and ys € M implies s € H, and (c) yK N
M# for all y €Y, then (Y,R’) is equicontinuous.

The proof is straightforward but a little tedius, so we omit it. The
details can be found in [1].
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LEMMA 44. If (K,Z@D---@D Z) is minimal, then there exists a
homeomorphism  of K onto K and a homomorphism 0 of Z&@ --- D Z
into K such that y(zd)= 6(d)- ¢(z) (- denotes complex multiplication)
forald€Z®---DZ and z € K. In particular, (K,ZD---PZ) is
equicontinuous.

Proof. Let d,,---,d, be the standard generator for
Zd---PZ We can assume that z(nd,)# z for all n#0 and z €
K. Consequently there exists a unique minimal set M under
z—zd,. Since (zd,)d;, = (zd;)d, z— zd; can be thought of as an
automorphism of z— zd, implying Md, = M for all i. Therefore,
M =K and there exists a homeomorphism ¢ of K onto K and a
generator «, of K such that ¢(zd,)= a, - ¢(z). Because the only
automorphisms of (K, a,) are rotations, it follows that there exist a; such
that ¢(zd,)=«, - ¢(z). Extending d,— a; to a homomorphism 6 of
Z@G---PZ into K we have ¢y(zd) = 6(d) ¢(z).

In light of Theorem 4.2, it is natural to ask if there are any dynamical
properties which imply zero shear in the codimension one case and hence
do not occur in an essential way for codimension one flows. For
example, it is trivial that a locally free almost automorphic action of R?
has noshear. Thus a codimension one flow is almost automorphic if and
only if it is equicontinuous. In our last theorem we prove a similar result
for the distal case.

THEOREM 4.5. If (X,R"") is a distal codimension of flow with
trivial isotropy, then it is equicontinuous.

Proof. By Theorem 4.2 it suffices to show that s(X,R"")=
0. Assume this is not true and let H € & such that 0<dim H =s. By
Theorem 3.1 and Lemma 4.1, x,H is a compact manifold of dimension
s+ 1. As before we can assume that x,H is connected. Let (E, H) be
the maximal equicontinuous factor of (x,H, H). Then E is connected
and non-trivial because x,H is connected and minimal distal; in addition,
the canonical projection p of x,H onto E is open [3]. Taking advantage
of the group structure of (E, H) we obtain an open map p’ of x,H onto K
and a character I on H such that p'(xhk)=T(h)-p'(x). Define (K, H)
by (z,h)—>T(h)-z. Thus p’' is an open homomorphism of (x,H, H)
onto (K, H), and the proof will be completed by showing that such a
homomorphism cannot exist with dim H = s > 0.

We will first show that V CkerI". Assume VZkerI". Then I is
onto; kerI' is syndetic in H and hence in R?; and dimkerl <
dim H. Suppose x,h € xkerI'. Clearly h € H because kerI' CH and
by applying p’ we get I'(h) - p'(xo) = p'(xo) or T'(h)=1. We have shown
that kerI' € #(X, R"") which contradicts our choice of H. Therefore,
V Ckerl.
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Since (xOH V)is distal, (xV V, V) is a distal minimal set for all x € xOH
which is nowhere dense in x,H because p (xV) p'(x) and p' is
open. Let S be a local section at x, given by Lemma 4.1 and Corollary
3.2. If U is an open subset of S contained in S,, e.g. an open interval,
then p'(U(V N B(8)))=p'(U)is open in K. Consequently xVN S is a
closed nowhere dense set of S which is self dense because I(X,R"') =
0. Let U be an arbitrarily small complementary open interval for
xVNS. Then p'(U) is open and p’(U) = p’(U) U p’(x) which implies
p'(U)= K\{p'(x)}. Finally since U was arbitrarily small this contradicts
the uniform continuity of p’|S and completes the proof.

In the context of minimal R* actions on manifolds this result is
sharp. From the example in §2 we know there exist minimal distal
codimension two flows with trivial isotropy which have non-zero shear
and are not equicontinuous. Furthermore, if we carry out the same
construction starting with K’ instead of K*, we will get a distal minimal
codimension one flow with nontrivial isotropy which has nonzero shear
and is not equicontinuous.

CorOLLARY 4.6. Let (X,R"") be a codimension one flow with
trivial isotropy. Then the following are equivalent:

(a) (X,R"") is distal

(b) s(X,R")=0

() (X,R"") is equicontinuous.

(d) (X,R"") is almost automorphic.
Moreover, if any one of the conditions hold, then X is homomorphic to K".
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