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Let X be a compact set in the complex plane C. Denote by
R(X) the closure in the supremum norm of the rational
functions with poles off X and by Λ(X) the set of continuous
functions, which are analytic on the interior of X. The analytic
capacity of a set S is denoted by γ(S). For the definition of γ
see below. Let Bz(δ) = {ζ G C; | z - ζ \ < 8} and let dX denote
the boundary of X. Vitushkin has proved that R (X) = A (X) if

l i m 2 ί f t g M ) > o for all z G dX

Let ψ b e a function from R+ to R+, where R+ = {JC G R;
x ^ 0}. We now ask the following questions. If limβ-0 ψ(δ) =
0, is it possible to find a compact set X such that R (X) Φ A (X)
and such that y(Bz(δ)\X) ^δψ(δ) for all z G dX and for all δ,
0 < δ < δ2 ? If the answer is yes, can the answer still be yes, if
limδ_0 φ(δ) = 0 is replaced by limδ-0 ψ(δ) > 0? The answers of
these questions can be found in Theorem 1 and Theorem 2.

DEFINITION. Let K be a compact subset of C. Then γ(K) =
sup I/'(<») |, where the supremum is taken over all functions / such that /
is analytic on the unbounded component of C\K, \f(z)\ ^ 1 for all z G C
and /(°°) = 0. Let S be an arbitrary subset of C. Then y(S) =
sup γ(K), where the supremum is taken over all compact subsets of S.

For further information about this capacity see for instance [2], [3],
[4] and [5].

THEOREM 1. Let δn\0 when n-^°o. Suppose that

Then R(X) = A(X).

THEOREM 2. Let ψ be a function from R+ to R+. Suppose that
limδ̂ o ψ(δ) = 0. Then there exists a compact set X such that
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(a) R(X)μA(X)
and

(b) y{Bz(δ)\X)^ψ(δ)δ for all z G dX and for all δ, 0 < δ < δz.

REMARK. Theorem 1 gives the_following. Let ψ be a function
from R+ to R+. Suppose that lim s^,,ψ(δ)>0 and suppose that
γ(Bz(δ)\X)^φ(δ)δ for all z e dX and for all δ, 0 < δ < δ2. Then

2. The proofs. Theorem 1 can be proved in the same way as
the theorem of Vitushkin mentioned in the introduction. See [4], Ch. 2,
§4. We omit the proof.

In [1] A. M. Davie constructed a compact set X such that every
point of dX is a peak point for R (X), but R (X) ^ A (X). Our proof of
Theorem 2 is a refinement of Davie's construction. We start by
formulating two lemmas. The first lemma is well-known (see for
instance [2], p. 199). The second lemma is due to Carleson. For a
proof see [1].

LEMMA 1. Let L be a compact set on a line. Then

y{L)^\{the length of L}.

LEMMA 2. Let E be a a perfect subset of the real line and I the closed
interval [0,1]. Then we can find a continuous function on C, analytic
outside IxE, such that /(oo) = 0, /'(«) = \ and \f(z)\^l for all z E C .

If x G R, let [x] denote the greatest integer less than or equal to JC.

Proof of Theorem 2. We may assume that ψ(δ) is a strictly increas-
ing function. Put an = 16ψ(2~n+1), n = 1,2,3, . Then an \ 0 when

Let / be an increasing function such that / ( - 2 - log an) = n. Put

bo = 1

and

bn = min(έ?-/(n),ί&ll-l) for n ^ 1.

Let E be the usual Cantor set on the real axis such that the set En

obtained in nth step consists of 2n intervals of length bn. Let / = [0,1].
Let n be fixed for a moment. There exists an integer kn such that

(1) K ^ 2"\
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Denote the intervals in En by Jni, i = 1,2, , 2". In every I x Inι choose
open disjoint discs with radius 2~kn~3e~n~ι in the following way. Every
disc must not intersect / x En+ί but every disc must touch / x
En+ι. Moreover, the discs are arranged such that the centres of the discs
lie on two horizontal lines in every Inr There are 2kn+3 centres on each
line and the distance between two successive centres is 2"k-"3. Call the
chosen discs £/„,,.

Repeat the construction for all n, n = 1,2,3, . Put

where B{)(2) denotes the closure of Bo(2). X is a compact set and

dX = dB0(2) U Λ U (/ x E).
I

It is easy to see that Σ n ; diam £/„,, < °°. Lemma 2 and a standard
argument give

R(X)/A(X).

See [2], p. 220.
(i) Let

Lemma 1 gives for all m ^ mz

(ii) Let z E / x E. Let m be a positive integer such that am <
e~2. The definition of / gives / ( - 2 - log am) = m. Fix n such that
n = [ — log am] — 1. If we use that / is an increasing function and the
definition of bn, we obtain

Thus

(2) ^ bn.

One now easily shows that Bz(2~m) contains disjoint discs [/n/j, / =
1,2, ,2k-+22~m - 2 , such that their centres are on one straight
line. Lemma 1, (1) and (2) give
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γ(B,(2-)\X)Sr ( U

= i β —«{

Thus
γ(BI(2-

If we use that n = [ - log am ] - 1, we obtain

Thus

Now (i) and (ii) give that for all z E dX there is a constant mz such that

γ ( β 2 ( 2 - ) \ X ) ^ ^ m 2 - for all m ^ mz.

The definition of am gives for all z E dX and for all m ^ mz

If we use that ψ is increasing, we get

for all z EdX and for all δ, 0 < δ < δz.
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