Pacific Journal of

Mathematics

UNBOUNDED REPRESENTATIONS OF #-ALGEBRAS

STANLEY P. GUDDER AND W. SCRUGGS




PACIFIC JOURNAL OF MATHEMATICS
Vol 70, No 2, 1977

UNBOUNDED REPRESENTATIONS OF *ALGEBRAS
S. GUDDER AND W. SCRUGGS

Basic results on unbounded operator algebras are given, a
general class of representations, called adjointable representat-
ions is introduced and irreducibility of representations is
considered. A characterization of self-adjointness for closed,
strongly cyclic *-representations is presented.

1. Introduction. Algebras of unbounded operators and un-
bounded representations of #-algebras have been important in quantum
field theory [1, 3, 9, 10] and certain studies of Lie algebras [5, 7]. The
present paper proceeds along the lines initiated and developed by Robert
Powers [6, 7] and much of the notation and definitions follow [6]. In §2,
we present some basic results concerning unbounded operator algebras,
introduce a class of representations called adjointable representations,
and consider irreducibility of representations. Section 3 characterizes
the self-adjointness of closed, strongly cyclic *-representations.

2. Adjointable representations. Let M and N be sub-
spaces (linear manifolds) in a Hilbert space H. Let L(M,N) and
L.(M, N) denote the collection of linear operators and closable linear
operators, respectively with domain M and range in N. For simplicity
we use the notation L(M)=L(M, M) and L. (M)= L.(M, M). Notice
that L (H) is the set of bounded linear operators on H. We denote the
domain of an operator A by D(A) and if A is closable we denote the
closure of A by A. A collection of operators B is an op-algebra if there
exists a subspace M such that B CL(M) and A,B € 3 implies
AB,(aA +B)E B foralla EC. A set B C L(M)is symmetric if M is
dense and A € B implies D(A*)DM and A*|M € 3. A symmetric
op-algebra B C L (M) that contains I | M is called an op *-algebra. 1t is
easy to see that if B CL(M) is an op*-algebra, then the map
A — A*|M is an involution so % is a #-algebra. Also, if 7 is a
representation of a *-algebra &, then #w(A)={w(A): A €A} is an
op-algebra and if 7 is a *-representation of &, then = () is an
op*-algebra (we always assume that a *-algebra contains an identity I).

A set B CL(M,N) is directed if for any B,, B,E B there exists a
B; € @ such that | B, x |, || Box | = || Bsx | for all x € M. For example, if
B CL(H) and {AI: A Z0}C B, then B is directed. Indeed, just let
B;=(|B,||+||B:[)I. For an example of an unbounded directed set, let
BCL(M,H) and suppose B,B,ER implies B;=
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I|M+B%B,+B%B,€ %. Then for any x € M we have

IBsx|f=[lx|+[[(Bf B+ B%B.x [ +2(BY B+ B} By)x, x)
=2(|Bix |F+[|B.x [F)
=(Bix[F, [ B x |-

In particular, any op x-algebra is directed.

An extension B, of B CL(M,N) is a set of operators B,C
L(M,,N,) where M C M,, N C N, and for which there exists a bijection
¢: B—> B, such that ¢(B)|M = B forevery BERB. If B C L(M,N),
the % -topology on M is the topology generated by the set of seminorms
{Ix], | Bx|: B€%®}. The completion of M in the $B-topology is
denoted by Mj, or simply M if no confusion can arise. We say that
B CL(M,N) is collectively closed if for any net x, € M satisfying
x,—~>x € H, Bx,—>y(B)€ H for every BE€ %, then x EM and Bx =
y(B). Clearly if all B € & are closed then 3 is collectively closed; the
converse need not hold.

THEOREM 1.

(1) B CL(M,N) is collectively closed if and only if M = M.

(2)_If B C L.(M,N), then the set B,={B|M,: B € B} where M, =
N{D(B): B € B} is collectively closed.

() If B C LM, N), then the set B ={B |Mz: B € B} is the mini-
mal collectively closed extension of B. Moreover, if B C L. (M) and
A,B € B implies AB € B, then B C L, (Mge)

4) If B C L.(M,N) is directed, then My = N{D(B): B € B}.

() If B CL.(M) is an op-algebra, then B is an op- algebra. If
B CL.(M) is an op *-algebra, then B is an op *-algebra and My =
N{D(B): B € B}.

Proof.

(1) Suppose B C L(M,N) is collectively closed and x, EM is a
Cauchy net in the %B-topology. Then x, and Bx, are Cauchy in H so
there exist x,y(B)€ H such that x, - x, Bx,— y(B) in H for every
B € B. Since B is collectively closed, x € M and Bx, — Bx, so x, = x
in the %-topology and M is complete in the B- topology Hence
M = M,. Conversely, suppose M = M, and x, is a net in M such that
x,—>x and Bx, — y(B) in H for every B € . Then x, is Cauchy in
the B -topology. Since M is complete in the %B-topology there exists an
x'€ M such that x, - x"and Bx, — Bx'in H for every B € . Hence
x=x"EM and Bx = Bx' = y(B).
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(2) This is straightforward.
(3) It is clear that

M,={x€N{DB):BEB:M>x,—x, Bx,—Bx for all
BE®B}. We now show that M, is complete in the % |M,-
topology. Suppose x, € My is Cauchy in the % M,-topology. Then x,
and Bx, are Cauchy in H for every B € 9. Hence there exists an
x € H such that x, > x and Bx, — Bx forevery B € . Sincex, € M@
there exists a net x,, € M such that x,;, — x, and Bx,, — Bx, in H for
every B € B. Now x, is a net in M and x,3 = x, BX, — Bx in H for
every B € B. Hence x € M,. It follows from (1) that 98 is collectively
closed. Clearly % is an extension of 8. Moreover, # is a minimal
collectively closed extension since any collectively closed extension of %
must contain M, in its domain. Now suppose B CL.(M) and
A Be®B. Ifxe M@, then there exists a net x, € M such that x, — x
and Bx, > Bx for every BE ®. For fixed A € B we have Ax, EM
and Ax,— Ax and for every B € 4, since BA € #, BAx, —BAx =
BAx. Hence Ax € My and B C L.(My).

(4) Suppose that B C L.(M, N) is directed. We have seen that
M, C N{D(B): BE B}. If x € N{D(B): B € B}, then for each B €
% there exists a sequence x(B,i)€M such that x(B,i)—x and
Bx(B,i)— Bx. Foreach B € #B and for each integer n > 0 there exists
an  integer _ nz >0 such that [[x(B,nz)—x[<n”' and
[Bx (B,ns)—Bx|<n™'. For A, B€E ®, define the order (A, n,)<
(B,m) if |Az||=|Bz]| for every zEM and n<m. Since B is
directed, {(B, np)} is a directed partially ordered set and x(B, ng) is a
net. Notice thatif [Az ||=||Bz|forevery z €M then|Ay|=|By|
forevery y € N{D(B): B € #}. Indeed let z, € M be a sequence such
that z,—y and Bz;—> By. Since |Az,—Az|=|Bz,—Bz|, Az is
Cauchy and hence Az, — Ay. Therefore,

[Ay|=lim|Az|=lm|Bz|=]By].

Clearly, x(B, mg)— x and to show that A x(B, mz)— A x let € >0 and
let n >0 be an integer such that n™' <e. Then for (B, mgz) > (A, n,) we
have

|Ax(B,mg)—Ax|=||Ax(B,ms)— Ax|
=||Bx(B,ms)— Bx |
<ml<nl<e.

It follows that x € M@.
(5) This is a straightforward consequence of (2) and (3).
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In the work of R. Powers [6] only hermitian representations are
considered. But there are important representations that are not
hermitian. For example, even if 7 is hermitian, 7 * need not be. We
therefore treat a larger class of representations, which we call adjointa-
ble, that includes 7* whenever 7 is hermitian.

Let o be a *-algebra and let 7, 77, be two representations of & with
domains D (), D (7)) C H. We say that 7 and , are adjoint and write
mam, if (m(A)x,y)=(x,m(A*)y) for every A € o and x € D(w),
y € D(m,). Notice that a is a symmetric relation; that is 7 ar, if and
only if m,amw. Also, wa if and only if 7 is hermitian. Furthermore,
if mam, and m am, then w(A)= m(A) on D(xw)N D(m,) for every
A € o andif D(m)= D(m,) then m = m,. We say that a representation
7 is adjointable if there exists a representation 7, such that wamr,.

If 7 is a representation of a *-algebra , we define D(7*)=
N{D(#x(A)*): A€} and 7w*A)=a(A**|D(wx*) for all
A€y (To save parentheses we use the notation =w(A)*=
[7(A)]*.) In general, =* need not be a representation since, for one
thing, D(7*) need not be dense. If 7 is hermitian, then #* is a
representation [6]. Hence, if = is hermitian, then

(m(A)x,y)={(, m(A)*y)=(x, 7*(A*)y)

for every A€ and x ED(w), y ED(7*) so man* and each is
adjointable.

THEOREM 2.

(1)  is adjointable if and only if D(7™*) is dense.

(2) If 7 is adjointable, then w* is a closed representation and is the
largest representation adjoint to .

(3) Suppose w Cm,. If m am,, then wam, If m is adjointable,
then so is m and m* Cm*.

(4) If m is adjointable, then there exists a smallest closed representa-
tion 7 which extends mw. If wam,, then Tam,.

(5) If m is adjointable, then m*, 7 are adjointable, mw*
representation and w Car Co**, w***=x* 7#*=m*

(6) If m is hermitian and 1, is an hermitian extension of m, then
a Cm Cm*

(7) If m is hermitian, then =** and & are hermitian and
T CaCa**Cn*.

* is a closed

Proof.
(1) If = is adjointable and mam, then m,(A*)Cw(A)* for every
A €d so D(m)CD(7*) and D(7*) is dense. Conversely, suppose
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D(m*) is dense. For x € D(w), y € D(m*) we have

(m(A%)x, m*(B)y)=(m(A*)x, m(B*)*y)
=(m(B*)m(A")x,y)
=(m(B*A¥)x,y)
=(x,m(B*A*)*y) .

Hence 7*(B)y € D(w(A*)*) and n(A*)* 7 *(B)y = w(B*A*)*y for
every A, Bed If follows that #*(B): D(7*)— D(7*) and
7*(A)7*(B)=7((AB)*)*= 7*(AB). Moreover, 7* is linear since
for x € D(m), y € D(7*) we have

(m*(@A + B)y,x)=(m(@A*+ B*)*y,x)
=(y,am(A*)x)+(y, 7(B*)x)
={{am*(A)+7*(B)]y, x)

It follows that 7 * is a representation and mam*.

(2) It was shown in (1) that #* is a representation if = 1is
adjointable. It follows from Theorem 1 (2) that 7 * is closed. If war,
then (w(A)x,y)=(x,m(A*)y) for all x E D(7w), y € D(w,). Hence,
D(m)CD(w*) and m(A*)Cw(A)* = 7*(A™*) for every A E€ A so
m Ca*.

(3) Suppose 7 Car, and 7, am,. Then for every x € D(7), y €
D (m) we have (w(A)x,y)={(m{A)x,y)=(x,m(A*)y). Hence
mam, For all x&€D(w), ye€D(m*) we have (m(A)x,y)=
(x,m*(A*)y). Hence wam™ and by (2) we have = * Cw*.

(4) If = is adjointable, then by (1), D(#*) is dense. Then
D(m(A)*) is dense so m(A) is closable for every A € 4. Define
D(#)= D(w), where B ={m(A): A € &} and 7#(A) = 7(A)| D(7). It
follows from Theorem 1 (3) that {#(A): A € &} is the minimal collec-
tively closed extension of 9. It is straightforward to show that 7 is a
representation and that 7 a m, implies 7am,.

(5) If = is adjointable then so is 7#* and from (2) #** is a closed
representation. If x€&€D(w), y&€D(«*) then for all A€W
we have (m*(A®)y,x)=(m(A)*y,x)=(y,7(A)x). Hence
x € N{D[7*(A*)*]: A € A}=D(#**) and 7**(A)x = 7*(A*)*x =
m(A)x so w Cxw**. Since m C7 we have by (3) that #* Cw*. Since
mam* from (4) we have wmaw*. Hence by (2) #*C7* so n*=
7% By @) #**Ca* Since m*am**, by (2) we have #* C#*** so

(6) Forall x € D(m), y € D(m), A € A we have

% %
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(m(A)x,y)=(m(A)x,y)=(x, m(A%)y).

Hence m am and by 2) m, C7*.

(7) Itisshown in [6] that 77 is hermitian if 7 is hermitian. Since 7
is hermitian we have 7 C#*. Applying (3) twice gives 7** Cor*** so
** is hermitian. Since 7 ** is closed we have from (2) that 7 C# C
7** and from (6) =** C7*.

We now show that the extensions in (7) can be distinct. Let & be
the free commutative *-algebra on one hermitian generator A. Define
the representation 7 of & on the Hilbert space H = L?[0, 1] as follows:
D(m)={f€ C”[0,1]: f™(0)=f"(1)=0,n=0,1,2,...} w(A)= —id/dt
It is straightforward to show that = is hermitian and that # =7 =
m**Gm*[8]. Now let 7, be the representation of &/ on H defined by:

D (m)={f € C*0,1]: f(0)= f(1), f"(0) = f”(1),n = 1,2,... }
m(A)= —id/dt .

It is straightforward to show that m, is hermitian and that 7, = 7,&m** =
m* [8].

We now consider commutants and irreducibility. If 7 a,, define
C(, m)) to be the set of operators C € L. (H) satisfying (Cm(A)x,y) =
(Cx,m(A*)y) for every x € D(w), y € D(m,), A € /. The proof of
the following lemma is straightforward.

LeEmmA 3.
(1) C(m, ) is a weakly closed subspace of L.(H) containing I.
@) C(mm)

={C € L.(H): C: D(m)— D(m*),Cn(A)= m*(A)C|D(m)}
(3) Ce&€C(mm) if and only if C*€ C(my, 7).

The commutant of a *-representation = is defined as w () =
C(m m). It follows from Lemma 3 that w(«f) is a weakly closed,
symmetric subspace of L,(H) containing I. However, (&) need not
be a von Neumann algebra [6]. If 7 is self-adjoint then 7 (/)" is a von
Neumann algebra [6]. If 7 is a *-representation, the strong commutant
is defined by

m(d),={C € m(s): C: D(m)— D ()}

Hence
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m(A)={C € L.(H): C: D(m)— D(w),Cm(A)
=7(A)C|D(m),VA € oA}.

It is easy to see that 7 (s); is an op-algebra in L.(H) containing I and if 7
is closed, then 7 (); is weakly closed [1]. Again 7 (&); need not be a
von Neumann algebra but if 7 is self-adjoint, then 7 (&); is a von
Neumann algebra and 7 («);= 7 (L)'

LEMMA 4. A #-representation w is self-adjoint if and only if
m(Ad) =m(A). and D(7w*)= U{Cx: x € D(m),C € w(HA)'}.

Proof. Necessity follows from our previous observations. For
sufficiency, if m(d) = w(L); then C: D(w)—>D(w) for all C€E
m(A). Hence D(w*)= U{Cx:x € D(w),CE€ w(A)}CD(m).

For a bounded *-representation 7 of a *-algebra &/ on a Hilbert
space H the following conditions are equivalent [2,4].

i) #w(A)={AI:A€C}

(i) The only invariant closed subspaces of H are {0} and H.

(ili) Every nonzero vector in H = D(ar) is cyclic.

A bounded *-representation 7 is said to be irreducible if m satisfies any
one (and hence all) of these three conditions.

For unbounded self-adjoint representations one can give examples
[6,8] which show that no two of the above conditions are
equivalent. Also, there is more than one natural way to extend some of
the above conditions for unbounded self-adjoint representations. Let 7
be a self-adjoint representation. We say that a subspace M is a
self-adjoint invariant subspace for m if M is invariant and 7 |M is
self-adjoint. The following are natural conditions that one might use to
define irreducibility for a self-adjoint representation 7 of a *-algebra &
with domain D(7)C H.

1) #=(A)={rI:1r€EC}.

(2) The only invariant subspaces for 7 which are complete in the
(s )-topology are {0} and D (7).

(2) The only self-adjoint invariant subspaces for 7 are {0} and
D(m).

(3) Every nonzero vector in D () is strongly cyclic.

(3") Every nonzero vector in D(w) is cyclic.

THEOREM 5. If 7 is self-adjoint representation of the *-algebra of on
the Hilbert space H, then
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@) e)«<Q)
T 0
()e——03)

Proof. (2)—(3). Suppose (2) holds, 0#¢ € D(w) and M =
{m(A)p: A € o} Clearly, M# {0} and M is an invariant subspace of
H for m. Let M be the completion of M in the m()-topology. Since
 is closed, M C D(7) and clearly M is a subspace of H.  We now show
that M is invariant under 7. If x € M, then there exists a net x, € M
such that x, — x in the 7 (&f)-topology. Fixan A € &. Then for every
B € o we have

m(B)mw(A)x, = 7(BA)x, > 7w(BA)x = w(B)w(A)x.

Hence m(A)x,— m(A)x in the 7 ()-topology so mw(A)x €M and
77(A )M C M. Since (2) holds, M = D(w). Hence M is dense in D(m)
in the 7 (s )-topology so ¢ is a strongly cyclic vector for .

(3)—(2). Suppose (2) does not hold. Then there exists a 7 (sf)-
complete invariant subspace M of H with M# {0}, D(7). lf0# ¢ EM,
then clearly ¢ is not a strongly cyclic vector for =

(1)=(2'). Suppose (2') does not hold. Then there exists a nontri-
vial self-adjoint invariant subspace M for 7. Now M is not dense in H
since otherwise 7 | M is a *-representation of ¢ on M = H with domain
MCD(w). Then w|MCwm=x*C(m|M)*. Since #|M is self-
adjoint, #|M =7 and D(w)=M which is a contradiction. By
Theorem 4.7 [6] the projection E on M satisfies E € w(sf). Since
E#0, I, (1) does not hold.

(2')—>(1). Suppose (1) does not hold. Since = is self-adjoint,
w(s{) is a von Neumann algebra so there exists a nontrivial projection
E € w(«). By Theorem 4.7 [6], ED(sr) is a nontrivial self-adjoint
invariant subspace for 7. Thus (2') does not hold.

(3)—(1). Suppose (3) holds. Let O0ZE&€wn(d) be a
projection. By Theorem 4.7 [6], ED(7)= M is a self-adjoint invariant
subspace for m. Let 0# ¢ € M. Since ¢ is cyclic and {w(A)d: A €
A} C M, M isdense in H.  Asin (1)— (2') above, M = D(7) and hence
E =1 Since 0 and I are the only projections in 7 (&), we have
(L) ={Al: X € C}.

(3)—(3). This is trivial. (2)—(1). Since (2)— (2') trivially, this
follows from (2')— (1) above.

3. Closed strongly cyclic *-representations. In this
section we shall mainly be concerned with characterizing self-
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adjointedness for closed strongly cyclic *-representations. Let 7 be a
x-representation of a *-algebra & with domain D(7)C H. The un-
bounded commutant w(f)° of w is defined as the set of operators
CEL(D(w),H) such that (Cw(A)x,y)=(Cx,w(A*)y) for all
x,y € D(w)and A € of. The strong unbounded commutant is defined
by m(d); ={CE€ n(A): CD(wr)— D(m)}. Notice that
m(A) | D(m)Ca(A) and w(A),|D(7w)C w(A). In fact,

m(A) ={C: C € w(), C bounded}
m(A).={C: C € w(sA), C bounded}.

We say that a net B, € L(M, N) converges weakly to B € L(M,N) if
(B.x,y)—(Bx,y) for every x,y € M. Moreover, B CL(M,N) is
weakly closed if for any net B, € B which converges weakly to some
BeEL(M/N) we have B &€ %B. The proof of the next lemma is
straightforward.

LEMMA 6.

(1) If = is self-adjoint, then w(A)° = mw(A)i

Q) w(A)y={CeL(D(w),D(m*): Cn(A)=7*(A)C,VA € A}.

B) w(A)=CeL(D(nm)): Cnr(A)=7(A)C,VA € A}.

4) 7 (L) is a weakly closed subspace of L (D (w), D (7*)) contain-
ing I|D(w).

(5) = () is an op-algebra in L(D(7)).

6) w(A) =nm(A) if and only if w(A)° is an op-algebra.

Let &/ be a *-algebra and let =, m, be *-representation of & on
Hilbert spaces H, H,, respectively. We say that 7 and 7, are equivalent,
and write 7 = ,, if there exists a unitary transformation V from H onto
H, such that VD (7)== D(m)and m(A)= V*m,(A)V forevery A € 4.

Let o be a state on & Then by the GNS construction for
*-algebras [6], there exists a closed, strongly cyclic *-representation =, of
o with strongly cyclic vector x, such that w (A ) = (1, (A )x,, x,) for every
A € o. Moreover, if 7 is any closed, strongly cyclic *-representation of
o with strongly cyclic vector y, such that (7 (A)y,, yo) = w(A) for every
A € o then =, [6].

We now characterize states w such that =, is self-adjoint. A linear
functional F: &/ — C is w-bounded if for every B € o there exists an

5 =0 such that |F(BA)|= Mzw(A*A)" for every A € o. For ex-
ample, if A, € o is a net such that w(AtA*AA,) is Cauchy for every
A€y, then the functional F(A)=limw(AiA) is w-
bounded. Indeed, for every B € &f we have
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F(BA)|=lim|w(A*BA)|=lim| w(A*B*A,)]
=w(A*A)” limw(AtBB*A,)"

If every w-bounded linear functional has the above form, then we call w
a Riesz state.

THEOREM 7. Let w be a state on the *-algebra . Then m, is
self-adjoint if and only if w is a Riesz state.

Proof. Recall that =, is constructed as follows. Let # be the left
ideal ¥ ={A € &: w(A*A)=0} and let H, be the inner product space
consisting of equivalence classes [A] in &//$ with inner product
([AL,[B])=w(B*A). Let H be the Hilbert space completion of
H,. Define a *-representation m, of & with domain D (m,)= H, by
m(A)B]=[AB]. If mw, =, then m, is a closed, strongly cyclic
x-representation with domain D () = Honyw, and strongly cyclic vector
[I]. Now suppose m, is self-adjoint and F: o — C is w-bounded. If
w(A*A)=0, then F(A)=0so0 F: § —0. Hence F can be considered
as a linear functional on H,. Since |F([A])|= M,||[A]], F is a continu-
ous linear functional on H, and by the Riesz theorem there existsa z € H
such that F(JA])=([A], z) for every [A]€ H,. Now for every B € &
we have

(m(B)[A],z)| = ([BA],z)! = [F([BA])
=|F(BA)|=M;|[A]ll

Hence z € D(m*)= D(w,*) = D(w.,), so there exists a net [A,] € H,
which converges to z in the (s )-topology. Thus[AA,]is Cauchy for
every A € of. Finally, for every A € sf we have

F(A)=1lim({A],[A.])=limw(A*A).

Conversely, suppose w is a Riesz state and x € D(w}). Define the
linear functional F: o/ - C by F(A)=([A],x). Then for every
A, B €. d we have

|F(BA)|=[(m(B)[A],x)|= Ma||[A]] = Msw(A*A)"

so F is w-bounded. Hence there exists a net A, € ¢ such that
w(ALTA*AA,)is Cauchy for every A € «f and F(A)=limw(A%A) for
every A € o. It follows that [A,] is Cauchy in the 7 (f)-topology and
hence there exists a y € D(m,) such that [A,]—y. Furthermore, for
every A€ we have F(A)=lmw(AZA)=1lim(A],[A.])=
{{A],y). Hence x =y € D(w,) and =, is self-adjoint.
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COROLLARY. A closed, strongly cyclic =-representation w with
strongly cyclic vector x, is self-adjoint if and only if the state
A — (m(A)x,, xo) is a Riesz state.

A state o is faithful if w(A*A)=0 implies A =0. A vector
xo € D (1) is separating if w(A)x,=0implies 7(A)=0. If o isfaithful
then the strongly cyclic vector x, for m, is separating. Conversely, if x,
is separating, then w(A *A) =0 implies 7,(A)=0. A representation
of of is ultra-cyclic if there exists an x, € D(ar) such that D(w)=
{m(A)x,: A €} We then call x, an ultra-cyclic vector. Ultra-cyclic
representations are important because of the following result.

LEMMA 8. 1 is a closed, strongly cyclic *-representation if and only
if 7 is the closure of an ultra-cyclic *-representation w°.

Proof. Suppose 7 is a closed, strongly cyclic *-representation of &/
with strongly cyclic vector x,. Define D(7°)={m(A)x,: A € o} and
7°(B)m(A)x,= w(BA)x,. Then #°is an ultra-cyclic *-representation
and 7°=m. Conversely, if 7 is the closure of an ultra-cyclic *-
representation 7° with ultra-cyclic vector x,, then 7 is a closed *-
representation. Moreover, since D () is the completion of D (7°) in
the 7 (4 )-topology, x, is a strongly cyclic vector for .

We call #° in the proof of Lemma 8 the underlying ultra-cyclic
*-representation for 7. We can obtain information about 7 by studying
the simpler representation 7°. For example, a condition characterizing
the essential self-adjointness of 7° characterizes the self-adjointness of
m. Moreover, 7°* = 7* and 7%(A) = w(A)'.

Let w be an arbitrary ultra-cyclic *-representation of & with a
separating ultra-cyclic vector x,. For x € D(w*) define w°(x)€E
L(D(mw),D(7™)) by 7¢(x)m(A)xo=m*(A)x. This is a well-defined
operator since 7 (A )x, = 7m(B)x, implies w(A)= 7w (B). Then for every
y,z € D() we have

(m(A®)y, z)=(y, m(A)z)=(y, w(B)z)=(m(B¥)y, z).
Hence w(A*)= m(B*), so m(A*)* = 7(B*)* and finally
7*A)=w(A*)*|D(n*)=w(B*)*|D(r*) = w*(B).

It is straightforward to see that D () is a *-algebra with identity x, under
the product (7 (A )x,)e (7 (B)x,) = m(AB)x, and involution (7 (A )x,)* =
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7 (A *)x,. Moreover, for every x,y,z € D(w) we have (xcy,z)=
(y,x*oz).

THEOREM 9. Let 7 be an ultra-cyclic *-representation of o with a
separating, ultra-cyclic vector x,.
(1) = is a weakly continuous linear bijection from D(w™*) into
m(A).
(2) The following statements are equivalent.
(a) Cxo€ D(w) for every C € m(A) .
(b) w(A) is an op-algebra.
(c)  is self-adjoint.
(3) = () is an op*-algebra if and only if  is self-adjoint and there
exists an involution b on the *-algebra D () satisfying

(3.1 (x* yy=(y%x)

for every x,y € D().
@) If w(A) is an op*-algebra, then 7° is a weakly continuous
* -anti-isomorphism of D () onto mw ().

Proof.

(1) Clearly, 7 is linear. To show that #=° maps D(7*) into
m(A), for x ED(n*), A€ A, z€D(m) and y = w(B)x, € D(m) we
have

(me(x)m(A)y, z)=(m(x)m(AB)x,, z)

=(m*(AB)x,z)=(m*(B)x, m(A¥*)z)
=(m(x)m(B)xy, m(A*)z) = (7 (x)y, m(A*)z).
To show that 7 is surjective, let C € w(&f). Then Cx, € D(7*) and
for any y = w(A) x,€ D(7) we have
7 (Cx)y = 7 (Cxo)m(A)xe = 7m*(A)Cx,
= Cm(A)x,= Cy.

To show that «° is injective, suppose that x,x, € D(7*) and 7°(x)=
7°(x,). Then

x =7 Dx = 7(x)xo= m(x)x0 = 7 *(1)x, = x,.

To show that 7 is weakly continuous, suppose that x, x € D(7*) and
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x;— x in norm. Then for any y = w(B)x,€ D(7) and z € D(m) we
have
lim(7°(x;)y, z) = lim(7 *(B)x;, z)
= lim(x,, w(B*)z) = (x, w(B*)z)
=(m*(B)x,z)=(m(x)m(B)x0o, 2)
=(m(x)y, z).

(2) (@)—(b). Suppose that (a) holds and C € w(H),y=
w(A)x,€ED(m). We then have Cy=Cn(A)x,=7n*(A)Cx,=
7m(A)Cx,E€ D(m). Hence, by Lemma 6(6), w(&f)° is an op-algebra.

(b)—>(c). If x € D(w*), then by (1) m*(x)E w(A). If 7 (A) is
an op-algebra, then x = 7#*(1)x = 7w°(x)x, € D(w). Hence D(m*)=
D(m) and 7 is self-adjoint.

(c)—(a). If = is self-adjoint, then # () C L (D (m)).

(3) Suppose m (&) is an op*-algebra. Then, by (2), 7 is self-
adjoint. If C € w(A) , then D(w)C D(C*) and C*|D(w) E (L) so
C*:D(w)—> D (m). For x €D(m), by (1) wc(x)En (L) so x*=
7°(x)*xo€ D(m). For x =7(A)x,€ D(7) and y € D(7) we have

(y%x)=A{m(y)*x0, x) = {x0, 7 (y)7 (A )x0)
=(xo, m(A)y) =(m(A*)x0,y) =(x*,y)

so (3.1) holds. That ® is an involution now follows from (3.1). For
example,

((yez),x)=(x*yez)=(y*ox* z)
=(z%xey)=(x*oz’y)=(y’ z"°x)
=(z"oy" x).
The other properties of an involution follow in a similar
way. Conversely, suppose 7 is self-adjoint and there exists an involu-
tion * on D (7 ) satisfying (3.1). Then by (2), 7(&f)° is an op-algebra. If
C € w(A), then for any x = 7w(B)x,€ D(7) and y = w(A)x, € D(7)
we have
(Cy,x)=(Cm(A)xo,x) = (Cxo, (A *)x)
= (CX(), 7T(A *B)xO> = <Cx0, [7T(B *A )xO]*>
= (m(B*A)xo,(Cxo)’) = (m(A)xo, m(B)[(Cxo)’])
= (y, 7[(Cx0)’ ]x).

Hence D (w)C D(C*), C*|D(w)= 7°[(Cx,)’] € w(A) and so 7 (H)° is
an opx-algebra.
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(4) Suppose 7 () is an op*-algebra. It follows from (1) that
7. D(m)— w(A)° is a weakly continuous linear bijection. For x =
7m(A)x, € D(7) and y = w(B)x, € D(7) we have

7 (x)y = 7 (x)m(B)x, = m(B)x = w(B)xyem(A)x,=yox.

It is now clear that 7 is an anti-isomorphism. To show that 7 isa ’ -
anti-isomorphism, for x € D(7) and y = 7w (A )x, € D(7) we have

7 (x")y =yox’=yeo[m(x)*x]=m(A)m(x*)x,
=7 (x)*m(A)x,= 7 (x)*y.

COROLLARY. Let 7 be a closed, strongly cyclic *-representation of o
with separating, strongly cyclic vector x, and let 7° be the underlying
ultra-cyclic representation. Then m is self-adjoint if and only if Cx, €
D () for every C € m°(A)".

Proof. If o is self-adjoint and C € 7°%(«)", then Cx,€ D (7"*) =
D(mw*)=D(m). Conversely, suppose Cx,€ D(m) for every CE
7'(A). U x € D(w*), then x € D(7"*) so by Theorem 9(1), 7“(x) €
7'(el). Hence x = 7w°(x)x, € D(7), so D(7)= D(w*) and 7 is self-
adjoint.
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