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The concept of decomposition basis is essential to the study
of the structure of mixed abelian groups. The main theorem of
this paper uses invariants previously defined by the author to
determine the decomposition bases of a given group. This is
used to extend Ulm's theorem for mixed abelian groups to the
entire class of affable groups.

1. Introduction. The word "group" will mean abelian group
throughout. If X is a subset of a group A, [X] denotes the subgroup
generated by X. A, (Ap) represents the torsion part (p-component) of
the group A, where p is a prime. Z will denote the integers, while Q
represents the rationals. Standard terminology (refer to Fuchs [1] and
[2]) will be used unless otherwise indicated.

The notation H(a) refers to the height matrix of an element α, while
Hp(a) is the p-indicator of a. If M is a height matrix, then Mp denotes
the p-row or p -indicator of M. Two height matrices M and N (p-
indicators Mp and Np) are equivalent if there are integers m and n such
that mM = nN (mMp = nNp). M and N are compatible if there are
integers m and n such that mM ^ N and nN g M. We say the p -height
of 0 is oo'? and assume σ < <*> < oo' for any ordinal σ. A height matrix is
proper if it does not contain oo' as any entry. For any group A, the
subgroup generated by the elements that are not proper is A,.

If c is an equivalence class consisting of proper height matrices
(compatibility class), p is a prime and e an equivalence class of
p-indicators, the invariant ST(c, p, e, A) is the one defined in [6]. If the
height matrix M E c and Mp E e, we say M E[c,p,e].

If σ is an ordinal or oo, and G is a subgroup of A, then fp

σ(A) and
fp

σ(A,G) denote the Ulm invariants and relative Ulm invariants
respectively. A torsion group T is called totally projectiυe if each Tp is a
totally projective p -group.

Let X = {jtjj be a subset of a group A. X is called a decomposition
basis if [X] is the free group on X, A/[X] is torsion, and, for any
a = ΣΓfJd in [X], where the r, are integers, the /7-height of α, hp(a) =
minihpfaXt)} for all primes p. (All heights are computed in A.) The
subset Y = {y,}/ of A is a subordinate decomposition basis to X if y, = n,x,
for all /, where the n, are integers. It is shown in [6] that if X is any
decomposition basis of A, then ST(c,p,e,A) is the cardinality of
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550 ROBERT O. STANTON

Sections 2 and 3 of this paper are devoted mainly to the proof of
Theorem 2.2. This theorem says, in effect, that the main criterion in
switching from one decomposition basis to another in a group A is the
preservation of ST-invariants. Henceforth the term "rank" will refer to
the torsion free rank of a group.

The major application of Theorem 2.2 is to extend Ulm's theorem
for mixed groups. If A is a group and G is a subgroup, define

A (p, G) = {a E A : pka G G for some k ̂  0}.

This definition is due to Wallace [8]. His techniques yield the following
version of the generalization of Ulm's theorem (see Hill [3], Walker [7]).

THEOREM 1.1. Let A and B be groups containing subgroups G and
H respectively such that G, (H), is p - nice inA(p,G), (B (p, H)), and such
that fp

σ (A, G) = fp

σ (B, H) for all primes p, and for σ an ordinal or oo. If
AIG and B /H are totally projective, and φ: G —» H is a height preserving
isomorphism, then φ extends to an isomorphism ψ: A ->B.

In §4, Ulm's theorem is extended to a class of groups including the
affable groups defined in [6]. Some interesting consequences are also
discussed.

2. Equivalence of decomposition bases. In this section
we begin the proof of the theorem relating basis equivalence to the
ST-invariants.

In a collection of height matrices, the same matrix may be included
more than once. If S is a collection of height matrices, A is a group with
decomposition basis X, and there is a bijection a: X-» S such that H(x)
is equivalent to ax for all x E X, we write H(X) ~ S. The following
definition, as well as Lemma 2.1, are due to Hunter [4].

DEFINITION. Let S and S' be two collections of height
matrices. Suppose A is a group having decomposition bases X and Y
such that H(X)~S and H(Y)~S'. Then S and S' are called basis-
equivalent, denoted S~bS'.

LEMMA 2.1. Let S and S' be two collections of height matrices, and
suppose S—f, S', (with respect to a group A). If B is any group with a
decomposition basis X such that H(X) ~ S, then there is a decomposition
basis Y of B such that H(Y) ~ S'.

Aside from ensuring that the concept of basis-equivalence is inde-
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pendent of a particular group, Lemma 2.1 also guarantees that basis-
equivalence is an equivalence relation.

DEFINITION. Let A be a group with a decomposition basis X -
{jcj.e/. If A = φie/Ai, with jcf E A, for all /, then X is called a splitting
decomposition basis.

Given any proper height matrix M, there is a rank one group A with
an element x E A of infinite order such that H(x) = M. Consequently,
given any collection of height matrices S, there is a group A with splitting
decomposition basis X such that H(X) ~ S. If S is a collection of height
matrices, then ST(c,p, e, S) denotes the cardinality of the set of height
matrices in S that are also in [c,p, e].

We will now state the main result, and reduce the proof to the
Lemma in §3, and Lemma 7 of [6].

THEOREM 2.2. Let S and S' be two collections of height
matrices. Then the following three conditions are equivalent.

(a) S is basis-equivalent to S'.
(b) For all c, p and e, ST(c, p, e, S) = ST(c, p, e, S').
(c) (i) There is a bisection φ: S—»S' such that M and φ{M) are

compatible for all M E S.
(ii) For each prime p, there is a bijection φp: S—> S' swc/t f/mί ΨP(M)

is compatible with M and (φp(M))p is equivalent to Mp. Moreover,
ψp(M) = φ(M) for all but finitely many primes p.

Proof, (a) implies (b) is trivial. The proof of (b) implies (c) is based
on the following set theoretical argument. We claim we may write S as a
disjoint union S = T U ( U P T P ) subject to the following two properties.

(a) If M E T P , with M<Ξ[c,p,e], then ST(c,p,e,S) is infinite.
(β) If ST (c, p, β, S) is infinite, then ST (c, p, e, S) = ST (c, p, e, Tp) =

A similar decomposition S' = T U (U P T P ) is formed.
We now justify our claim that the decomposition can be

accomplished. By transfinite induction we may write S as a disjoint
union of countable subsets, S = U σ Sσ, where each Sσ has the property
that, whenever ST(c,p, e,S) is infinite, then either ST(c,p, e, Sσ) = 0 or

For any given σ, there are at most countably many [c,p,e] with
ST(c,p, e, Sσ) = Ko. Order these [c,p, e], and let K, be the set of those
elements of Sσ belonging to the i-th [c,p, e]. We now define subsets Tiy

(/ ^ 1,/ § i) of Sσ as follows.
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(i)

(2)

Let TΊi be a subset
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of Sσ such that

τ,,cκ,

| T π | = Ho

Let M π be any element of Tn. Suppose that Tiy along with elements
Mij E Ύij have been defined for all / < n. If

then we can define Ύnn from elements in Sσ\(UI<nTI>_1), so that proper-
ties analogous to (1) and (2) hold. In this case, define Tin = T^-i, (i < n)
and the element Min (i ^ n) is chosen in Tίn to be distinct from any
previously selected element.

Suppose (7^ ) fails to hold. Then for some i,) ΎKn-ι Π K j = Ko. Now
Ύnn will be a countable subset of T^-i such that

TnπΠ{Mii,Mlii+1, ,Ml,ll.1} = 0,

iT -̂ATnn I = Mo-

Define Tm = TV AT™, and let T/n = T^-! for yV /, y < n. Select arbitrary

elements Min (i = n) distinct from the previously selected elements.
For each /, define V, = Πy^TV Since Mη is in V, for all y ^ i,

\y,\ = Ho. Let V, be a disjoint union of V4l and Vί2, where f Vπ| = \\ι2\
z=

Mo. For a fixed prime /?, let \pσ be the union of those V,i for which K, is
represented by some [c,p, e]. Let Ύp = Uσ Ypσ, and let T be the set of
elements not in any Tp. Note that T contains all Vj2. Then S =
T U (U p Ύp) satisfies the required conditions.

By (b) and the above construction, we may define φ: S-»S' satisfy-
ing (i), and also requiring that the restriction to T (respectively Tp) map
onto T' (Ύp). It follows from (b) that maps ψp satisfying the first sentence
of (ii) can be defined. We also claim that the ψp can be required to
satisfy the condition that if M £ T P , and Mp = (φ(M))p, then φp(M) =
φ(M). This condition clearly allows the second sentence of (ii) to be
satisfied. Let K be the subset of S consisting of all elements in [c,p,e],
and let L be the subset of K such that M £ Ύp and Mp = (φ(M))p. If K is
finite, then ψp can be defined as indicated. If K is infinite, define φp on L
first. Let K' be the subset of S' consisting of all elements in [c,p, e]. By
the above construction, |K\L| = |K| = |K'| = |K'\φ(L)|, so ψp can be
defined to map K\L onto K'\φ(L).

We now begin the proof of (c) implies (a). Represent S by a
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decomposition basis X of a group A, where H{X)~ S, and a: X—>S is
the corresponding bijection. We will find a decomposition basis Y of A
such that H(Y)~ S'. For a fixed prime p, a'^^φa is a permutation of
X, and so splits X into equivalence classes consisting of countably infinite
cycles, two-cycles, and fixed points. (The element x in X is a fixed point
exactly if φpax = φax.) Using transfinite induction, X may be written as
a disjoint union of countable subsets, X = U Xσ, such that if x E Xσ, /? is
any prime and k is any integer, {a~λφ~ιφa)kx is also in Xσ. We will
replace each Xσ by a Yσ to obtain the new decomposition basis Y.

We proceed from Xσ to Yσ by introducing a sequence of inter-
mediate sets Wi (i = 1,2, ), such that (X\Xσ) U IV, is a decomposition
basis for every L Let S, be the collection of height matrices of Wh and
let α(<): W, —> S, be a canonical bijection. For each /, we will have maps
φ(i): S, -*S', φp

i}: Sf -»S' with properties analogous to (i) and (ii). (We
will drop the superscripts when there is no danger of confusion.) An
element x E W, is called permanent if φω(a(i)x)= φ(

p\a(ι)x) for all
primes p. We will require that if x E W| is permanent, then JC E W) and
that φ(i)a(i)x = φωaU)x for all / ^ ί. A prime p is said to be repaired
(with respect to Wi) if φ(i) - φp

ι). We require that if p is repaired with
respect to Wi, then p is repaired with respect to W] for / ^ ί. Essentially,
Wi+i is obtained from Wι by selecting and repairing a finite set of
primes. We will indicate how this finite set is chosen after the proof of
the following lemma.

LEMMA 2.3. Let F be a finite subset of Wt. Then we may choose
Wi+i so that each element of F is a linear combination of permanent
elements of WI+1.

Proof First we note that any prime p can be repaired. As
indicated previously, a^ψ^φa divides Wi into equivalence classes
consisting of countably infinite cycles, two cycles, and fixed points. Let
V = {xι}ι(ΞZ be the elements of an infinite cycle, with xi+ί =
a^ψ^φax^ Then Lemma 3.1 will show that V can be replaced by
V' = {yi}ιξΞZ such that Hp(yl ) = Hp(jci+1) and Hq(xt) = Hq(yi), for
q/p. Additionally, [V] = [V]. Let γ: V-> V be defined so that
γ(Xi) = yn and δ: V-*V so that δ(JC,) = yt.u and let S* be the collection
of height matrices of V, witfi canonical bijection α*: V—»S*. Define
</>*: S * ^ S ' by φ* = φcty-\a*Y\ and ψ*: S*-^S' by ψ* = φqay-\ay\
forq/p. We define ^*: S*-^S' by ^* = ΨPaδ-ι(a*)\ We show that
ψ*p = φ*. If M E S*, then M = a*yh for some y, E V. Then

ψ*M = ψpaδ~ι(a*yιM = φpaδ^y, = φpaxι+ι = φpaa1φ-p

1φaxι

= φaγ-1(yi)= φay'\a*) ! M = φ*M.
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In a similar way, p can be repaired for any two-cycle, using Lemma 7
of [6], which essentially says for two-cycles what Lemma 3.1 says for
infinite cycles. We have thus established the claim in the first line of the
proof.

Call a prime good if ψp(ax) = φ(ax) for all x E F. The remaining
primes are bad and form a finite set {qu q2,-'', <?*}• Suppose qx were to
be repaired immediately in the manner described above. Then there
would be a new decomposition basis Γ, each of the elements of F would
be linear combinations of elements of T which in turn would be a linear
combination of a finite set Gx of elements in Wh Starting with Wh repair
all the good primes p for which there is an element x in Gι such that
φ(ax)τ^ ψp(ax). A new decomposition basis Uλ results. Since only
good primes were repaired, the elements of F remain in UΊ. An
element x of Gλ is replaced by a new element y such that

φ(ax)=φ*(a*y),

ψq(ax)= t/f*(α*y), whenever q is a bad prime.

ψ*(α*y) = φ*(α*y), whenever p is a good prime.

(φ*,^*,ι/f* have the obvious meaning.)
Let G ί be the set of elements replacing Gλ. At this point we

actually repair qu in the same manner as we did when obtaining T. The
set G T is replaced by a new set Fj. If x G G *, the corresponding y in F{

has the properties

φ*(a*x)=φ**(a**y),

Ψ*P(a*x)=φ*p*(a**y), for

By the construction of Gu the elements of F are a linear combination of
elements of Fu

The same routine is continued, with F2 replacing F, and the
decomposition basis obtained after the repair of qλ replacing Wh The
set of bad primes is now {q2, , qn} At the last step, we obtain a set Fn,
consisting of permanent elements, such that F is a linear combination of
the elements of Fn. The decomposition basis at this step will be Wι+ι.

We now complete the proof of Theorem 2.2. Write the elements of
the countable set Xσ = {x0, Xu * * *}> a n c order the set of all primes
{puPi, *••}. Let W0 = Xσ. To obtain Wu let F = {x0} and use the
lemma. If n is a positive integer, W2n is obtained from W2n-i by
repairing p{. The element xn is a linear combination of elements of
W2n. Let the set of these elements be F, and again use Lemma 2.3 to
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obtain W2n+i. Let Yσ be the set of permanent elements of the sequence

{w,}.
Now Y ~ U Yσ is easily seen to be a decomposition basis of A,

because of the above construction. The map χ\ Y —>S' defined by the
appropriate φωa(ι) for each y EY manifests the fact that H(Y)~S'.

3. Changing a countable decomposition basis. The
following lemma completes the proof of Theorem 2.2.

LEMMA 3.1. Let X be a decomposition basis of a group A, let {x/}/ez

be a countably infinite subset of X, in which all elements are pairwise
compatible, and let p be a prime. Then there is a subset {yt}/ez of A such
that Hp(yί) = Hp(xι+ι), and for q^p, Hq(yι) = H^x,). Moreover, Y =
(X\{jct}) U{yι} is a decomposition basis and [X] = [Y]

Proof Let x and y be two elements of infinite order in A. Then
the p-indicator of x is superior to the p-indicator of y, Hp{x)>Hp(y)7 if
and only if

(i) if ftp(p'y) = «>, then hp(pιx) = oo
(ii) if Λp(p'"y)^«>, then hp(p>x)>hp(piy).

For the remainder of the proof, p will be the prime specified in the
lemma, while q will always be a prime not equal to p. We proceed
inductively to define a set of coefficients which will be used to form the y(.

A prime q is called one-benign if and only if Hq(x-ι) = Hq(x0) =
Hq(xx). We select integers α0, e0, c0, d0, α_l9 b-u c-l9 e_l9 to satisfy
conditions to be listed later. (See (2)-(4).) In particular, e0 and α_i are
divisible only by p, and e_i and c0 are not divisible by p. So there are
integers u0 and u-x so that

(1) Mo^oα-!- u_1e_1c0= 1.

Define fc0

 = uQe0 and d-i = u^xe-x.
If n > 1 is a positive integer, q is n-benign if
(1) q is (n - l)-benign,
(2) Hq(x-n) = Hq(x0) = Hq(xnl
(3) q does not divide bn-2 and d_n+1.
For n ̂  1, the integers an.u en-u α_n, 6_M are defined to be powers of

p, and divisible by p. The following conditions must be satisfied.

Hv{an~xx-n)> Hp{xn),

Hp(en-λxn-x)>Hp{xn),

(2)
H ( a ) > H ( )
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The integers cn_b dn_b c_n, e_n are divisible exactly by those primes q
which are not n-benign. (There are finitely many such primes.) The
following conditions must hold, whenever q is not n-benign.

The identities

(4)

also must hold.
There are integers un-x and U-n (for n > 1) such that

(5) Un-tfn^an^a-n + U.nβ -nCn-XC - n + 1 = 1.

Define fen_i = nn_iβn-i and d_n = W-Me_n. Note that for n > 0 , and ^ not
n-benign, (MΠ_I,<J) = 1, so primes that are not n -benign do not divide
bn-\. For n > 0 , {u-n,p)~ 1, so that p does not divide d_n. If g is an
n-benign prime, then q may divide bn-λ or rf_n, but not both.

We now define the new elements.

y, = btxt + diJCi+i + α C X-, (i < 0),

(6)
y, = α.Cfjc-. -! + 6 Λ + 4x, + i (ί ^ 0).

We check that y, has the desired height properties.

when i ^ 0 and q is not (/ + l)-benign, or when i < 0 and q is not
( - /)-benign.

Hq(yι) = Hq(dιXι+ι) = H,(jci+1) = H^JC,.)

when i ^ 0 and q is (ϊ + l)-benign, or when i < 0 and q is ( - ί )-benign.
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We next show that each xn is in the subgroup B generated by
{y,}. Routine calculations using (6), (4) and (1) show that xo =
a-ιy0- cQy-x. We next assume that jt, is in B for - k ^ i ^ fc, and show
that both xk+{ and jt_k-i are in B. Using induction hypothesis on yk and
(6), the element akckX-k-{ + dkxk+ι is in B. Equations (6) and (4) and
some computation yield

Combining terms and using (4) and (5), we find that the term

is in B. Using y~k-\ in place of yk in the above argument, we find that
α_fc-iJC_fc-i is in B. Since (cfc, α_k-i) = 1, we have x_fc_i E B. Similarly,
xk+ιEB. Hence B =[{xj].

Now it is easy to see that the elements of Y have infinite order, are
independent, that [X] = [ Y], and that A/[ Y] is torsion. Hence Y will
be a decomposition basis once we establish the height property. Clearly
we need only consider linear combinations involving elements of {yj.

Well order {yj as follows:

and let y(/c) represent the fc-th term of this sequence. We wish to show,
for any k, that

(7) H ( 5 m. yo )) = min {//(m,y0))},

where the m, are integers. We induct on k. When fc = 1, we are
reduced to the trivial equation H(moyo) = H(moyo) When k = 2 we
have a special case, and the proof is nearly identical to that of Lemma 7
of [6]. Two more cases remain.

Case A. k is even, k ^ 4 .

Case B. k is odd, k S 3.
In either case, we may assume as induction hypothesis:

(8) H
i

Moreover it is only necessary to prove that ^ holds in (7), as the other
inequality is trivial.
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We begin work on Case A. Assume that yik) = yn. Now each of
the terms in (7) and (8) is a linear combination of terms in {x,}. Since {x,}
is part of a decomposition basis, each height matrix is the minimum of the
height matrices of the {xj terms. In going from (8) to (7), the terms
H(mkbnxn), H(mkdnxn+[) and H(mkancnX-n) are added to the right hand
side of (8). The terms

(9a)

(9b)

(9c)

must replace

(10a)

(10b)

(10c)

(mkbn + mk-ι(i-n-ιC-n-x)xn,

(mkdn + mk-2bn+x + mk-3a-n-2c-n-2)xn+x,

(mkancn + mk-xd-n-x)x-n,

(mk-xd-n-x)x-m

in order to change the left side of (8) to the left side of (7). We may add
(9a), (9b), and (9c) to the left side of (8) without disturbing the needed
inequality.

It is sufficient to prove the inequality for each indicator, and we will
start with p. It is easy to see that a term may be added to the right side
of (8) if its p -indicator is greater than or equal to a p -indicator of a term
on either side. A term may be deleted from the left side if its
p -indicator is greater than or equal to the p -indicator of a term on the left
side, or superior to the p -indicator of a term on the right side. Since

Hp(mkbnxn)> Hp(mkdnxn+X)

Hp (mkancnx~n) >̂ Hp (mkdnxn+1)

by (2), it suffices to prove that the inequality is maintained if (10b) and
(10c) are deleted from the left hand side of (8) and if mkdnxn+ι is added to
the right hand side.

We show that (10b) may be deleted. If r is an integer, r' denotes
the p-factor of r. We say 0' = °°. Suppose

Then

^ Hp(mk-2bn+ιxn¥l)>Hp(mk-2dn+lxn+2).
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Since the latter term is on the right hand side of (8) and Hp(ί0b) is
superior to it, (10b) plays no role in determining the p -indicator of the
left side, and so may be deleted.

Now suppose

m k-3a
 f

n-2 < m 'k-2b
r

n+ι and m £_3 < m £_i6-n-i.

These conditions, along with (4) imply that

Hp((mk-2an+iCn+1 + mk-xb-n-x + mk-3d-n-2)x -n-ι) = Hp{mk-3d-n-2X-n-x),

where the first term is on the left hand side of (8). We also have

Hp(lθb) = Hp(mk-3a-n-2C-n-2Xn+ι) = Hp{mk-3d-n-2X-n-x).

So again we may delete (10b).
The last possibility is

(11) m ί - 3 α ! n - 2 < m ί _ 2 ^ + 1 and m'k-3^ mf

k-xb-n-x.

Then

Hp(10b) =

Thus if (11) holds, and if (10c) may be deleted, then so may (10b).
We now delete (10c). If m'ka

f

n/έ m'k-{, we have

Hp(10c) = H,(9c),

so that (10c) may be deleted. If

(12) mίaZ = mU

then

H p (10c) = Hp(mkancnx-n) > Hp(mkdnxn+X).

Therefore, if (12) holds, and if Hp(mkdnxn+]) can be added to the right
hand side of (8), then (10c) may be deleted from the left hand side.

We now show that Hp{mkdnxn+λ) may be added to the right hand
side. If

m ί ϊ (mfc_26n+1 + mfc-3α-n-2c-n-2y,
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then Hp{mkdnxn+λ)^Hp{9b\ so Hp(mkdnxn+ί) may be added. If m'k^

m'k-2bn+u then

Hp(mkdnxn+ι) § Hp(mk-2bn+ιxn+ι)

which is a term on the right hand side of (8), so again Hp(mkdnxn+1) may be
added. Finally, if

m [ = (mk-2bn+ι + mk-3a-n-2c-n-2y and mk<m r

k.2b ή+1,

we have mk= m[_3α!n_2. Then

Hp(mkdnxn+]) =

which is one of the terms on the right hand side of (8).
For q -indicators, it suffices to show that mkbnxn may be added to the

right hand side of (8) and that (10a), (10b), and (10c) may be deleted from
the left hand side. For an integer rc, n' now denotes the q -factor of n.

We add mkbnxn to the right side. If

then Hq (mkbnxn) ^ Hq (9a). If

m'k=

then Hq(mkbnxn) = Hq(10a). So if (10a) may be deleted from the left
side, mkbnxn may be added to the right. Now (10b) will be deleted. If

(mk-2bn+ι + mk-3a-n-2c-n-2y ¥• m 'kd'n,

then Hq(Wb)^Hq(9b), so the former may be deleted. If

(mk-2bn+ι + mk-3a-n-2c-n-2y = m'kd'm

then Hq(10b) = Hq(mkdnxn)>Hq(mkbnxn), and this can be added to the
right side provided that (10a) may be deleted.

We complete this case by showing that (10a) may be deleted. The
argument for (10c) is similar to that for (10a), and will be omitted. If q is
not (-n)-benign, then

Hq(l0a) > Hq{mk-φ-n-,x-n-x),

which is one of the terms on the right hand side of (8). Hence (10a) may
be deleted.
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Now assume q is (— n)-benign. If mf

k-λj^ mk, then Hq(10a) =
Hq(9a), and (10a) may be deleted. Therefore assume that mf

k-\ =
mi At least one of the terms b~n-λ or dn is not divisible by q. If dn is
not divisible by q, then

because m[-i = mf

k and q is (— n)-benign. Unless

(13) m ί = (mfc_3α-π-2C-n-2 + mk-2bn+ι)',

Hq{mkdnx-n-x) = Hq(9b), and (10a) may be deleted. If (13) holds, then

If dn is divisible by q, then &_„_! is not divisible by q, and a similar
argument shows that either (10a) may be deleted or

m £ = m £-i S min{m £_3, m (_2}.

Using the term on the right and continuing the above process we find that
unless

mk^ m'k-ι S min{mί_3, m^2}= min{m[-5, mk-4}
(14)

^ ^ min {ml, m'2},

we may delete (10a). (Note that we have assumed that k is even.) If

Hq((mιb0+ m2d^)xQ) = min {J%(m360x0), Hq(m2d-Xxo)},

then

Xo)} = Hq((mxb{) + m2d-x)xQ)

with the latter term in the left hand side of (8), and so (10a) is
deleted. So assume (14) and

(15) Hq ((ntibo + m2d-ι)x0) > min {Hq (mλboxo), H

are true. Because of (15), m[ = m2. Calculations using (1) show that
b-ι(mιbo+ m2d-i)- d-ι(m{Co+ m2a-ι)= mu and since {mxbQ+ m2d-x)'>
m[, we must have
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m[ = (mxc0 + m2a-ιyaΌ = (mxaoco + m2b-x)
f

and

If m3> m[, we have

Hq((mxd0 + m2a-xC-x + m3bx)xx) = Hq((mxd0+ m2a-x
(16)

Since the first term of (16) is in the left hand side of (8), we may delete
(10a). In a similar way, we may delete (10a) if m'4>mf

u> using

(17) Hq((mxaocQ + m2b^x + m4d-2)x-x) = Hq(mxx0)^ Hq(10a).

So, considering (14), we are reduced to

m\ — m2 = m'3 = mf

4.

Furthermore, from the first terms of (16) and (17), we have no difficulties
unless

(mxαoco + m2b-x + mΛd-2)' > m [

and

(mxd0+ m2α-xC-x + m3bx)'> m[.

Now

α()(m1d()+ m2α_iC-i + m3bx)- C-X(mxαoc{)+ m2b-x + m4d-2)

and, using (5),

αobx(m3Cι + m4α-2) — cι(m3αobx — m4C-xd-2) = m4.

Arguing as before, we are finished unless rnf

4= m 5 = mf

6. This continues
until we have

m'1 = m'2=' - = m'k-2= m'k-ιbLn-x = m'kd'n.

Because mr

k-x = m'k, we must have b-n-x = df

n= 1. This implies that
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Hq(9a) = H^niiXo)^ Hq(10a), and so (10a) may be deleted from the left
side of (8).

In Case B, (k is odd, k ̂  3), we add mkancnx-n~\ and mkdnxn+λ to both
sides of (8). These terms cause no problems. Additionally, mkbnxn is
added to the right side, and

(18) {mk-2dn-x + mk-xa-nc-n)xn

is replaced by

(19) (mk-2dn-ι + mk-xa-nc-n + mkbn)xn

on the left side. As before, adding (19) to the left side presents no
problems.

We begin with p-indicators. Since Hp(mkbnxn)^ Hp{mkdnxn+X), we
may add mkbnxn to the right side. When

dn-y + mk-ιa-nc-ny j£ m'kb'm

Hp(18) = Hp(19), so (18) may be deleted. When

(mk-2dn-ι + mk-id-nC-n)' = m'kb'n,

Zip(18) = Hp(mkbnxn) ^ Hp(mkdnxn+ι). The last term has been added to
the left side of (8), so (18) may be deleted.

Finally, consider ^-indicators. If {mk-2dn^λ

Jr mk-ιa-nc-n)' ^ m'kb'n
we may add mkbnxn to the right and delete (18) from the left. So suppose
(mk-2dn-i + mk-xa-nC-n)' = m'kb'n. If q is not n-benign, then q is also not
(n - l)-benign and Hq(mk-2dn-iXn)> H^nik^bn-iXn-i), Hq{mk-xα-nc-nxn)>
H?(mfc.,6-nXn), follow from (3). So Hq{mkbnxn) = H,(18) g
v/ήn{Hq{mk-2dn-χXn\Hq{mk-χα-nC-nxn)} and is equal to one of these terms,
which in turn is superior to a term on the right hand side of (8). So both
mkbnxn and (18) are dealt with in this case. If q is n-benign, the
argument is similar to the deletion of (10a), and will be omitted. This
completes the proof.

4. Ulm's Theorem for mixed abelian groups. Theorem
2.2 plays a key role in the structure theory of mixed abelian groups. The
following concept, due to Warfield [10], (announced in [9]) is necessary.

DEFINITION. A decomposition basis X of A is a lower decomposi-
tion basis if, whenever the Ulm invariant fp

σ(A) is infinite, then /£(A) =
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LEMMA 4.1. If A has a decomposition basis X, there is a decomposi-
tion basis Y subordinate to X which is a lower decomposition basis.

Proof. The local version of this lemma, (i.e., for modules over a
discrete valuation ring) was stated and proved by Warfield ([10],
Theorem 5.1). Warfield's proof, with some minor changes, may be used
here.

DEFINITION. Let X be a decomposition basis of a group A. If, for
every decomposition basis Y subordinate to X, [Y] is p-nice in
A(p, [Y]), then we call X a strongly nice decomposition basis.

We are now ready for Ulm's Theorem for mixed abelian
groups. A slightly different formulation appears in [6], Theorem 10.

THEOREM 4.2. Let A and B be groups having strongly nice decom-
position bases X and Y, respectively, such that A /[X] and B /[Y] are both
totally projective. Then A = B if and only if for all /?, σ, c and e,

and SΎ(c,p,e, A) =

Proof. By Lemma 4.1, there is a lower decomposition basis X{

subordinate to X, and by Theorem 2.2 there is a decomposition basis X2

of A such that [X2] = [X{] and H(X2) - H(Y). Choose a lower decom-
position basis Yx subordinate to Y, and decomposition bases X3 subordi-
nate to X2 and Y2 subordinate to Yu so that there is a bijection
γ: X3-» Y2 such that H(x) = H(yx) for all x G X3. Since X3 and Y2 are
decomposition bases and [X3] and [Y2] are free, γ extends to a height
preserving map δ: [X3]->[YY|. (Note that [X3] = [X4] for some lower
decomposition basis X4 of X, so [X3] has the required niceness
properties.) A/[X3] and B/[ Y2] are totally projective, and /£(A, [X3]) =
fp

σ(B,[Y2]) for all p and σ because X3 and Y2 are lower decomposition
bases. Using Theorem 1.1, A =B. The converse is trivial.

We list four standard consequences in the following corollary.

COROLLARY 4.3. Let A, B and C be groups having strongly nice
decomposition bases X, Y and Z respectively such that A /[X], B/[ Y] and
C/[Z] are all totally projective. Then:

(i) If A ©A =B0J3, then A = B.
(ii) If the Ulm invariants and ST- invariants of C are all finite, and^

A 0 C = B © C, then A = B.
(iii) If A is isomorphic to a summand of B and B is isomorphic to a

summand of A, then A = B.
(iv) // ST(c,p, e, A) = ST(c,p,e,B) for all c, p and e, r/ien ί/iere are
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totally projective torsion groups T and Tf such that A 0 Γ = β © Γ .
An important class of groups, defined in [6], is the following.

DEFINITION. A group A is affable if it has a splitting decomposition
basis X such that A/[X] is totally projective.

It is easy to see that A is affable if and only if it is a totally projective
torsion group, or if it is a direct sum A = φΛ,, where each A, is of rank
one and contains an element x, of infinite order such that A,/[*i] is totally
projective. Since a splitting decomposition basis is strongly nice, the
following is immediate from Theorem 4.2.

THEOREM 4.4. Let A and B be affable groups. Then A = B if and
only if for all py σ, c, and e, fp

σ(A) = fp

σ{B) and SΎ(c,p, e, A) =
ST(c,/?,e,B).

The next theorem demonstrates that an affable group has enough
splitting decomposition bases. The proof is the same as that of Theorem
13 of [6].

THEOREM 4.5. For each decomposition basis X of an affable group
A, there is a subordinate decomposition basis X' of X that is a splitting
decomposition basis.

The following follows from Corollary 4.3.

COROLLARY 4.6. Let A be a group with a strongly nice decomposi-
tion basis X such that A/[X] is totally projective. Then there is a totally
projective group T such that A 0 T is an affable group.

Proof There is an affable group B such that ST(c,p, e, A) =
ST(c,p,e,B) for all c, p and e. By Corollary 4.3 (iv), there are totally
projective groups T and T' such that A 0 T = B 0 T", and the latter
group is still affable.

It is known (see Rotman-Yen [5], p. 251) that a summand of an
affable group is not necessarily affable. It is an open question whether
summands of affable groups can be classified by Theorem 4.2. If they
could be so classified, then the class A consisting of summands of affable
groups would be the largest class of groups that can be classified via Ulm
invariants and ST-invariants. For suppose C is a larger class and
G ε ' C . Then there is an affable group H such that ST(c,p, e, H) =
ST(c,p,e,G0H) and/ί(H) = / ί ( G φ f ί ) , for all c, p9 e and σ. By
the classification theorem we would have G 0 H = H, so that G E A.
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