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Let E be a Banach space and D a subset of £. A mapp-
ing f: D— E such that |ju — v || < 1|1 + »(u — ) — r(f(u) —
S} for all u, ve D, r > 0 is called pseudo-contractive. The
basic result is the following: Let X be a bounded closed
subset of FE, suppose f: X — E is a continuous pseudo-con-
tractive mapping such that f[X] is bounded, and suppose
there exists zc€ X such that ||z—f(2)|] < ||z — f(x)]| for all
x € boundary (X). Then inf{|jx — flx)|]:xcX}=0. If in
addition X has the fixed point property with respect to
nonexpansive self-mappings, then f has a fixed point in X,
It follows from this result that if 7: F — E is continuous and
aceretive with || T(x)|] — co as ||2]] — oo, then T[E] is dense
in F, and if in addition it is assumed that the closed balls
in £ have the fixed-point property with respect to nonexpan-
sive self-mappings, then T[E] = E. Also included are some
theorems for continuous pseudo-contractive mappings f which
involve demi-closedness of 7 — f and consequently require
uniform convexity of E.

1. Introduction. Let E be a Banach space, X a subset of FE,
and f a mapping of X into E. Then f is said to be nonexpansive
if for all », ye X,

1@ — il =z —yll

while f is said to be pseudo-contractive if for all x, ye X and » >0,

(1) e —yll = 1A + 1)@ — ) — (@) — f)il .

The pseudo-contractive mappings (which are clearly more general
than the nonexpansive mappings) derive their importance in nonlinear
functional analysis via their firm connection with the aceretive trans-
formations: A mapping f: X — E is pseudo-contractive if and only
if the mapping T = I — f is accretive, i.e., for every z, y € X there
exists j € J(x — y) such that

(2) Re (T'(w) — T(y), 5) 2 0

where J: E — 27 is the normalized duality mapping which is defined
by

J@) ={je E*: (z, j) = |lzI’ ||5]] = |} .
(See Browder [3]; Kato [13].)
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Recent interest in mapping theory for accretive transformations,
particularly as it relates to existence theorems for nonlinear differen-
tial equations, has prompted a corresponding interest in fixed-point
theory for pseudo-contractive mappings (e.g., [2], [7], [8], [13], [18],
[21],[23], [26]). This latter theory is intimately connected with the
fixed-point theory for nonexpansive mappings. We utilize this fact
in the present paper, obtaining in the process new fixed point theorems
for continuous pseudo-contractive mappings which are then applied
to show (Theorem 3) that if E is a Banach space and T: K — FE
a continuous accretive mapping which satisfies ||T'(®)||— o as
[l#]] — =, then T[E] is dense in E, and moreover T[E]=FE if it
is assumed in addition that the closed balls in E have the fixed-
point property with respect to nonexpansive selfmappings. We
conclude with some theorems for continuous pseudo-contractive
mappings f which involve demi-closedness of I — f and consequently
require the explicit assumption of uniform convexity of the space.
We should also mention that our development is structured to reveal
the distinction between results obtainable by elementary methods
for lipschitzian (or more generally, k-set-contractive) mappings and
the corresponding sharper results for continuous mappings which are
based upon rather deep theorems in differential equations due to
Martin [18] and Deimling [8].

Throughout our discussion, E will denote a Banach space, and
for XCE we use int (X) to denote the interior of X and 6X to denote
the boundary of X. By a contraction mapping we shall always
mean a mapping with Lipschitz constant strictly less than 1.

We need the following fact for the proof of Theorem 1.

PROgOSITION 1. Let X be an open subset of a Banach space E
and U: X— E a contraction mapping satisfying for some z€ X the
Leray-Schauder boundary condition:

Ukx) — 2z Mz —2) for all zeoX,n>1.,
Then U has a fized point in X.

Proposition 1 is closely related to Theorem 5a of Browder [4].
A degree-theoretic proof for the more general condensing mapping
(and bounded X) is implicit in the development of R. Nussbaum [19]
and given explicitly in Petryshyn [20], while an elementary proof of
Proposition 1 for contraction mappings (sufficient for our purposes)
may be found in Gatica-Kirk [11].

Because we shall frequently refer to results of Deimling [8] for
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strongly accretive mappings we include his definition: Let DcC E.
A mapping T: D — E is strongly accretive if for each =z, y € D,

sup {Re (T(x) — T(y), j): jeJ@ — y)} = a(lle — y[) [z — yl|

where a: Rt — R* is continuous with a(0) = 0 and a(s) > 0 for s > 0.

2. General results. The results of this section are formulated
either in arbitrary Banach spaces or, for stronger conclusions, in
spaces in which the domain X of the mapping in question has the
fixed-point property relative to nonexpansive self-mappings. The
precise generality of the class of sets X satifying this latter condition
is not known, but it does include all weakly compact convex sets
which possess ‘normal structure,” in particular all bounded closed
convex subsets of unifomly convex spaces (Browder [1], Gohde [12],
Kirk [16]), and in fact Karlovitz [14, 15] has recently discovered
special instances in which neither weak compactness nor normal struc-
ture is essential for this condition.

THEOREM 1. Let X be a bounded closed subset of a Banach space
E (with int (X) = @). Suppose f: X— E is a continuous pseudo-
contractive mapping and suppose there exists ze€ X such that

[z — f@)| < |lz— f@)|| for all weoX.

Then inf{||z — f(@)|:2e X} =0. If in addition X has the fixed-
point property with respect to nonexpansive self-mappings, then f
has a fized point in X.

Before proving Theorem 1 we state the other results of this
section.

THEOREM 2. Let E be a Banach space, f: E— E a continuous
pseudo-contractive mapping and suppose that for some 6 > 0 the set
{xeE: ||z — f(x)|| £ 6} is nonempty and bounded. Then

inf {||lz — f(®)|:2eE}=0.

If in addition closed balls in E have the fixed-point property with
respect to nonexpansive self-mappings, then f has a fixed point in K.

THEOREM 3. Let E be a Banach space and T: E — E a continuous
accretive transformation such that |T(x)||— o as ||®||— . Then
the range of T is dense wn E. If in addition closed balls in E have
the fixed point property with respect to nonexpansive self-mappings,
then the range of T 1s all of K.
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Using an equivalent definition of accretivity (see the remarks
below), Deimling has observed (see [8, p. 373]) that the surjectivity
portion of the above result holds under the possibly stronger as-
sumption that the closed bounded convex sets in E have the common
fixed point property with respect to commuting families of non-
expansive self-mappings. It is known (Bruck [5]) that if such a
set B is either weakly compact or separable and if every nonexpansive
mapping f: B— B has a fixed point in every f-invariant nonempty
closed convex subset of B, then B has this common fixed-point
property. As noted above, however, nonweakly compact sets may
have the fixed point property for nonexpansive self-mappings. (In
fact the proof of [16] can be modified to show that a weak*-compact
convex subset of a conjugate space has this property if it possesses
normal structure.) Thus while it is not clear to what extent our
result improves Deimling’s, our method appears to be considerably
different in that we avoid completely the use of a common fixed
point theorem.

Proof of Theorem 1. We show first that inf {||a — f(»)|: 2z X} =
0. Since f is pseudo-contractive we have for fixed » € (0, 1), u, v € X:

lu —oll = rllu — o)l + |(T = rHw) — T — rH)@)] ;
thus
(3) A —=lu -] =[(T—- 7w — T - rf))l

and hence the mapping U= (1 — r)(I — rf)™* is defined and nonex-
pansive on B = (I — rf)[X]. Moreover from (2) there exists j¢
J(u — v) such that

Re (I — 7)) — (I — rf)©), ) =2 A — r)|lu — »|]

and it follows that I — rf is strongly accretive (with a(s) = (1 — 7)s).
Thus by Theorem 3 of [8] (I — »f)[int (X)] is open, while by (3)
B=(I—rf)[X] is closed. It follows that oBc (I — »f)[0X]. Also,
for =2 — rf(x) € B we have

(4) Iz — U@ =rlle — f@)]] .

Now let £€dB and Z = z — rf(2) where z¢ X is the point specified
in the statement of the theorem. Since ||z — f(?)]| < ||z — f(®)]] it
follows that

(5) Iz =U@I <z —U@]| .

The assumption U(Z) — z = MZ — Z) for » > 1 leads to a contradiction
because it implies ||U(%) — Z|| = M||Z — Z|| and
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llz =U@)Il = (- DIz —Z||
while (5), the nonexpansiveness of U and T + 7 yields

1U@) -zl = [[U@) -U@| + [|UR) — z||
<llz -zl + [z —U@Il ;

ie., MZE—zZ|| <||Z —Z] + (- 1)]||Z —Z||, a contradiction. We thus
conclude:

UZ) — 2+ MZ — %) for all ZeoB and A > 1.
It follows that for t€(0, 1) the mapping U,: B— FE defined by
U@Z)=Q1—-1tz+tUZ), B,
is a contraction mapping which satisfies the Leray-Schauder condition:
(6) U@Z) —z+MZ —7%) for all FecoB, M>1.
By Proposition 1, U, has a fixed point %, € B; thus

1Z — UG = || — 17 + tUE) —UG)|

7
(7) < @ =Mzl + U@ .

Because U maps B into (1—7)X and the latter set is bounded it follows
that {U(Z,)} is bounded and thus (7) implies inf {||Z — U@)||:Z < B} = 0.
The first part of the theorem now follows from (4).

We now prove existence of a fixed point of f with the added
hypothesis that any nonexpansive mapping of X into X always has
a fixed point. First, notice that in view of the fact that

inf{||lz — f(@)|:xeX} =0
we may assume existence of ze€ X such that
(8) l[z — f(2)]| <inf{l|z — f(z)]|: v cdX}.

Since X is bounded, (8) implies ae(0,1) may be chosen so near 1
that for all y € X,

allz — f@)I + 1 —a)llz -yl
< inf{allz — f(@)|| — 1 — a)||z — y|l: x€dX}.

Now define U, ,: X— F by

(9)

(10) U, (@) =1L —ay +af(z), zeX.
(I0). Suppose it 1s the case that for fized ac(0,1), U,, has a
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fized point F (y) for each yc X.

Then a mapping F,: X — X can be defined with the property
(11) Fy)=Q1—-ay +af(Fy), yeX.
Thus for u, ve X,
Fou) — Fo(v) = a(f(Fo(w)) — f(Fv))) + (1 — a)(w — ) ;

and for jeJ(F (u) — F,(v)),

(Fa(u) - Fa(v)! .7)

= a&f(u)) — F(F(v)), 5) + L — a)(» — ), J) .
Hence for suitable such j we have by (2):
Hsz(u) - Fa(v)Hz

= a|[F(u) — F()|° + 1 — a)llw — o[ || Fu(w) — F.)I ,

i.e.,
[|[Fo(w) — Fo(0)|| = {lu — ]| .

Therefore F, is a monexpansive mapping of X into X and since
F(z) =« only if f(x) =x, under our added hypothesis on X we

need only establish (I) to complete the proof of the theorem.
Returning to (9) and the definition (10) of U,,, we have

(11) |z —U.y(2)|| <inf{||z — U, (2)|l: vedX}.

Fix y € X and with » chosen in (0,1), let S=1-+U,,. Then for
u, v € X and appropriate j € J(u — v) we have by pseudo-contractiveness
of f and (2),

Re (S(u) — S(v), 7) = Re (u — raf(u) — (v — raf()), 5)
(12) = |lu — o[’ — ra Re (f(u) — f(v), J)
=1 —anllu—2|[;

i.e., S is strongly accretive and by Theorem 3 of [8] S[int (X)] is
open. Hence S(z) €int(X) and since S[X] is closed, d(S[X])cS[oX].
We next show that if H= (1 — #)S™* then

(i) H is a contraction mapping, and

(ii) H satisfies the Leray-Schauder boundary condition: H(Z) —
Z# MZ — Z) for £€dD and N > 1 where D = S[X] and z = S(z).

To prove (i) notice that by (12),

1 —anrllw—v| =(Sw) - SWI, w,veX,

from which
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1—7
1—ar

1 H) - HO)I = (3=2)is = tll, s teD.

To prove (ii) observe that ||z — H(Z)|| = r||z —U,,,(2)||. Now
let € 6D where Z = x — rU, ,(2). Then ||Z — H(Z)|| = r||lz —U,,,(2)]]
and since z €0X (recall, oD c S[0X]) we have by (11)

(13) Iz — H@)| <[z — H®@)| .

The assumption that H(ZX) —Z = M& — z) for » > 1 now leads to a
contradiction in the same manner as in the proof of the first part
of the theorem for the mapping U.

Having established (i) and (ii), H has a fixed point @weD by
Proposition 1. From this,

A= —rU,)"(w) = ;

hence

1z)¢_TUa’”<lﬁr):w

which in turn implies U, ,(%/(1 — 7)) = @#/(1 — r), proving (I) and
completing the proof of Theorem 1.

We use the following lemma (cf. [25]) in the proof of Theorem
2 and include its proof for the sake of completeness.

LEMMA 1. Let X be a subset of ¢ Banach space E and let f: X— K
be a continuous pseudo-contractive mapping. If As: X—E is defined
by A, = 2I — f, then:

(a) A, is one-to-one and A7' is nmonexpansive.

(b) f and A7' have the same fized points.

(¢) If X 1is closed, A/]X] 1s closed.

(d) If X is open, them A X] is open.

Proof. (a), (c): We have by definition (taking » = 1),
| AA() — Al = le — gl .
(b): Obvious. (d): Let z, ye X and choose jeJ(z — y) so that
Re (f(2) — f(w), 5) = lle — yII*.
Thus

Re (4;(x) — A;(y), 5) = 2(z — ¢, ) — Re (f(2) — f (), J)
z |lo —yli*;
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thus A, is strongly accretive and A/ X] is open by [8, Theorem 3].

Proof of Theorem 2. Since A[E]= E (by Lemma 1, (¢)-(d)) we
may define g: E— E by g = A7.. Then g is nonexpansive. Let D =
{ze E:||x—f(x)||<0} and choose y € D. Since D is bounded so is A,[D];
hence there is a ball B such that A;D]cint (B). Set z = Aqy).
For € dB we have ||z — g(2)|| = |ly — S| =0 <|lg(®) — f(g(@)]| =
[l — g(x)]]. Theorem 2 now follows from Theorem 1 and Lemma 1(b).

Proof of Theorem 3. Let zeE and f =1~ T + 2. Then f is
a continuous pseudo-contractive mapping and if 6 > 0, ||z — f(2)]| <o
implies ||T(z)|| = 0 + ||#]|. Thus for ¢ sufficiently large the set
{xe E: ||z — f(x)|| < 0} is nonempty and bounded; hence inf {||z — f(2)]|:
zeE} =0 by Theorem 2 yielding z € f(E). If closed balls in E have
the fixed point property with respect to nonexpansive self-mappings
Theorem 2 yields € E such that 2 = f(2) from which T(z) = z.

3. Uniformly convex spaces. With E uniformly convex, K a
closed convex subset of E, and f: K— E nonexpansive, then I — f
is demi-closed on K, i.e., if z, — f(z,) — y strongly for {x,} < K while
z, — ¢ weakly, then x — f(2) = y. This important property of non-
expansive mappings is implicit in Gohde [12] and an explicit proof
based upon Gohde’s technique is given by Browder [4, Theorem 3].
Its application is crucial to Theorem 5 of this section. First, however,
we prove a result for a more general class of spaces.

THEOREM 4. Suppose E is a reflexive Banach space such that
every nonempty closed bounded and convexr subset of E has the fixed
point property with respect to nonexpansive selfmappings and sup-
pose f:E — K is a continuous pseudo-contractive mapping. If
z, — f(x,) — 0 strongly for some bounded sequence {x,} CE, then f
has @ fized point. '

Proof. By Lemma 1, A/F] = E (where A; =2I — f). Letg=
A7' and y, = Aq(x,). Then {y,}is bounded and moreover y, — g(¥,) =
z, — f(z,) — 0 strongly. Let C denote the set of asymptotic centers
of {y.} (cf. Edelstein [9]). Then C is nonempty, closed, bounded and
convex and since g is nonexpansive, g maps C into C (see Reich [22]).
Thus ¢ has a fixed point by assumption. Lemma 1(b) finishes the
proof.

THEOREM 5. Let E be a uniformly convex Banach space, X a
bounded closed convexr subset of E, a@d G an open set containing
X with dist (X, E\G) > 0. Suppose f: G — E is a continuous pseudo-
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contractive mapping which sends bounded sets imto bounded sets.
Then I — f is demi-closed on X.

Proof. Suppose {z,}c X with z, — f(x,)—y strongly while z,— «x,
weakly. We must show #, — f(%,) = y and clearly (replacing f with
f + y) we may assume y = 0. Since X is bounded and convex we
may suppose that G is bounded and convex with ¢ = dist (X, E\G) > 0.
Let X be a closed §/2-neighborhood of X. It is possible to choose
r€(0, 1) small enough that (i) for eachze X and y€G, z + rf(y) G,
and (ii) #, — rf(#,) € X. Then the mapping U, ,: G — E defined by

U,.y) =2+ rf(¥)

maps G into G. Observing (2) it follows from Corollary 2 of [8]
that for each z¢ X there exists y, € G such that U, ,(y,) =y. Hence
(I — r2)(y,) =z and this proves that X lies in (I — »f)[G]. The
mapping H = (2 — r)(1 — rf)™" is nonexpansive (cf. (3)) and defined
on (I —rf)[G]. Moreover if %, ==, — rf(x,), then %, — H(Z,) =
r(x, — f(x,)) — 0 strongly while z, — (1 — r)z, weakly. By (ii) the
sequence {Z,} lies in X and by demi-closedness of H on X, (1 —7)x, =
H((1 — r)x,) from which z, = f(x,).

THEOREM 6. Let E be a uniformly convexr Banach space, X a
bounded closed convex subset of E with int (X) # @, and G an open
set containing X such that dist(X, E\G) > 0. Suppose f:G—E is a
continuous pseudo-contractive mapping which sends bounded sets
into bounded sets and satisfies for some z€int (X):

(*) J@) —z+ Nz —2) for z€éX, A>1.
Then f has a fived point in X,

Proof. By replacing f(x) with f(x — 2) + 2z one may takez =10
in (*) (and thus by assumption 0 €int (X)). For r € (0, 1), the mapping
T =1— rf is strongly accretive and by [8, Theorem 3] T[int (X)]
is open. As we have seen earlier T[X] is closed and thus dT[X]C
T[6X]. Since f[X] is bounded it is possible to choose r€(0,1) so
small that rf[X]cint(X) and thus by [8, Corollary 2] we have 0¢
T[int (X)] c int (T[X].

By Theorem 5, I — f is demi-closed on X and since X is weakly
compact, (I — f)[X] is closed. With this and the observations above,
it is possible to follow precisely the argument of Gatica-Kirk [10, p.
113] (letting f play the role of U) to show that for the nonexpansive
mapping H= (1 — )T T[X]— E, (I — H)[T[X]] is closed and H
satisfies the Leray-Schauder boundary condition:
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H(z) = xx for ze€oT[X] and A>1.

Since H is nonexpansive a routine application of Proposition 1 (to
mappings tH, t €(0, 1)) yields inf {||z — H(x)|| 2 € T[X]} = 0 and with
(I — H)[T[X]] closed it follows that H, hence f, has a fixed point.

Finally, we observe that a slight modification of a portion of
the above argument yields a result for arbitrary spaces.

THEOREM 7. Let E be a Banach space, X a closed bounded and
convex subset of E with int(X)# @ and f: X—E a continuous
pseudo-contractive mapping such that f[X] is bounded. Suppose
there exists z €int (X) such that

(*) f@) —z# Mz —2) for zedX, An>1.
Then inf {||z — f(®)|]: xe X} = 0.

Proof. As before, by replacing f(x) with f(z +2) — 2z and X
by X — z, one may take z = 0 in (*) (and thus 0cint (X)). Choose
> 0 such that »(1 + r)'f[X]cint(X) and let T =@ + ) — rf.
Then since I — f 1is accretive, T 1is strongly accretive; hence
Tlint (X)] is open by [8, Theorem 3]. As we have seen earlier,
T[X] is closed. Thus 0D C T[0X] where D = T[X]. The mapping
g:D—E de fined by g = T™* is nonexpansive. Since ||y — g(¥)| =
r|lg(y) — f(9())|| for ye D, by Proposition 1 it suffices to show
that Oeint (D) and that g(y) # My for ye€oD and N >1. Using
(1 + ) f[X]Cint (X), [8, Corollary 2] implies the existence of
%, € int (X)) such that o, = (L + 7)™ f(2,). Thus 0= T(x,) € T[int (X)]C
int (D). Now suppose ¢g(y) = Ay where y<coD and x> 1. Choose
zeoX such that T(x) =y. Then z = g(%) = My = M1 + e — rf(2)),
ie., f(@)= 01+ 7r) —1)/(r )z, and since A1 + 7) — 1 >\, this
contradicts (*).

REMARKS. If f is assumed to be lipschitzian in Theorem 1 then
r > 0 can be chosen so small that »f is a contraction mapping and
it follows (as is well-known and easily proved) that (I—»f)[X] is closed
and (I — »f)[int (X)] is open. This renders appeal to [8, Theorem 3]
unnecessary. Similar reasoning applies throughout and in fact it is
possible (as seen in an earlier version of this paper) to obtain all
our results by elementary direct methods if all the mappings con-
sidered are assumed to be ‘lipschitzian’ rather than ‘continuous.’
We comment on this because the extent to which results of this
type are obtainable without appeal to existence theorems for differen-
tial equations has been a topic of recent interest ([6], [22]), and we
know of no elementary proofs for the more general versions of our
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theorems.
We should also add that in the proof of Theorem 1 the nonex-

pansiveness of the mapping F, was originally brought to our at-
tention by R. E. Bruck, Jr. Also thé observation that the definition
of accretivity used in [8] is equivalent to the usual one (used here)
was brought to our attention by Juan A. Gatica. This latter fact
follows easily from the weak*-compactness of closed balls in X*.
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