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CONSTRUCTING NEW i?-SEQUENCES

MARK RAMRAS

R-sequences play an important role in modern commuta-
tive algebra. The purpose of this paper is to show how new
^-sequences may be constructed from a given one. In the
first section we give some general results, which are ap-
plied in the second section to obtain an explicit method of
construction.

Recall that a sequence of elements xlf , xn in R is an R-
sequence if (xίf , xn)R Φ R, xί is a nonzero divisor on R, and
for 2 ^ i ^ n, xt is a nonzero divisor on R/(x19 , x^R.

Throughout this paper R will be a commutative noetherian ring
which contains a field K. Moreover, R will either be local or
graded.

I wish to thank Melvin Hochster for showing me Proposition
1.5, which simplified this paper considerably.

1* It is easy to see that if xlf ---,xnεR and Xlf * ,Xn are
independent indeterminates over K, and if φ: K[X19 •••, XΛ] —>R
by φ(f(Xlf , Xn)) = f(xlf •••,»«) is a flat monomorphism, then
xl9 •••,&» is an ϋJ-sequence. The converse, when R is local, is due
to Hartshorne [3].

PROPOSITION 1.1 (Hartshorne). Suppose R is local. If x19 •••,
xnεR form an R-sequence then φ: K[X19 ••, Xn] —>R is a flat
monomorphism, where φ is the map determined by <p(Xt) = xt for
each i and φ{a) — a for all ae K.

REMARK. Saying that φ is a monomorphism is the same as
saying that x19 •••, xn are algebraically independent over K.

COROLLARY 1.2. Assume R is local. Suppose flf •••,/« is a
K[X19 •••, Xn]sequence9 and each fte(Xί9 , Xn)K[X19 •••, Xn].
Suppose also that xlf , xn is an Rsequence. Then

is an Rsequence.

Proof. By Proposition 1.1 the map φ is a flat monomorphism. By
flatness, since f19 •••,/» is a K[X19 •••, XJ-sequence, φ(f), •••, 9>(Λ)
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is an ϋJ-sequence. (The assumption t h a t each fte(Xlf •••, Xn) guar-

antees t h a t t h e φ(ft) generate a proper ideal of R.)

R E M A R K . I t is well-known (e.g., [4, Theorem 119]) t h a t for

any local noetherian r ing R, a p e r m u t a t i o n of an iϋ-sequence is

again an i?-sequence. However, if R contains a field, the preceding

result yields a very simple proof of this fact. For it is clear t h a t

for any permutat ion a of {1, •••,%}, Xσω, -—,Xσ(n) is a K[Xί9 •••,

XJ-sequence. Let t ing ft — Xσ{i), we have ft(x19 •••, α?Λ) = αjβ(<), and

so by Corollary 1.2, xσω, •••, a?σ(Λ) is an i?-sequence.

We now give a graded analogue of Proposition 1.1. For in

order to use Corollary 1.2 we need K[Xlf •••, XJ-sequences.

PROPOSITION 1.3. Assume R is graded, and letxi9 ,xn be

homogeneous elements of R of positive degree. Then xL, •••,#» is

an R-sequence <=> (i) x19 , xn are algebraically independent over K,

and (ii) R is a free K[xlf •••, xn]-module.

Proof. Let A = K[xlf ••-,»»].

(«=) Assume (i) and (ii). Hence A is a polynomial ring in n
variables and thus x19 *',xn is an A-sequence. Since R is A-free,
any A-sequence is an i?-sequence.

(=>) (i) follows from [5, p. 199].
(ii) A is a graded subring of R, with grading induced by that

of R. That is, if R = © ΣRk, let Ak = A Π #*. Then 2Άfc is a
direct sum, which we claim equals A. Since each xt is homogene-
ous, Xi G Aw. for some integer m< ̂  1. Also, KcR and i2 is graded,
so KaR0, and therefore K — Ao. Since every element g of A is a
polynomial in the x/s with coefficients in i£", it follows that ̂ G φ
ΣAk. Hence A = ©2Afc. Thus, with the grading on A induced by
that of Rf and with the original grading on R, R is a graded A-
module. Now by [2, Ch. VIII, Thm. 6.1] since Ao is a field and R
is a graded A-module, if Ύoτf(R, Ao) = 0 then R is A-free. Thus
to prove (ii) it suffices to show that Torf (R, K) = 0.

We compute Ίorf(R, K) by taking a protective resolution of
K over A and tensoring it with R. Since a?u •••,#» are algebrai-
cally independent over K, they form an A-sequence, and so the
Koszul complex of the x's over A is exact and therefore yields a
free A-resolution of K. Tensoring it with R gives the Koszul com-
plex of the x's over R. But since by hypothesis the x's form an
i2-sequence, this Koszul complex has zero homology ([1, Cor. 1.2] or
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[2, Ch. VIII, 4.3]) In particular, the first homology group,
Torf (R, K), is 0, and we are done.

We have a graded analogue of Corollary 1.2. Its proof is
nearly identical to the latter's and so we omit it.

COROLLARY 1.4. Suppose R is graded and xlf " 9xn is an R-
sequence, where each xi is homogeneous of positive degree. Suppose
As mmffn is a K[Xi, •» Xn]-sequence with each f e (Xlf , Xn).
Then f(xί9 , xn), , fn(x19 , xn) is an R-sequence.

We close this section with a proposition due to M. Hochster.

PROPOSITION 1.5. Let S be a graded Macaulay ring such that
SQ is local. Let xlf , xn be homogeneous elements of S. If
rank (x19 •••,#») = % then x19 , xn is an S-sequence.

Proof. Let M — Mo + Σ ^ i Si9 where MQ is the maximal ideal
of SQ. Then M is maximal in S and contains every proper homo-
geneous ideal of S. Let / = (xl9 •••,#„), and localize at M. Then
in the local Macaulay ring SM, rank(fM) = n, so x19 ,x% is an
S^-sequence, by [4, Thms. 129 and 136]. Let JίΓ denote the Koszul
complex of the x's over S. Then *3Γ®SSM is acyclic since it is
the Koszul complex of the x's over SM. Hence for each i ^ 1, the
ith homology module R^^Γ (x) SM) = 0. Since SM is S-flat we have
Ή.13T) (g) SM = 0, so ann (Hl^T)) qt M. Since the a?'s are homo-
geneous, 3ίΓ is a complex of graded S-modules and hence H^SΓ)
is also graded. But the annihilator of a graded module is a homo-
geneous ideal. Thus ann ( i ^ p Γ ) ) = S and so H^^Γ) = 0 for all
i ^ 1. Therefore JίT is acyclic, and so by [1, Prop. 2.8], xu --,xn

is an S-sequence,

2 Any permutation σ in the symmetric group S^% acts as an
automorphism on the polynomial ring K[Xl9 , Xn] by

(σf)(Xlf , Xn) = f(Xσ{1)9 , Xσ{n)) .

The next lemma is the key to our construction.

LEMMA 2.1. Let σ be the cyclic permutation (1,2, •••,%), of
order n. Let K be a field, with aeK. Define a homogeneous
polynomial fe K[X19 , XJ by f(X19 , Xn) = XT — agf where
g = ΠίU -3ΓζS 2 ^ it < i2 < " - < ik ^ n, each mt}£l, and Σ*U w p m .

If α% ^ 1, then the only common zero of /, σf9 , σn~ιf in iΓ%

is (0, . . . , 0 ) .
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Proof. We first treat a special case where the basic idea of
the proof is not obscured by details. Suppose that k = n — 1, i.e.,
that each Xu 2 <L i <L n, divides the monomial g. Let (zίf , 2W) e
K* be a common zero of /, σf, •• ,σ%~1/. We have the following
system of equations:

z™ = azf2"'ZZn-1zTn

Equating the product of the left sides with the product of the right
sides, and using the fact that X?=2 m, = m, we obtain:

Π **) - αn(Π s*)mί (Π *,/•» - α ^Π

But an Φ 1, so Π*=i zi — 0 and thus some Ĵ̂  = 0. For all i such
that i Φ j , Zj appears on the right side of the ίth equation of the
system above. Hence zi — 0. Thus (z19 , zn) = (0, , 0).

In the general case we shall break up the system of n equa-
tions into a number of subsystems, for each of which the preceding
argument can be used.

Let H = <<711, , σίk) be the subgroup of the cyclic group (σ)
generated by σh, •• ,σifc. Thus H is cyclic, of order dividing n.
In fact, H = (σb) where 6 is the greatest common divisor of
n,iίf •••, ίk.

We claim that if Xr divides σs(g), then r = s (modδ). For
r = σs(ic) for some c, 1 ̂  c ̂  k. Thus r = s + ic (mod ̂ ). Since b
is a common divisor of ίc and w, it follows that r s s (mod 6).

Now consider Π?=i^s(^) It is clearly invariant under σ. But
if tfCΠXi-X^) - Π?=i-^% then ^ = α2 = = an. Now since deg
g = m, deg (Π?=i <?8g) = wm. Thus Π?=i ̂ s^ = Π?=i -XΛ On the other
hand, for any r,

Π '̂ff = ( Π osg){ Π σ'g) ,
s=l sΞr(mod 6) s^r(rαod b)

and if r ^ s(mod b) then Xr does not divide σsg. Therefore

Π *g= Π X m - ( Π -2Γ.) .
s = r(mod b) s = r(mod δ) s = r(mod δ)

Now suppose (zu , zn) is a common zero of /, σf, , σn~ιf.
Then for all 1 ̂  s <; ti, zT = α(^8^)fe, , «»). Hence

Π z s ) w - α ^ & Π ( ^ V ) f e , ••-,«.) = ^ / & ( Π
= r(mod b) s = r(xnod b) ?=r(mod b)
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Since an Φ 1, it follows that an/b Φ 1, and so z8 = 0 for some s = r
(mod b). We shall show that zt = 0 for ever?/ t = r(mod b).

For 1 ̂  i ^ fc, X^ divides #: Thus Xt = ^"^(X, j divides σ%-^{g\
say α?Λ = ff*~<y(ff). Now <7'-*'(/) = σ ' - ' W ) - aσ*'*^) = X,*,, - αα?tΛ.
If 2, = 0, then s£ i y = 0 since (zx, •••,£») is a zero of σ*"'^/), and so
^ί-^ = 0. Thus for all i and for all q with # = s(mod is), we have
zq = 0 This implies zt = 0 for all ί = r(mod 6). Since r was
arbitrary, fo, . , zn) = (0, , 0).

THEOREM 2.2. Let K, σ, a, and f be as in the preceding
lemma. Then f, of, , σn~ιf is a K[Xlf , Xn]-sequence.

ProofL Let / - (/, σf, ,_σn~ιf) and let R = JΓ^, , XJ.
Let S = -BΓI-XΊ, , Xn], where i ί is the algebraic closure of K. By
Lemma 2.1 the variety of IS in if% contains only the origin. Hence
by the Nullstellensatz, the radical of IS is the maximal ideal
(Xlf ••*, Xn)S. Therefore rank(JS) = n, and so by Proposition 1.5
/, σf, , σn~ιf is an S-sequence. Now S = R ®KK, so S is J?-free.
Hence S is faithfully ϋJ-flat, and thus f,σf, •• ,σw~1/ is also an
iϋ-sequence.

Combining Theorem 2.2 with Corollaries 1.2 and 1.4, we have:

COROLLARY 2.3. Suppose R contains a field K, and x19 •• ,a?Λ

is an Resequence. Define feK[Xlf « , X J as in Lemma 2.1, and
assume an Φ 1. If R is local, or if R is graded and each xt is
homogeneous of positive degree, then

f(xlf , xn), (σf)(xlt , xn), , ( σ ^ 1 / ) ^ , •••,»»)

is an R-sequence.

REMARK. Since / is a homogeneous polynomial of positive
degree, when the original iϋ-sequence consists of homogeneous ele-
ments of positive degree, the same is true for the resulting R-
sequence. Thus in the graded case as well as in the local case, the
procedure may be iterated.

EXAMPLE. Let R = K[X, Y, Z], where X, Y, Z are independent
indeterminates. By Theorem 2.2, if a2 Φ 1, then X2 - aYZ, Y2 -
aXZ, Z2 — aXY is an uJ-sequence, and if b e K and V Φ 1, then
X3 - bY\ Y3 - bZ\ Zz - 6X3 is another. Hence by Corollary 2.3,
(X2 - aYZf - b(Y2 - aXZ)3, (Y2 - aXZ)s - b(Z9 - αXΓ)3, (Z2 -
aXY)3 - b(X2 - aYZf is again an i?-sequence, as is (X3 - bYJ -
a(Y* - bZ3)(Z3 - 6X3), (Γ 3 - bZJ - a(Z3 - δX3)(X3 - bYz), (Z3 -
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bXs)2 - a(X* ~ 6F3)(Γ3 - bZz).
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