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One of the reasons that paracompactness plays a central
role in general topology is that it is a property shared by
compact spaces and metric spaces. Recently there has been
considerable interest in topological properties shared by
countably compact spaces and metric spaces. R. W. Heath
has introduced a method of describing a generalized metric
property of a topological space (X, τ) by means of a func-
tion g:NxX-+τ and R. E. Hodel has modified this method
to obtain important new classes of spaces. Subsequently, J.
Nagata obtained a similar characterization of I^-spaces, and
it now appears that the method of Heath and Hodel provi-
des an opportunity to clarify the relationships among those
properties that are shared by countably compact spaces and
metric spaces. This note seeks to establish some relation-
ships among these properties.

1* Introduction. Section 3 concerns wJ-spaces. We show that

every σ-orthocompact wzί-space is a 2^-space and that every σ-reή-
nable quasi-complete space is a w7-space. It follows that every
regular σ-refinable space with a (?δ-diagonal that is a wr-space (or
a quasi-complete space) is a 7-space and that every σ-orthocompact
quasi-complete /3-space is a 2^-space. In § 2 and 4, respectively, we
introduce wtf-spaces and ©-spaces. We provide support for the con-
jecture that wσ-spaces are exactly the J?#-spaces and characterize
the Θ-spaces as the c-semistratifiable ^-spaces.

Throughout this paper we use the following notational conven-
tions. N denotes the set of all natural numbers and if ^ is a
cover of a space (X, τ) and xeX, then Af = Π {C e ^\xeC}. As
is customary, (xn) denotes the sequence whose nth. term is xn.

2. wσ-spaces* An ingenious approach to the study of generaliz-
ed metric spaces, introduced by R. W. Heath in [7] and pursued
by R. E. Hodel [9], [10], is to describe a generalized metric pro-
perty of a topological space (X, τ) by means of a function g: N x
X—>r. An extension of this approach, which the authors first used
as a mnemonic device, now appears to be useful in further unifying
and organizing the study of generalized metric spaces. In particular
the extension suggests a natural conjecture that bears upon a pro-
blem to be discussed subsequently.

Let (X, τ) be a topological space, let g: N x X—>τ be a function
such that for each xeX and ne N, xeg(n + 1, x) cg(n, x) and con-
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sider the following further conditions on g:
(a) If for each neN, {p, xn} c g(n, yn), then <α?Λ> has a cluster

point.
(b) If for each neN, pe g(n, yn) and yn e g(n, xn), then <α?Λ>

has a cluster point.
(c) If for each neN, peg(n, xn), then (xn) has a cluster point.

Let s be any of the conditions (a), (b) or (c) and s"1 be the state-
ment obtained by formally interchanging all memberships (e.g., a'1

is the condition: If for each neN, yne g(n, p) Π g(n, xn), then (xn)
has a cluster point). If g: N x X —*τ satisfies condition s (respec-
tively s"1) for s = a, b, or c, we say that g is a wS-function (res-
pectively wS ^-function) and that (X, τ) is a wS-space (respectively
wS^-space). Corresponding to each of the above conditions s is the
stronger condition, denoted S, in which "then (xn) has a cluster
point" is replaced by "then p is a cluster point of <X>." If g
satisfies S, we say that g is an S-function and that (X, τ) is an
S-space. S'1-functions, and S^-spaces are defined analogously. The
following are known,

A = developable space B = σ-space C = semistratifiable
space

A'1 = Nagata space B'1 = 7-space C~1 = first countable

space

wA = wz/-space wC = /3-space

wi" 1 = wiV-space wB~ι = ^7-space wC"1 = g-space.

We dub the w2?-spaces, for obvious reasons, wtf-spaces.

DEFINITION [16]. A space (X, τ) is a Σ*-space if there is a
sequence <^^> of closure preserving closed covers of X such that
if xeX and xn e Afnn for each neN, then <α?n> has a cluster point.

PROPOSITION 2.1. Every Σ*-space is a wσ-space.

Proof. An immediate consequence of a result of J. Nagata [18].

PROPOSITION 2.2. Every wN-space is a wσ-space.

PROOF. Let g be a wN-function. Suppose that for each neN,
P 6 g(n, yn) and #Λ e g(n, xn). There is a # 6 X such that q is a cluster
point of (yn}. Thus for each neN, there is a jn>n such that
!/iw € g(n, q). Now #^ 6 g(jn, xjn) c #(w, a?iw) so that for each n e N,
g(n, q) Π g{n, xjn) Φ 0 . Since g is a wJW-f unction (xjn) has a cluster
point. It follows that (xn) has a cluster point.
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DEFINITION [20], A space (X, τ) is a σ*-space if there is a
sequence <_^Q of closure preserving closed collections such that if
x Φ y, then there is an Fe Uϊ=i ^l such that x e F and y$F.

DEFINITION [15]. A space (X, τ) is c-semistratifiable if for each
xe X there is a sequence <βr(w, a?)> of open neighborhoods of x such
that for each compact set K c X, if #(w, K) = U {#(w, a?) | a? e if},
then n {#(w, if) I % ̂  1} = K. The function g: N x X—>τ is called
a c-semi-stratification of X.

Every (X#-space is c-semistratifiable, but the existence of a c-
semistratifiable space that is not a σ*-space has not been established.

A comparison of the characterization of I^-spaces given by J.
Nagata [18] to the characterization of tf-spaces given by R. W.
Heath and R. E. Hodel [8, Theorem 1.4] suggests the conjecture that
every wσ-space is a J^-space. The following proposition is further
evidence in support of this conjecture, because it is known that
every regular <7#-space that is a i^-space is a tf-space.

PROPOSITION 2.3. Let (X, τ) be a regular σ^-space that is a wσ-
space. Then (X, τ) is a σ-space.

Proof. Since (X, τ) is a σ#-space, there is a function r: NxX—>τ
such that if y e r(n, x)f then r(n, y) c r{n, x) and such that Πϊ=i r(n>
x) — {x}. Since (X, τ) is a wσ-space, there is a function s: NxX—>τ
such that if p e s(n, yn) and yn e s{n, xn), then (xn) has a cluster
point. For each neN, let g(n, x) — r(n, x) Π s(n, x). Suppose that
pzg{n, yn) and yneg(n, xn). Then there is a qeX such that q is a
cluster point of (xn). It suffices to prove that p = q. If p Φ q,
then there exists keNsuch that pgr(fc, g). Choose n ^ k such that
#„ e r(k, q). Then p e r(n, yn) c r(^, α?ft) c r(k, xn) c r(fc, q) so that
p G r(k, q). This is a contradiction. It follows that (X, τ) is a σ-
space [8].

3* wΛ-spaces. In this section we investigate two covering pro-
perties and their connection with wJ-spaces.

DEFINITION [5]. A topological space (X, τ) is σ-orthocompact
provided that every open cover of X has an open refinement έ% —
\}7=ι &i such that for each xe X and each ieN, Afi eτ.

PROPOSITION 3.1. Let (X, τ) be a σ-orthocompact wΔ-space. Then
(X, τ) is a Σ*-space.

Proof. Let h be a wΔ-ίunction and for each neN, let
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{h(n, x): x e X}. By [10, Remark 3.3] (X, τ) is countably metacom-
pact so that by [5, Proposition 3.1] for each neN, there is an open
refinement &n of &?„ such that for each xeX, Afn e τ. Define
g:NxX—+τ by g(n, x) = Afn. We note that if yeg(n,x), then
g(n, y) c #(w, x). Moreover, if p e g(n, xn) for each neN, then there
is a yne X such that {p, a?Λ} c g(n, xn) c /&(%, j/n) and since ft is a
wzί-function <#%> has a cluster point. I t follows that (X, τ) is a
2*-space [18].

DEFINITION [14]. A topological space (X, τ) is a σ-refinable pro-
vided that for each open cover ^ of I there is a sequence <F%>
of reflexive relations on X such that for each neN and a e l ,
Vn(x) eτ and such that for each xeX there exists an neN and a
Ce^ such that F (̂α?) c C . The sequence <Vn) is called σ-refine-
ment.

Every 7-space is er-refinable and every tr-refinable Moore space
is a 7-space so that the role of 7-spaces in the class of σ-refinable
spaces is analogous to the role of metric spaces in the class of
paracompact spaces. In this respect σ-refinability is an appropriate
generalization of paracompactness. Indeed, in regular 2\ spaces
tf-refίnability may be viewed as the nonsymmetric analogue of para-
compactness in that if in its definition each Vn is taken to be a
symmetric relation, then a characterization of paracompactness is
obtained.

PROPOSITION 3.2. A regular T1 space is paracompact if, and
only if, the following condition holds: For each open cover ^ of
X there is a sequence < Vn) of reflexive symmetric relations on X
such that for each neN and xeX, Vn(x) e τ and such that for each
xeX there exists an neN and a C e^ such that Vl{x) c C.

Proof. Since, as is well known, every paracompact regular T1

space admits a uniformity with the Lebesgue property, it is clear
that a paracompact regular Tx space satisfies the condition. Now
let (X, τ) be a regular 2\ space that satisfies the condition and let
^ be an open cover of X. Let (Vn) be a sequence of reflexive,
symmetric relations on X such that for each neN and xeX,
Vn+1(x) c Vn(x) e τ and such that for each xeX there exists an nx e N
and a C e ^ such that V!x(x)c:C. Let & = {Vnχ(x)\xeX}. Let
< Un) be a sequence of reflexive, symmetric relations on X such that
for each neN and xeX, Una Vn, Un+1(x) c Un(x) eτ and such that
for each xeX there exists an mxeN, a yeX and an nyeN such
that Uiβ(x) c Vny(y). For each m e Nf let Cm = {Um(x) \xeX}. Let
xeX) then there exists an mxeN, a y eX and an nyeN such that
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Uix{x) c Vny(y) e £2f% Let m = max {mx, ny}. Then there is a
such that at(Um(x), gf j = ϋl(s) c Um(Uϊm(x)) c Um(Vny(y)) c Fm(F%2/

M ) c 7 J y ( ϊ ) c C , Therefore by [1, Theorem 1], (X, τ) is paracom-
pact.

DEFINITION [4 and 6]. A space (X, τ) is quasi-complete provided
that there exists a mapping g:NxX—*τ such that if {x, xn} a
Π?=i ff(i> Vi)> then <a?ft> has a cluster point. The function g is called
a quasi-complete function.

It is well known that quasi-complete spaces form a generaliza-
tion of both wzf-spaces and p-spaces.

PROPOSITION 3.3. Every σ-refinable quasi-complete space is a
wΊ-space.

Proof. Let (X, τ) be a <7-refinable quasi-complete space and let
g be a quasi-complete function such that for each neN and xeX,
g(n + 1, x)czg(n, x). Let J*fn = {g{n, x) \ x e X) and let (Vm,n) be a
(7-refinement of JK such that if i ^ m and j ^ w, then Vitj c Fm,Λ.
Define /: N->Nx Nf whose first five terms are /(I) = (1,1), /(2) =
(1, 2), /(3) = (2,1), /(4) - (1, 3), /(5) - (2, 2), by the recursive for-
mula fin + 1) = (s + 1, t - 1) if ί ^ 1 and /(w) = (s, ί), and f(n + l) =
(1, s 4- 1) if t = 1 and /(w) = (s, t). Define /x = π^f, f2 = π2of and
define h by Λ(w, a?) = Vfl{n)ίf2(n)(x). Suppose that xn e h(n, yn) and
yneh(n,p) for each weiV. Note that ^e7/ l W ) / 2 ( f t ) (p). There is
m±eN and ^ e l such that Fi^ίίOcflrCL, 2;). Set k, = 1 and &2 =
mx + 1. There is m2 ^ mL and z2e X such that Fi2,fc2(p) c #(&2, 2;2).
In general set kn = mΛ_x + kn^. Then there is an mn ^ m^-i and a
zneX such that F4w,fc%(^)ciβr(few, «w). For each neNset j n = f~ι(mn,
kn). Then <a?iw> is a subsequence of <αθ Now {p, Xjjcz Vίntkn(p) =
Π?=i ^., fc.(p) c Π?=i ̂ (fci, «,) c Πl?=i flr(i, «t). Since ^ is a quasi-complete
function, {Xjn} and therefore (xn} has a cluster point.

COROLLARY. Every σ-refinable wΔ-space is a wΎ-space.

COROLLARY. Every σ-orthocompact quasi-complete β-space is a
Σ*-space.

Proof. Let X be a o -orthocompact quasi-complete /3-space. It
follows from Proposition 3.3 that X is a w7-space. Since every /3,
w7-space is a wJ-space [10], the result follows from Proposition 3.1.

DEFINITION [14]. A space (X, τ) satisfies property A' provided
there is a sequence (Vn) of relations on X with the following pro-
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perties.
( i ) For each x e X, neN, xe Vn+1(x) c Vn(x) e τ
(ii) For each xeX, ΓΊ {V&x) \neN} = {x}.

We note that any space whose topology contains a Hausdorff 7-space
subtopology satisfies property A!.

PROPOSITION 3.4 [14, Theorem 2.4] Every Hausdorff wΎ-space
that satisfies property A', is a Ί-space.

PROPOSITION 3.5. Let {X, τ) be a regular σ-refinable space that
has a Gδ-diagonal. Then (X, τ) satisfies property A!.

Proof. Since (X, τ) has a Gδ-diagonal, there is a sequence
{3%JΓ=i of open covers of X such that for each xeX, {x} = ΠΓ=i
st(#, g^) [3, Lemma 5.4]. For each neN, let SΊf* be an open
cover of X such that { 5 | i / e J ^ } refines Sf,v For each neN, let
(Vm>%) be a σ-refinement of 3ί?%. Let xeX. If y Φ x, then there
is neN such that y& st(xf &n). But there is meN and
such that Vl,n(x) c iϊ. Hence ΎΪJx) a Hast (xf &n). It follows
that f\m,n Vl,n{x) = {x} for all xeX.

COROLLARY. Every regular σ-refinable wΎ-space (or quasi-com-
plete space) with a Gδ-diagonal is a Ύ-space.

The previous propositions may be modified to show that every
tf-orthocompact p-space with a (^-diagonal admits a nonarchimedean
quasi-metric.

The lemmas listed below were announced in [13] where they
were used to establish Proposition 3.6. Although this proposition
has been established by T. Kotake in a totally different manner,
we state the lemmas in the hope that the method of proof that
they imply may find wider applicability.

LEMMA. // (X, τ) is σ-refinable and has a Gf-diagonal, then
(X, τ) satisfies property A'.

LEMMA. // (X, τ) is a first countable wN-space that satisfies
property A!, then (X, τ) is a Nagata space.

Proof. Let (X, τ) be a first countable wiV-space that satisfies
property A!, let fcJVx I - ^ r be a first countable function, let
k J V x I ^ r be a wN-tunction and let <F%> be a sequence of rela-
tions satisfying the conditions of property A!. Define g: N x X-^τ
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by g(n, x) = h(n, x) Π k(n, x) Π Vn{x). We show that g is a Nagata
function. Suppose that for each neN, g(n, xn)Πg(n, p) Φ 0 . Then
(xn) has a cluster point q. Suppose that q Φ p. Then there is an
meN such that pg F£(g) and there is an neN such that #(w, p) Π
Flfa) = 0 . Set i = max {m, rc}. Then Fί(g) n#(i, p) = 0 . There is
a j ^ i such that a?,- e Vi(q). It follows that r̂(jΓ, Xj) c VVfay) c
FX Vάq)) c 7,2(?). Hence #(,?, xά) Π flr(i, p) c F,2(g) Π ̂ (i p) = 0 - α con-
tradiction. Therefore p = q and # is a Nagata function.

PROPOSITION 3.6 [12]. Every regular semi-stratίfiable wN-space
is a Nagata space.

4* 0-sρaces* Let (X, τ) be a topological space and let g: N x
X—>τ be a function such that for each xeX and each neN,
x 6 #(w + 1, x) c #(w, #). For the sake of comparison we list the
following further conditions on g.

(1) If for each neN, xne g(n, yn) and yn e g(nf p), then (xn)
has a cluster point.

(2) If for each neN, xneg(n, yn) and (yn) has a cluster point,
then (xn) has a cluster point.

(3) If for each neN, {xn, p} c g(n, yn) and ?/„ 6 g(n, p), then
<#„> has a cluster point.

(4) If for each n e N, {xn, p] c g(n, yn) and (yn) has a cluster
point, then (xn) has a cluster point.

( 5) If for each neN, {xn, p) c g(n, yn) and ?/% 6 g(n, p), then p
is a cluster point of (xn).

(6) If for each neN, {xn, p) c ^(^, y%) and <?/%> has a cluster
point, then p is a cluster point of <a?n>.

Functions satisfying (1) (equivalently (2)) characterize wΎ-spaces,
those satisfying (3) characterize w#-spaces and those satisfying (5)
characterize 0-spaces [10]. In this section we consider spaces that
admit a function satisfying conditions (4) (resp. (6)); we call such
spaces wθ-spaces (resp. 0-spaces). It is obvious that every Tlf 7-
space is a ©-space and that every Θ-space is a 0-space. Examples
4.12 and 4.13 of [10] show that neither of the implications stated
above is reversible. It is easily verified that a space is developable
if, and only if, it is a β, ©-space.

In [10] R. E. Hodel noted that every wJ-space is a wθ-space
and asked whether every β, w#-space is a wJ-space. It is evident
that every wβ-space is a w#-space. Proposition 4.1 shows that the
converse of this result would imply an affirmative answer to HodeΓs
question.

PROPOSITION 4.1. A space (X, τ) is a wΔ-space if and only if
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it is a β-space and a wΘ-space.

Proof. Suppose that (X, τ) is a /3-space and a w<9-space. Let
βr be a /9-function and let h be a wΘ-ΐunction. Define r by r(n, x) =
g(n, x) Π /Kw, fc) Suppose that for each neN, {p, xn} c r(w, yΛ).
Then <yn> has a cluster point since r is a /3-function, and since r
is also a w0-function it follows that (xn) has a cluster point.

PROPOSITION 4.2. A Hausdorff space (X, r) is α Θ-space if, and
only if, it is a c-semistratifiable θ-space.

Proof. Suppose that (X, τ) is a 0-space and that g: N x X—>τ
is a function satisfying condition (6). Let K be a compact set and
suppose that q e Π»=i #(w, -K"). Then for each neN, there is an
xneK such that qeg(n, xn). Since iΓ is compact, <a?Λ> has a cluster
point. Since g satisfies (6), q is a cluster point of (xn). Therefore
qeK.

Now suppose that (X, τ) is a c-semistratifiable #-space and let
g be a c-semistratification that satisfies condition (5). Suppose that
for each neN, {xn, p] c g(n, yn) and (yn) has a cluster point g.
Since X is first countable, there is a convergent subsequence (yjn)
of <yΛ> such that for each neN, yjn e g(n, q). Then {p, xjn} c g(jn,
yjn) c fir(^, y3'J. It p = q, it follows from condition (5) that p is a
cluster point of <a?%>. Suppose that p Φ q. Then there is a Λ eJV
such that iί n^k then j / i w =£ ί). Let K — {yjn}n^k U {q}. Then p e
ΠΓ=i 9(n> K) = K — a contradiction.

DEFINITION [2]. A sequence <SO of collections of open subsets
of a topological space is a quasi-development for X provided that
for each peX and each open set R containing p there is a natural
number w such that p e U ^ » and such that st (p, ^VJ c R . A. Tλ

space with a quasi-development is called a quasi-developable space.

PROPOSITION 4.3. Every quasi-developable space is a θ-space.

Proof. Let < g θ be a quasi-development for (X, r). Define
h: N x X—>τ as follows:

I some element of g^ containing a? iueU

Let g(n, x) = Γ\ΐ=ι Hh »). We show that g is a ^-function for X.
Let {p, α;M} cg(n, yn) and let τ/% eg(n, p) for each neN. To establish
that p is a cluster point of (xn), let W be an open neighborhood
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of p and let nQ e N. Ghoose nteN such that p e st (p, gfΛ<) c W.
If nx ^ wo> then »Λl 6 W and if wL <; %0> then #%0 6 W.

While we have no need of the result here, the proof of Pro-
position 4.3 shows that quasi-developability may be characterized in
terms of a function g:NxX—*τ (where some g(n, x)'s may be
empty) satisfying a condition similar to (a).

It is natural to ask whether a quasi-developable space is c-semi-
stratifiable. An affirmative answer to this question would show that
every quasi-developable /2-space is developable. The results of this
paper motivate the following additional questions.

QUESTION 1. Is every quasi-complete /S-space a wzf-space?
QUESTION 2. Is every (σ-refinable) wJ-spaee a J?*-space?
QUESTION 3. Is every w<7-space a 2^-space?
QUESTION 4. Is every p-space with a Gδ-diagonal c-semistratifi-

able?
QUESTION 5. Is there a normal wJ-space that is not a wΎ-space?

The second author and R. W. Heath have recently shown that
Martin's axiom and the negation of the continuum hypothesis imply
the existence of a normal Moore space that is not a w7-space.

We are indebted to the referee, whose suggestions substantially
improved §§ 3 and 4 of this paper.
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