Pacific Journal of Mathematics

THE MAXIMAL RIGHT QUOTIENT SEMIGROUP OF A STRONG SEMILATTICE OF SEMIGROUPS

ANTONIO M. LOPEZ

Vol. 71, No. 2

December 1977

THE MAXIMAL RIGHT QUOTIENT SEMIGROUP OF A STRONG SEMILATTICE OF SEMIGROUPS

ANTONIO M. LOPEZ, JR.

Let S be a strong semilattice Y of monoids. If S is right nonsingular then Y is nonsingular. The converse is true when S is a sturdy semilattice Y of right cancellative monoids. Should S have trivial multiplication then each monoid of more than one element has as its index an atom of Y. Finally, if S is a right nonsingular strong semilattice Y of principal right ideal Ore monoids with onto linking homomorphisms then Q(S), the maximal right quotient semigroup of S, is a semilattice Q(Y) of groups.

1. Introduction. Let Y be a semilattice and let $\{S_{\alpha}\}_{\alpha\in Y}$ be a collection of pairwise disjoint semigroups. For each pair α , $\beta \in Y$ with $\alpha \geq \beta$, let $\psi_{\alpha,\beta}: S_{\alpha} \to S_{\beta}$ be a semigroup homomorphism such that $\psi_{\alpha,\alpha}$ is the identity mapping and if $\alpha > \beta > \gamma$ then $\psi_{\alpha,\gamma} = \psi_{\beta,\gamma}\psi_{\alpha,\beta}$. Let $S = \bigcup_{\alpha\in Y} S_{\alpha}$ with multiplication

$$a*b = \psi_{\alpha,\alpha\beta}(a)\psi_{\beta,\alpha\beta}(b)$$

for $a \in S_{\alpha}$ and $b \in S_{\beta}$. The semigroup S is called a strong semilattice Y of semigroups S_{α} . If, in addition, each $\psi_{\alpha,\beta}$ is one-to-one then S is called a sturdy semilattice of semigroups. The basic terminology in use throughout this paper can be found in [1], [7], and [9]. Note that a semilattice of groups [1, p. 128] is a strong semilattice of semigroups. In [6], McMorris showed that if M is a semilattice X of groups G_{δ} , then Q(M), the maximal right quotient semigroup of M, is also a semilattice of groups. Hinkle [2] constructed Q(M) and showed that its indexing semilattice is Q(X).

Let S be a semigroup with 0. A right ideal D of S is dense if for each $s_1, s_2, s \in S$ with $s_1 \neq s_2$, there exists an element $d \in D$ such that $s_1d \neq s_2d$ and $sd \in D$. A right ideal L of S is \cap -large if for each nonzero right ideal R of S, $R \cap L \neq \{0\}$. It is easy to see that dense implies \cap -large. If each \cap -large right ideal of S is also dense then S is said to be right nonsingular. If a semigroup is commutative or each one-sided ideal is two-sided then we will use the term nonsingular. Let T be a right S-system with 0[5] then the singular congruence ψ_T on T is a right congruence defined for $a, b \in T$ by $a\psi_T b$ if and only if as = bs for all s in an \cap -large right ideal of S. McMorris [8] showed that $\psi_S = i_S$, the identity congruence on S, if and only if S is right nonsingular.

Recently it has been shown [4], [5] that if S is a commutative

nonsingular semigroup then Q(S) is a semilattice of groups. However, since S is commutative it is uniquely expressible as a semilattice Y of archimedian semigroups [1, p. 135]. Thus we investigate right nonsingular strong semilattices of semigroups.

Henceforth we require that both S and Y be semigroups with 0. If for $\alpha \in Y$, S_{α} is a monoid then the identity will be denoted by e_{α} . Also a semigroup homomorphism which takes the identity of one semigroup to the identity of the other is called a *monoid homomorphism*.

LEMMA 1.1. If S is a strong semilattice Y of right cancellative monoids S_{α} , then for each α , $\beta \in Y$ with $\alpha \geq \beta$, $\psi_{\alpha,\beta}$ is a monoid homomorphism and Y is isomorphic to the semilattice E of idempotents of S.

LEMMA 1.2. Let S be a strong semilattice Y of monoids S_{α} with $\psi_{\alpha,\beta}$ a monoid homomorphism for $\alpha \geq \beta \in Y$. If L is an \cap large right ideal of S, then $A = \{\sigma \in Y \mid L \cap S_{\sigma} \neq \emptyset\}$ is an \cap -large ideal of Y.

Proof. To see that A is \cap -large let R be a nonzero ideal of Y and define $B = \bigcup_{\tau \in R} S_{\tau}$. Let $t \in B \cap S_{\beta}$ and $s \in S_{\sigma}$ for some $\beta \in R$ and $\sigma \in Y$. Then $t * s = \psi_{\beta,\sigma\beta}(t)\psi_{\sigma,\sigma\beta}(s) \in S_{\sigma\beta}$. But $S_{\sigma\beta} \subseteq B$ since $\beta \in R$ an ideal of Y. Dually we can show that $s * t \in S_{\sigma\beta}$ and so B is a two-sided ideal of S. Since L is an \cap -large right ideal of S then $L \cap B \neq \{0\}$ so there exists $0 \neq r \in L \cap B$. But then $r \in S_{\delta}$ for $0 \neq \delta \in R$ and so $0 \neq \delta \in A \cap R$ and A is \cap -large. It is easy to show that A is an ideal of Y.

LEMMA 1.3. Let S be a strong semilattice Y of monoids S_{α} with $\psi_{\alpha,\beta}$ a monoid homomorphism for $\alpha \geq \beta \in Y$. If T is an \cap large ideal of Y, then $L = \bigcup_{\beta \in T} S_{\beta}$ is an \cap -large ideal of S.

Proof. We saw in the proof of Lemma 1.2 that L is an ideal of S. To see that L is \cap -large we let B be a nonzero right ideal of S, and define $R = \{\sigma \in Y \mid B \cap S_{\sigma} \neq \emptyset\}$. Since R is a nonzero ideal of Y and T is \cap -large then $R \cap T \neq \{0\}$. Thus there exists $0 \neq \delta \in R \cap T$ for which $S_{\sigma} \subseteq L$, and so there exists $0 \neq t \in B \cap L$.

2. Right nonsingular strong semilattices of semigroups. In studying a semigroup M which is a semilattice X of groups G_{δ} , Johnson and McMorris [3] showed that if M is nonsingular then the set E of idempotents of M is a nonsingular semilattice. Note that under these conditions the idempotents of M are central, every

one-sided ideal is two-sided, and X is isomorphic to E. Here we consider a weaker structure and obtain the results of Johnson and McMorris.

THEOREM 2.1. Let S be a strong semilattice Y of monoids S_{α} with $\psi_{\alpha,\beta}$ a monoid homomorphism for $\alpha \geq \beta \in Y$. If S is right nonsingular, then Y is nonsingular.

Proof. Let T be an \cap -large ideal of Y and define $L = \bigcup_{\beta \in T} S_{\beta}$. Since S is right nonsingular then L is a dense right ideal of S for, by Lemma 1.3, L is an \cap -large right ideal of S. Let α , $\beta \in Y$ such that $\alpha \neq \beta$. Then $e_{\alpha} \neq e_{\beta}$ and there exists an $x \in L$ such that $e_{\alpha} * x \neq$ $e_{\beta} * x$ where $x \in S_{\delta}$. Thus $\delta \in T$ and $\alpha \delta \neq \beta \delta$ for if otherwise

$$egin{aligned} &e_lpha st x = \psi_{lpha, lpha \delta}(e_lpha) \psi_{\delta, lpha \delta}(x) = \psi_{\delta, lpha \delta}(x) \ &\psi_{\delta, eta \delta}(x) = \psi_{eta, eta \delta}(e_eta) \psi_{\delta, eta \delta}(x) = e_eta st x \end{aligned}$$

which is a contradiction. Thus T is dense in Y.

THEOREM 2.2. Let S be a sturdy semilattice Y of right cancellative monoids S_{α} . If Y is nonsingular, then S is right non-singular.

Proof. Let L be an \cap -large right ideal of S and let $x \neq y$, $z \in S$. Since L is \cap -large then $z^{-1}L = \{s \in S \mid z \ast s \in L\}$ is an \cap -large right ideal of S and so is $L^* = L \cap z^{-1}L$. By Lemma 1.2, $A = \{\sigma \in$ $Y \mid L^* \cap S_{\sigma} \neq \emptyset\}$ is an \cap -large ideal of Y, and since Y is nonsingular then A is dense in Y. We now consider the following two cases:

Case 1. Suppose that $x \in S_{\alpha}$ and $y \in S_{\beta}$ with $\alpha \neq \beta$. Since A is dense there exists $\delta \in A$ such that $\alpha \delta \neq \beta \delta$. Hence there exists a $t \in L^* \cap S_{\delta}$ such that $z * t \in L$ and $t \in L$. Since $\alpha \delta \neq \beta \delta$ then $S_{\alpha \delta} \cap S_{\beta \delta} = \emptyset$ and so $x * t \neq y * t$.

Case 2. Suppose that $x, y \in S_{\alpha}$ and define $[0, \alpha] = \{\sigma \in Y \mid 0 \leq \sigma \leq \alpha\}$. Since $[0, \alpha]$ is a nonzero ideal of Y, then there exists $0 \neq \delta \in A \cap [0, \alpha]$. Thus there is a $t \in L^*$ with $t \in L$ and $z * t \in L$. Now $x * t \neq y * t$ for if otherwise then $\psi_{\alpha,\delta}(x)t = \psi_{\alpha,\delta}(y)t$. But S_{δ} is right cancellative so $\psi_{\alpha,\delta}(x) = \psi_{\alpha,\delta}(y)$. Since $\psi_{\alpha,\delta}$ is one-to-one then x = y which is a contradiction.

Thus in both cases L is a dense right ideal of S.

COROLLARY 2.3. Let S be a sturdy semilattice Y of right

cancellative monoids S_{α} . Then S is right nonsingular if and only if Y is nonsingular.

If each $\psi_{\alpha,\beta}(\alpha > \beta)$ is the trivial homomorphism; that is, it takes all elements to the identity, we say that S has *trivial multiplication*.

THEOREM 2.4. Let S be a strong semilattice Y of monoids S_{α} and let S have trivial multiplication. If S is right nonsingular, then $|S_{\alpha}| > 1$ implies α is an atom (a minimal nonzero element) of Y.

Proof. Let $|S_{\alpha}| > 1$ and let $x, y \in S_{\alpha}$ with $x \neq y$. Also let L be an \cap -large right ideal of S. Since S is right nonsingular, L is dense and so there exists $z \in S$ such that $x * z \neq y * z$ and $e_{\alpha} * z \in L$. We claim that if $z \in S_{\beta}$ then $\alpha \leq \beta$. To see this we consider the following two cases:

Case 1. If α is not related to β then $\alpha > \alpha\beta$ and $\beta > \alpha\beta$. Thus $x*z = \psi_{\alpha,\alpha\beta}(x)\psi_{\beta,\alpha\beta}(z) = e_{\alpha\beta}e_{\alpha\beta} = e_{\alpha\beta}$ and $y*z = \psi_{\alpha,\alpha\beta}(y)\psi_{\beta,\alpha\beta}(z) = e_{\alpha\beta}e_{\alpha\beta} = e_{\alpha\beta}$. This is a contradiction since $x*z \neq y*z$.

Case 2. If $\beta \leq \alpha$ then $x^*z = \psi_{\alpha,\beta}(x)\psi_{\beta,\beta}(z) = e_{\beta}z = z$ and $y*z = \psi_{\alpha,\beta}(y)\psi_{\beta,\beta}(z) = e_{\beta}z = z$. Again this is a contradiction.

Let B be an \cap -large ideal, L^* and z as before. Then $\alpha \leq \beta$ implies $\alpha\beta = \alpha \in \beta$.

Finally, we suppose that α is not an atom of Y. Then there exists $\delta \in Y$ such that $0 < \delta < \alpha$. Define $I = \{\sigma \in Y \mid \sigma \delta = 0 \text{ or } \sigma \leq \delta\}$. It is easy to see that I is an \cap -large ideal of Y but $\alpha \notin I$ which is a contradiction.

THEOREM 2.5. Let S be a strong semilattice Y of right cancellative monoids S_{α} . If Y is nonsingular and $|S_{\alpha}| > 1$ implies α is an atom of Y, then S is right nonsingular.

Proof. Let $x \neq y$, $z \in S$ and let L be an \cap -large right ideal of S. If $x \in S_{\alpha}$ and $y \in S_{\beta}$ with $\alpha \neq \beta$ by the same argument as in Theorem 2.2, Case 1 there exists $t \in L$ such that $x * t \neq y * t$ and $z * t \in L$. Hence assume that $x, y \in S_{\alpha}$, then since $|S_{\alpha}| > 1$, α is an atom of Y and $[0, \alpha]$ is a nonzero ideal of Y. Thus there exists $t \in L \cap S_{\alpha}$ such that $z * t \in L$ and $x * t \neq y * t$, for if otherwise x = y since S_{α} is right cancellative and this would be a contradiction.

Note that if $|S_{\alpha}| > 1$ implies α is an atom of Y, then S has

trivial multiplication.

COROLLARY 2.6. Let S be a strong semilattice Y of right cancellative monoids S_{α} and assume S has trivial multiplication. Then S is right nonsingular if and only if E is nonsingular and $|S_{\alpha}| > 1$ implies that e_{α} is an atom of E.

3. The maximal right quotient semigroup. Since McMorris [6] showed that the maximal right quotient semigroup of a semilattice of groups is a semilattice of groups, a natural question arises; which strong semilattices of semigroups have for their maximal right quotient semigroup a semilattice of groups? In this section, we let S be a strong semilattice Y of right cancellative principal right ideal monoids S_{α} with the linking homomorphisms onto.

LEMMA 3.1. If aS_{α} is a dense principal right ideal of S_{α} then $\psi_{\alpha,\beta}(a)S_{\beta}$ is a dense principal right ideal of S_{β} for $\alpha \geq \beta$.

Proof. The proof is straightforward and is omitted.

Let $\alpha, \beta \in Y$ with $\alpha \geq \beta$ and let $Q(S_{\alpha})$, $Q(S_{\beta})$ be the maximal right quotient semigroup of S_{α} and S_{β} respectively. The members of these equivalence classes will be denoted $[f]_{\alpha}$ and $[g]_{\beta}$ with the subscripts being dropped if there is no confusion.

We can extend $\psi_{\alpha,\beta}: S_{\alpha} \to S_{\beta}$ to a mapping $\phi_{\alpha,\beta}: Q(S_{\alpha}) \to Q(S_{\beta})$ defined by $[f]_{\alpha} \to [\hat{f}]_{\beta}$ where if $f: aS_{\alpha} \to S_{\alpha}$ then $\hat{f}: \psi_{\alpha,\beta}(a)S_{\beta} \to S_{\beta}$ is defined by $\psi_{\alpha,\beta}(a)s \to \psi_{\alpha,\beta}(f(a))s$ for $s \in S_{\beta}$. Note that \hat{f} is an S_{β} homomorphism since if $t \in S_{\beta}$ then $\hat{f}(\psi_{\alpha,\beta}(a)s)t = (\psi_{\alpha,\beta}(f(a))s)t =$ $\psi_{\alpha,\beta}(f(a))(st) = \hat{f}(\psi_{\alpha,\beta}(a)(st)) = \hat{f}((\psi_{\alpha,\beta}(a)s)t).$

We next show that $\phi_{\alpha,\beta}$ is independent of the representative we choose from [f]. Hence let [f] = [g], then f and g agree on a dense right ideal of S_{α} , call it D, found in the intersection of their domains D_f and D_g respectively. Since S_{α} is a principal right ideal semigroup then $D_f = aS_{\alpha}$, $D_g = cS_{\alpha}$ and $D = xS_{\alpha}$ for some $a, c, x \in S_{\alpha}$. Now $\phi_{\alpha,\beta}([f]) = [\hat{f}]$ where $\hat{f}: \psi_{\alpha,\beta}(a)S_{\beta} \rightarrow S_{\beta}$ defined by $\psi_{\alpha,\beta}(a)s \rightarrow \psi_{\alpha,\beta}(f(a))s$, and $\phi_{\alpha,\beta}([g]) = [\hat{g}]$ where $\hat{g}: \psi_{\alpha,\beta}(c)S_{\beta} \rightarrow S_{\beta}$ defined by $\psi_{\alpha,\beta}(a)s \rightarrow \psi_{\alpha,\beta}(c)s \rightarrow \psi_{\alpha,\beta}(g(c))s$. We claim \hat{f} and \hat{g} agree on the dense right ideal $\psi_{\alpha,\beta}(x)S_{\beta} \subseteq \psi_{\alpha,\beta}(a)S_{\beta} \cap \psi_{\alpha,\beta}(c)S_{\beta}$. Since $xS_{\alpha} \subseteq aS_{\alpha} \cap cS_{\alpha}$ it is easy to see that $\psi_{\alpha,\beta}(x)S_{\alpha} \subseteq \psi_{\alpha,\beta}(a)S_{\beta} \cap \psi_{\alpha,\beta}(c)S_{\beta}$. Furthermore, since xS_{α} is dense in S_{α} then by Lemma 3.1, $\psi_{\alpha,\beta}(x)S_{\beta}$ is dense in S_{β} . Hence let $\psi_{\alpha,\beta}(x)s \in \psi_{\alpha,\beta}(x)S_{\beta}$ then $\hat{f}(\psi_{\alpha,\beta}(x)s) = \hat{f}(\psi_{\alpha,\beta}(x)\psi_{\alpha,\beta}(t))$ where $t \in S_{\alpha}$ since $\psi_{\alpha,\beta}$ is onto. Since $\psi_{\alpha,\beta}(xt) = \psi_{\alpha,\beta}(f(xt)) = \psi_{\alpha,\beta}(g(xt)) = \hat{g}(\psi_{\alpha,\beta}(x)s) = \hat{f}(\psi_{\alpha,\beta}(x)s)$. Thus the claim is estab-

lished.

THEOREM 3.2. Let $S = \bigcup_{\alpha \in Y} S$ be a strong semilattice Y of right cancellative principal right ideal monoids S_{α} with $\psi_{\alpha,\beta}$ onto for $\alpha \geq \beta \in Y$. If $T = \bigcup_{\alpha \in Y} Q(S_{\alpha})$ with multiplication defined by

$$[f]_{\alpha}[g]_{\beta} = \phi_{lpha,lphaeta}([f]_{lpha})\phi_{eta,lphaeta}([g]_{eta})$$

where $[f]_{\alpha} \in Q(S_{\alpha})$, $[g]_{\beta} \in Q(S_{\beta})$ and $\phi_{\alpha,\alpha\beta}$, $\phi_{\beta,\alpha\beta}$ are defined as above, then T is a strong semilattice Y of monoids $Q(S_{\alpha})$.

Proof. Note that since $S_{\alpha} \cap S_{\beta} = \emptyset$ for $\alpha \neq \beta$ then $Q(S_{\alpha}) \cap Q(S_{\alpha})$ $Q(S_{\beta}) = \emptyset$, and that $\phi_{\alpha,\alpha}$ is the identity mapping. We now show that $\phi_{\alpha,\beta}: Q(S_{\alpha}) \longrightarrow Q(S_{\beta})$ is a semigroup homomorphism. Let $[f], [g] \in$ $Q(S_{lpha})$ then we must show that $\phi_{lpha,eta}([f][g])=\phi_{lpha,eta}([f])\phi_{lpha,eta}([g]).$ To this end we let $\phi_{\alpha,\beta}([f]) = [\hat{f}]$ and $\phi_{\alpha,\beta}([g]) = [\hat{g}]$ where if $f: aS_{\alpha} \to S_{\alpha}$ and $g: cS_{\alpha} \to S_{\alpha}$ then $\hat{f}: \psi_{\alpha,\beta}(a)S_{\beta} \to S_{\beta}$ defined by $\psi_{\alpha,\beta}(a)s \to \psi_{\alpha,\beta}(f(a))s$ and $\hat{g}: \psi_{\alpha,\beta}(c)S_{\beta} \to S_{\beta}$ defined by $\psi_{\alpha,\beta}(c)s \to \psi_{\alpha,\beta}(g(c))s$. Since [f][g] =[fg] where $fg: g^{-1}(aS_{\alpha}) \to S_{\alpha}$ and $g^{-1}(aS_{\alpha}) = \{x \in cS_{\alpha} | g(x) \in aS_{\alpha}\}$, then for some $h \in S_{\alpha}$, $hS_{\alpha} = g^{-1}(aS_{\alpha})$ and so $fg: \psi_{\alpha,\beta}(h)S_{\beta} \to S_{\beta}$ defined by $\psi_{\alpha,\beta}(h)s \to \psi_{\alpha,\beta}(fg(h))s$. Thus $\phi_{\alpha\beta}([f][g]) = \phi_{\alpha,\beta}([fg]) = [fg]$. On the other hand, $\phi_{\alpha,\beta}([f])\phi_{\alpha,\beta}([g]) = [\widehat{f}][\widehat{g}] = [\widehat{f}\widehat{g}]$ where $\widehat{f}\widehat{g}: \widehat{g}^{-1}$ $(\psi_{\alpha,\beta}(a)S_{\beta}) \rightarrow$ $S_{\scriptscriptstyle\beta} \,\, ext{and} \,\, \widehat{g}^{\scriptscriptstyle -1}\!(\psi_{lpha,eta}(a)S_{\scriptscriptstyleeta}) = \{y \in \psi_{lpha,eta}(c)S_{\scriptscriptstyleeta} \,|\, \widehat{g}(y) \in \psi_{lpha,eta}(a)S_{\scriptscriptstyleeta}\}.$ Hence we must show that $[\hat{fg}] = [\hat{fg}]$; that is, \hat{fg} and \hat{fg} agree on a dense right ideal found in the intersection of their domains. Now $\psi_{\alpha,\beta}(h)S_{\beta} \subseteq$ $g^{-1}(\psi_{lpha,eta}(a)S_{eta})$ for if $\psi_{lpha,eta}(h)s\in\psi_{lpha,eta}(h)S_{eta}$ then $\psi_{lpha,eta}(h)s=\psi_{lpha,eta}(h)\psi_{lpha,eta}(t)$ where $t \in S_{\alpha}$ since $\psi_{\alpha,\beta}$ is onto. Thus $\psi_{\alpha,\beta}(h)s = \psi_{\alpha,\beta}(ht) = \psi_{\alpha,\beta}(cr)$ since $ht \in cS_{\alpha}$ and so ht = cr for some $r \in S_{\alpha}$. Hence $\psi_{\alpha,\beta}$ being a semigroup homomorphism implies $\psi_{\alpha,\beta}(h)s = \psi_{\alpha,\beta}(c)\psi_{\alpha,\beta}(r) \in \psi_{\alpha,\beta}(c)S_{\beta}$. Now $\hat{g}(\psi_{\alpha,\beta}(h)s) = \psi_{\alpha,\beta}(g(h))s = \psi_{\alpha,\beta}(g(h))\psi_{\alpha,\beta}(t) = \psi_{\alpha,\beta}(g(h)t) = \psi_{\alpha,\beta}(g(ht)) = \psi_{\alpha,$ $\psi_{\alpha,\beta}(ax)$ since $g(ht) \in aS_{\alpha}$ and so g(ht) = ax for some $x \in S_{\alpha}$. Again since $\psi_{\alpha,\beta}$ is a semigroup homomorphism we have that $\hat{g}(\psi_{\alpha,\beta}(h)s) =$ $\psi_{\alpha,\beta}(a)\psi_{\alpha,\beta}(x)\in\psi_{\alpha,\beta}(a)S_{\beta}$. We now claim that \widehat{fg} and \widehat{fg} agree on $\psi_{lpha,eta}(h)S_{eta}$. Let $\psi_{lpha,eta}(h)s\in\psi_{lpha,eta}(h)S_{eta}$ then $\widehat{fg}(\psi_{lpha,eta}(h)s)=\psi_{lpha,eta}(fg(h))s=$ $\psi_{\alpha,\beta}(f(g(h)))s = \widehat{f}(\psi_{\alpha,\beta}(g(h)))s = \widehat{f}(\psi_{\alpha,\beta}(g(h))s) = \widehat{f}(\widehat{g}(\psi_{\alpha,\beta}(h))s) = \widehat{f}\widehat{g}(\psi_{\alpha,\beta}(h)s).$

Finally, we show that if $\alpha > \beta > \delta$ then $\phi_{\beta,\delta}\phi_{\alpha,\beta} = \phi_{\alpha,\delta}$. Let $[f] \in Q(S_{\alpha})$ with $f: aS_{\alpha} \to S_{\alpha}$ and let $\phi_{\alpha,\delta}([f]) = [\bar{f}] \in Q(S_{\delta})$ where $\bar{f}: \psi_{\alpha,\delta}(a)S_{\delta} \to S_{\delta}$ defined by $\psi_{\alpha,\delta}(a)s \to \psi_{\alpha,\beta}(f(\alpha))s$. Let $\phi_{\alpha,\beta}([f]) = [\hat{f}] \in Q(S_{\delta})$ where $\hat{f}: \psi_{\alpha,\beta}(a)S_{\beta} \to S_{\beta}$ defined by $\psi_{\alpha,\beta}(a)t \to \psi_{\alpha,\beta}(f(\alpha))t$. Hence $\phi_{\beta,\delta}(\phi_{\alpha,\beta}([f])) = \phi_{\beta,\delta}([\hat{f}]) = [\tilde{f}]$ where $\tilde{f}: \psi_{\beta,\delta}(\psi_{\alpha,\beta}(a))S_{\delta} \to S_{\delta}$ is defined by $\psi_{\beta,\delta}(\psi_{\alpha,\beta}(a))s \to \psi_{\beta,\delta}(\hat{f}(\psi_{\alpha,\beta}(\alpha)))s$. To see that $\tilde{f} = \bar{f}$, we note that $\psi_{\beta,\delta}(\psi_{\alpha,\beta}(a))S_{\delta} \to \psi_{\alpha,\delta}(a)S_{\delta} = \psi_{\beta,\delta}(\psi_{\alpha,\beta}(a))S_{\delta}$. Hence if $\psi_{\beta,\delta}(\psi_{\alpha,\beta}(a))s \in \psi_{\beta,\delta}(\psi_{\alpha,\beta}(a))S_{\delta}$ then $\tilde{f}(\psi_{\beta,\delta}(\psi_{\alpha,\beta}(a))s) = \psi_{\beta,\delta}(\hat{f}(\psi_{\alpha,\beta}(a)))s = \psi_$

 $\psi_{\beta,\delta}\psi_{\alpha,\beta}(f(a))s = \psi_{\alpha,\delta}(f(a))s.$

THEOREM 3.3. Under the hypothesis of Theorem 3.2, S can be embedded into T.

Proof. Define $\Phi: S \to T$ by $s \to [\lambda_s]$ where if $s \in S_{\alpha}$ then $[\lambda_s]_{\alpha} \in Q(S_{\alpha})$ and $\lambda_s: S_{\alpha} \to S_{\alpha}$ is defined by $t \to st$. The mapping Φ is one-to-one for suppose $\Phi(s) = \Phi(r)$ where $s \in S_{\alpha}$ and $r \in S_{\beta}$.

Case 1. If $\alpha \neq \beta$ then $\Phi(s) \neq \Phi(r)$ since $Q(S_{\alpha}) \cap Q(S_{\beta}) = \emptyset$.

Case 2. If $\alpha = \beta$ then $[\lambda_s]_{\alpha} = [\lambda_r]_{\alpha}$ and so λ_s and λ_r agree on a dense right ideal of $S_{\alpha'}$ say D. Hence for $d \in D$, $sd = \lambda_s(d) = \lambda_r(d) = rd$ and since S_{α} is right cancellative then s = r.

Next we show that Φ is a semigroup homomorphism. Let $x \in S_{\alpha}$, $y \in S_{\beta}$ then $\Phi(x*y) = [\lambda_{x*y}]_{\alpha\beta}$ where $\lambda_{x*y}: S_{\alpha\beta} \rightarrow S_{\alpha\beta}$ defined by $s \rightarrow (x*y)s = \psi_{\alpha,\alpha\beta}(x)\psi_{\beta,\alpha\beta}(y)s$. Now $\Phi(x)\Phi(y) = [y_x]_{\alpha}[\lambda_y]_{\beta} = \phi_{\alpha,\alpha\beta}([\lambda_x]_{\alpha})\phi_{\beta,\alpha\beta}([\lambda_y]_{\beta}) = [\hat{f}][\hat{g}] = [\hat{f}\hat{g}]$ where $[\hat{f}], [\hat{g}] \in Q(S_{\alpha\beta})$ and $\hat{f}: S_{\alpha\beta} \rightarrow S_{\alpha\beta}$ defined by $s \rightarrow \psi_{\alpha,\alpha\beta}(x)s$ and $\hat{g}: S_{\alpha\beta} \rightarrow S_{\alpha\beta}$ defined by $s \rightarrow \psi_{\beta,\beta\alpha}(y)s$. If $s \in S_{\alpha\beta}$ then $\hat{f}\hat{g}(s) = \hat{f}(\hat{g}(s)) = \hat{f}(\psi_{\beta,\alpha\beta}(y)s) = \hat{f}(\psi_{\beta,\alpha\beta}(y))s = \psi_{\alpha,\alpha\beta}(x)\psi_{\beta,\alpha\beta}(y)s = \lambda_{x*y}(s)$.

We identify S with its image in T and note that if S is right nonsingular we have the diagram

$$egin{array}{rl} T \longrightarrow T/\psi_T \ \cup & & \cup & \ S &= & S/\psi_s \; . \end{array}$$

THEOREM 3.4. Let $R = T/\psi_T$. Under the hypothesis of Theorem 3.2 and if S is right nonsingular then $\psi_R = i_R$.

Proof. Suppose that $t_1^*\psi_R t_2^*$. Let $t_1 \in t_1^*$ and $t_2 \in t_2^*$ then $(t_1d)\psi_T(t_2d)$ for all $d \in D$ a dense right ideal of S. Hence for each $d \in D$ there exists X_d dense in S such that $t_1dx = t_2dx$ for all $x \in X_d$. Let $W = \bigcup_{d \in D} dX_d$, then $t_1w = t_2w$ for all $w \in W$. If W is dense in S then $t_1\psi_T t_2$ and so $t_1^* = t_2^*$. To see that W is dense in S, we let $s_1 \neq s_2$, $s_3 \in S$. Since D is dense then there exists $d \in D$ such that $s_1d \neq s_2d$ and $s_3d \in D$. Since X_{s_3d} is dense then there exists $x \in X_{s_3d}$ such that $(s_1d)x \neq (s_2d)x$ and $(s_3d)x \in (s_3d)X_{s_3d}$. But then $s_1(dx) \neq s_2(dx)$ and $s_3(dx) \in W$. Since $dx \in D$ and X_{dx} is dense there exists $y \in X_{dx}$ such that $s_1((dx)y) \neq s_2((dx)y)$ and $s_3((dx)y) \in X_{dx}$. But W is a right ideal so $s_3((dx)y) \in W$ with $(dx)y \in W$. This shows that W is dense in S.

A right Ore semigroup is a right cancellative semigroup all of whose nonzero right ideals are \cap -large. The maximal right quotient semigroup of a right Ore semigroup R is a group $Q(R) = \{ab^{-1} \mid a, b \in R\}[2]$.

THEOREM 3.5. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a strong semilattice Y of principal right ideal Ore monoids S_{α} with $\psi_{\alpha,\beta}$ onto for $\alpha \geq \beta \in Y$. If S is right nonsingular then Q(S) is a semilattice of groups.

Proof. By Theorem 3.2, $T = \bigcup_{\alpha \in Y} Q(S_{\alpha})$ is a strong semilattice and since each $Q(S_{\alpha})$ is a group then T is a semilattice Y of groups $Q(S_{\alpha})$ and so regular with idempotents in the center of T [1, pp. 128-129]. Hence T/ψ_T is regular and its idempotents are in the center of T/ψ_T , which makes T/ψ_T a semilattice of groups. McMorris [6] showed that $Q(T/\psi_T)$ is also a semilattice of groups. By Theorem 3.4, $Q(S) \approx Q(T/\psi_T)$ and so is a semilattice of groups.

THEOREM 3.6. Under the hypothesis of Theorem 3.5, T/ψ_T can be taken to be the union of the same semilattice Y of groups.

Proof. Since $T = \bigcup_{\alpha \in Y} Q(S_{\alpha})$ where each $Q(S_{\alpha})$ is a group, we let $e_{\alpha} = [e_{\alpha}] \in Q(S_{\alpha})$. If $e_{\alpha}\psi_{T}e_{\beta}$ when $\alpha \neq \beta$ then $e_{\alpha}*x = e_{\beta}*x$ for all $x \in L$ an \cap -large right ideal of S. Since S is right nonsingular then Y is right nonsingular by Theorem 2.1. Furthermore, $A = \{\sigma \in Y | L \cap S_{\alpha}\} \neq \emptyset$ is dense in Y. Hence since $\alpha \neq \beta$ there exists $\delta \in A$ such that $\alpha \delta \neq \beta \delta$. Let $t \in L \cap S_{\delta}$ then $e_{\alpha}*t = e_{\beta}*t$ which implies that $e_{\alpha \delta}\psi_{\delta,\alpha \delta}(t) = e_{\beta \delta}\psi_{\delta,\beta \delta}(t)$ or that $\phi_{\delta,\alpha \delta}(t) = \phi_{\delta,\beta \delta}(t)$. This is a contradiction since for $\alpha \delta \neq \beta \delta$, $Q(S_{\alpha \delta}) \cap Q(S_{\beta \delta}) \neq \emptyset$. Hence $e_{\alpha}\psi_{T} \neq e_{\beta}\psi_{T}$ when $\alpha \neq \beta$. Thus in T/ψ_{T} there are at least as many idempotents as there are in T. Now suppose that $g\psi_{T}$ is an idempotent of T/ψ_{T} . Since $g \in Q(S_{\alpha})$ a group then $g\psi_{T} \in Q(S_{\alpha})/\psi_{T}$, also a group. The only idempotent of $Q(S_{\alpha})/\psi_{T}$ is $e_{\alpha}\psi_{T}$ so $g\psi_{T} = e_{\alpha}\psi_{T}$. Hence in T/ψ_{T} there are no new idempotents.

Hinkle [2] showed that $Q(T/\psi_T)$ is a semilattice Q(Y) of groups. Thus Q(S) is a semilattice Q(Y) of groups where Y is the semilattice of both S and T/ψ_T . The next theorem is a restatement of the above results.

THEOREM 3.7. Let S be a strong semilattice Y of principal right ideal Ore monoids with onto linking homomorphisms. If S is right nonsingular then Q(S) is a semilattice Q(Y) of groups.

REFERENCES

1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. 1, Math. Surveys of the Amer. Math. Soc., (Providence, R. I., 1961).

2. C. V. Hinkle, Jr., Semigroups of right quotients of a semigroup which is a semilattice of groups, Semigroup Forum., 5 (1972), 167-173.

3. C. S. Johnson, Jr. and F. R. McMorris, Nonsingular semilattices and semigroups, Czechoslovak Math. J., **26** (101) 2 (1976), 280-282.

4. ____, Commutative nonsingular semigroups submitted.

5. A. M. Lopez, Jr. and J. K. Luedeman, The bicommutator of the injective hull of a nonsingular semigroup, Semigroup Forum, 12 (1976), 71-77.

6. F. R. McMorris, The quotient semigroup of a semigroup that is a semilattice of groups, Glasgow Math. J., 12 (1971), 18-23.

7. ____, On quotient semigroups, J. Math. Sci., 7(1972), 48-56.

8. ____, The singular congruence and the maximal quotient semigroup, Canad. Math. Bull., 15 (1972), 301-303.

9. M. Petrich, Introduction to semigroups, Charles E. Merrill Publishing Co., (Columbus, Ohio, 1973).

Received November 29, 1976 and in revised form March 9, 1977. This paper contains part of a doctoral dissertation written under the direction of Professor John K. Luedeman at Clemson University.

LOYOLA UNIVERSITY NEW ORLEANS, LA 70118

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)

University of California Los Angeles, CA 90024

CHARLES W. CURTIS

University of Oregon Eugene, OR 97403

C. C. MOORE University of California Berkeley, CA 94720

J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, CA 90007

R. FINN and J. MILGRAM Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY	UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO	UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY	UNIVERSITY OF WASHINGTON
UNIVERSITY OF OREGON	* * *
OSAKA UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Jaurnal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of your manuscript. You may however, use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. **39**. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72 00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).

8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics Manufactured and first issued in Japan

Pacific Journal of MathematicsVol. 71, No. 2December, 1977

Krishnaswami Alladi and Paul Erdős, <i>On an additive arithmetic</i> <i>function</i>	275
James Bailey and Dale Rolfsen, An unexpected surgery construction of a	
lens space	295
Lawrence James Brenton, On the Riemann-Roch equation for singular complex surfaces	299
James Glenn Brookshear, Projective ideals in rings of continuous	
functions	313
Lawrence Gerald Brown, Stable isomorphism of hereditary subalgebras of C^* -algebras	335
Lawrence Gerald Brown, Philip Palmer Green and Marc Aristide Rieffel,	
Stable isomorphism and strong Morita equivalence of C*-algebras	349
N. Burgoyne, Robert L. Griess, Jr. and Richard Lyons, <i>Maximal subgroups</i>	
and automorphisms of Chevalley groups	365
Yuen-Kwok Chan, <i>Constructive foundations of potential theory</i>	405
Peter Fletcher and William Lindgren, On $w \triangle$ -spaces, $w\sigma$ -spaces and	
Σ^{\sharp} -spaces	419
Louis M. Friedler and Dix Hayes Pettey, <i>Inverse limits and mappings of</i> <i>minimal topological spaces</i>	429
Robert E. Hartwig and Jiang Luh, <i>A note on the group structure of unit</i>	12)
regular ring elements	449
I. Martin (Irving) Isaacs, <i>Real representations of groups with a single</i>	
involution	463
Nicolas P. Jewell, <i>The existence of discontinuous module derivations</i>	465
Antonio M. Lopez, <i>The maximal right quotient semigroup of a strong</i>	
semilattice of semigroups	477
Dennis McGavran, T^n -actions on simply connected $(n + 2)$ -manifolds	487
Charles Anthony Micchelli and Allan Pinkus, <i>Total positivity and the exact</i> n -width of certain sets in L^1	499
Barada K. Ray and Billy E. Rhoades, <i>Fixed point-theorems for mappings</i>	
with a contractive iterate	517
Fred Richman and Elbert A. Walker, <i>Ext in pre-Abelian categories</i>	521
Raymond Craig Roan, <i>Weak* generators of</i> H^{∞} <i>and</i> l^1	537
Saburou Saitoh, <i>The exact Bergman kernel and the kernels</i> of Szegö type	545
Kung-Wei Yang, Operators invertible modulo the weakly compact	
operators	559