Pacific Journal of Mathematics

OPERATORS INVERTIBLE MODULO THE WEAKLY COMPACT OPERATORS

KUNG-WEI YANG

Vol. 71, No. 2

December 1977

OPERATORS INVERTIBLE MODULO THE WEAKLY COMPACT OPERATORS

KUNG-WEI YANG

A continuous linear operator is a Fredholm operator if and only if it is invertible modulo the compact operators. In this note, we will generalize several theorems on Fredholm operators to theorems concerning operators invertible modulo the weakly compact operators.

1. Preliminaries. We fix the following notation.

C =the complex field

B = the category of complex Banach spaces and continuous linear operators

B(X, Y) = the Banach space of continuous linear operators from X to Y (with the sup norm | |)

WK(X, Y) = the closed subspace of all weakly compact operators in B(X, Y)

 $X^* = B(X, C)$, the conjugate space

 $F^* = B(F, C)$, the adjoint of $F: X \rightarrow Y$

 I_x = the identity operator on X

 $\bar{X} = X^{**}/n_x(X)$, where $n_x: X \to X^{**}$ is the natural injection.

If $F \in B(X, Y)$, then the commutative diagram with exact rows

$0 \longrightarrow 1$	$X \xrightarrow{n_X} Z$	$X^{**} \longrightarrow \bar{X} \longrightarrow 0$
F	F**	\overline{F}
$0 \longrightarrow 1$	$Y \xrightarrow{n_Y} Y$	$Z^{**} \longrightarrow \overline{Y} \longrightarrow 0$

uniquely defines an operator $\overline{F} \in B(\overline{X}, \overline{Y})$. (Here n_x , n_y are the natural injections.)

We will need the following results (1.1)-(1.7) from [9].

1.1. X is reflexive if and only if $\overline{X} = 0$. [9, (3.1)]

1.2. $F \in WK(X, Y)$ if and only if $\overline{F} = 0$. [9, (4.1)]

1.3. $\bar{I}_x = I_{\bar{x}}$. [9, (2.3)]

1.4. If $E \in B(X, Y)$ and $F \in B(Y, Z)$, then $\overline{FE} = \overline{FE}$. [9, (2.3)]

1.5. $|\bar{F}| \leq |F|$. [9, (2.3)]

1.6. For any $a, b \in C$ and $E, F \in B(X, Y), \overline{aE + bF} = a\overline{E} + b\overline{F'}$. [9, (2.4)]

1.7. There exists a natural topological isomorphism $N_x: (\bar{X})^* \rightarrow (\bar{X}^*)$. i.e., given any $F \in B(X, Y)$, the diagram

$$(\bar{X})^* \xrightarrow{N_X} \bar{X}^*$$
$$(\bar{F})^* \Big| (\bar{F}^*) \Big|$$
$$(\bar{Y})^* \xrightarrow{N_Y} \bar{Y}^*$$

is commutative. [9, (2.8)] (The naturality is not explicitly stated in [9].)

THEOREM 1.8. If $E \in B(X, X_1)$ and $F \in B(Y, Y_1)$, then $\overline{E \oplus F} = \overline{E} \oplus \overline{F}$, where \oplus denotes direct sum.

Proof. Use $(E \oplus F)^{**} = E^{**} \oplus F^{**}$ and the following commutative diagram with exact rows:

$$\begin{array}{c} 0 \longrightarrow X \oplus Y \longrightarrow X^{**} \oplus Y^{**} \longrightarrow \bar{X} \oplus \bar{Y} \longrightarrow 0 \\ E \oplus F \Big| \qquad E^{**} \oplus F^{**} \Big| \qquad \bar{E} \oplus \bar{F} \Big| \\ 0 \longrightarrow X_1 \oplus Y_1 \longrightarrow X_1^{**} \oplus Y_1^{**} \longrightarrow \bar{X}_1 \oplus \bar{Y}_1 \longrightarrow 0 \end{array}.$$

2. The operators invertible modulo the weakly compact operators. An operator $F \in B(X, Y)$ is left (right) invertible modulo the weakly compact operators if there exists an operator $E \in B(Y, X)$ such that $\overline{EF} = I_{\overline{X}}(\overline{FE} = I_{\overline{Y}})$. An operator is invertible modulo the weakly compact operators if it is left and right invertible modulo the weakly compact operators. Notice that this condition is quite different from merely requiring \overline{F} to be invertible. We let $\Psi_i(X, Y)$, $\Psi_r(X, Y)$, denote the set of all operators left, respectively right, invertible modulo the weakly compact operators and let $\Psi(X, Y)$ denote the set of all operators invertible modulo the weakly compact operators.

THEOREM 2.1. If $E \in \Psi(X, Y)$ and $F \in \Psi(Y, Z)$. Then $FE \in \Psi(X, Z)$.

Proof. By assumption there exist $E_1 \in B(Y, X)$, $F_1 \in B(Z, Y)$ such that $\overline{E_1E} = I_{\overline{X}}$, $\overline{EE_1} = I_{\overline{Y}}$, $\overline{F_1F} = I_{\overline{X}}$, $\overline{FF_1} = I_Z$. Clearly,

$$(\overline{E_1F_1})(\overline{FE}) = I_{\overline{X}}$$

and $\overline{(FE)(E_1F_1)} = I_{\overline{z}}$.

THEOREM 2.2. Let $E \in B(X, Y)$, $F \in B(Y, Z)$. Assume $FE \in \Psi(X, Z)$. Then,

(1) $E \in (X, Y)$ if and only if $F \in \Psi(Y, Z)$;

(2) If $F \in \Psi_{l}(Y, Z)$, then $E \in \Psi(X, Y)$ and $F \in \Psi(Y, Z)$;

(3) If $E \in \Psi_r(X, Y)$, then $E \in \Psi(X, Y)$ and $F \in \Psi(Y, Z)$.

Proof. By assumption, there exist $G \in B(Z, X)$ such that $\overline{GFE} = I_{\overline{X}}$ and $\overline{FEG} = I_{\overline{Z}}$.

(1) If $E \in \Psi(X, Y)$, then there exists $E_1 \in B(Y, X)$ such that $\overline{E_1E} = I_{\overline{X}}$ and $\overline{EE_1} = I_{\overline{Y}}$. Hence $\overline{EGF} = I_{\overline{Y}}$ and $\overline{F(EG)} = I_{\overline{Z}}$. This means $F \in \Psi(Y, Z)$. The implication in the other direction is proved similarly.

(2) If $F \in \Psi_l(Y, Z)$, then there exists $F_1 \in B(Z, Y)$ such that $\overline{F_1F} = I_{\overline{Y}}$. This clearly implies $\overline{(GF)E} = I_{\overline{X}}, \overline{E(GF)} = I_{\overline{Y}}$ and $\overline{=F(EG)}$ $I_{\overline{Z}}, (\overline{EG})F = I_{\overline{Y}}$. Hence, $E \in \Psi(X, Y)$ and $F \in \Psi(Y, Z)$.

(3) is proved similarly.

THEOREM 2.3. Let $F \in B(X, Y)$. If there exist $E_1, E_2 \in B(Y, X)$ such that E_1F and FE_2 are invertible modulo the weakly compact operators, then $F \in \Psi(X, Y)$.

Proof. Since E_1F and FE_2 are invertible modulo the weakly compact operators, there exist $G_1 \in B(X, X)$, $G_2 \in B(Y, Y)$ such that $\overline{G_1(E_1F)} = I_{\overline{X}}$ and $\overline{(FE_2)G_2} = I_{\overline{Y}}$. Hence $F \in \Psi(X, Y)$.

THEOREM 2.4. If $F \in \Psi(X, Y)$, then $F^* \in \Psi(Y^*, X^*)$.

 $\begin{array}{ll} Proof. \quad \mathrm{Let} \ F \in \mathcal{\Psi}(X, \ Y). \quad \mathrm{Then} \ \mathrm{there} \ \mathrm{exists} \ E \in B(Y, \ X) \ \mathrm{such} \\ \mathrm{that} \ \overline{EF} = I_{\overline{X}} \ \mathrm{and} \ \overline{FE} = I_{\overline{Y}}. \quad \mathrm{By} \ \mathbf{1.7}, \ \overline{E^*F^*} = (N_{Y}(\bar{E})^*N_{X}^{-1})(N_{X}(\bar{F})^*N_{Y}^{-1}) = \\ I_{\overline{Y}^*} \ \mathrm{and} \ \overline{F^*E^*} = (N_{X}(\bar{F})^*N_{Y}^{-1})(N_{Y}(\bar{E})^*N_{X}^{-1}) = I_{\overline{X}^*}. \quad \mathrm{Hence} \ F^* \in \mathcal{\Psi}(Y^*, \ X^*). \end{array}$

THEOREM 2.5. If $F \in \Psi(X, Y)$ and $K \in WK(X, Y)$, then $F + K \in \Psi(X, Y)$.

Proof. $\overline{F+K} = \overline{F} + \overline{K} = \overline{F}$.

As is shown in [9, Theorem 5.10], if the Banach spaces X and Y enjoy the property that every closed reflexive subspace of X is complemented and every closed subspace of Y with reflexive quotient is complemented, then every generalized Fredholm operator is invertible modulo the weakly compact operators.

There are, however, other kinds of operators invertible modulo the weakly compact operators. Let X be any Banach space. Let $U: X \rightarrow X$ be an invertible operator, and $K \in WK(X, X)$. Then, clearly, $U + K \in \Psi(X, X)$.

To construct a nontrivial operator invertible modulo the weakly compact operators which is not a generalized Fredholm operator, we start an operator $F = U + K \in \Psi(X, X)$ such as the one constructed above. We choose a reflexive Banach space Y and an operator $G \in$ B(Y, Y) which does not have a closed range. If we form the direct sum $F \oplus G: X \oplus Y \to X \oplus Y$, we see, by Theorem 1.8, $\overline{F \oplus G} = \overline{F} \oplus \overline{G} = \overline{F} \oplus 0$. Hence $F \oplus G$ is invertible modulo the weakly compact operators but it is definitely not a generalized Fredholm operator because it does not have a closed range. (Also see [3, V. 2.6].)

3. The operators left (right) invertible modulo the weakly compact operators.

THEOREM 3.1. (1) If $F \in \Psi_{l}(X, Y)$, $K \in WK(X, Y)$, then $F + K \in \Psi_{l}(X, Y)$.

(2) If $E \in \Psi_{l}(X, Y)$, $F \in \Psi_{l}(Y, Z)$, then $FE \in \Psi_{l}(X, Z)$.

(3) If $E \in B(X, Y)$, $F \in B(Y, Z)$ and $FE \in \Psi_{l}(X, Z)$, then $E \in \Psi_{l}(X, Y)$.

(4) If $F \in \Psi_r(X, Y)$, $K \in WK(X, Y)$, then $F + K \in \Psi_r(X, Y)$.

(5) If $E \in \Psi_r(X, Y)$, $F \in \Psi_r(Y, Z)$, then $FE \in \Psi_r(X, Z)$.

(6) If $E \in B(X, Y)$, $F \in B(Y, Z)$ and $FE \in \Psi_r(X, Z)$, then $F \in \Psi_r(Y, Z)$.

Proof. (1) $\overline{F+K} = \overline{F} + \overline{K} = \overline{F}$.

(2) If $E \in \Psi_l(X, Y)$ and $F \in \Psi_l(Y, Z)$, then there exist $E_1 \in B(Y, X)$, $F_1 \in B(Z, Y)$ such that $\overline{E_1E} = I_{\overline{X}}$ and $\overline{F_1F} = I_{\overline{Y}}$. Clearly, $\overline{E_1F,FE} = I_{\overline{X}}$. Hence $FE \in \Psi_l(X, Z)$.

(3) If $FE \in \Psi_l(X, Z)$, then there exists $G \in B(Z, X)$ such that $\overline{G(FE)} = I_{\overline{X}}$. Hence $E \in \Psi_l(X, Y)$.

(4), (5), (6) are similarly proved.

THEOREM 3.2. (1) If $F \in \Psi_{l}(X, Y)$, then $F^{*} \in \Psi_{r}(Y^{*}, X^{*})$. (2) If $F \in \Psi_{r}(X, Y)$, then $F^{*} \in \Psi_{l}(Y^{*}, X^{*})$.

Proof. (1) If $F \in \Psi_{l}(X, Y)$, then there exists $F_{1} \in B(Y, X)$ such that $\overline{F_{1}F} = I_{\overline{X}}$. Hence $(\overline{F})^{*}(\overline{F_{1}})^{*} = I_{(\overline{X})^{*}}$. By 1.7,

$$(N_{\scriptscriptstyle X}(ar{F})^*N_{\scriptscriptstyle Y}^{_{-1}})(N_{\scriptscriptstyle Y}(ar{F}_{_1})^*N_{\scriptscriptstyle X}^{_{-1}})=I_{ar{\chi}*}$$
 ,

whence $\overline{F^{*}F_{1}^{*}} = I_{X^{*}}$. This shows $F^{*} \in \Psi_{r}(Y^{*}, X^{*})$. (2) is proved similarly.

4. Perturbation. Let A be a Banach algebra with identity (1), A° be the group of invertible elements in A, $A_{l}^{\circ}(A_{r}^{\circ})$ be the set of all left(right) invertible elements of A. Let

R(A) = the radical of A

 $= \{r \in A | 1 + ar \in A^{\circ} \text{ for every } a \in A\} [6, p. 163]$ $= \{r \in A | 1 + ar \in A^{\circ} \text{ for every } a \in A^{\circ}\} [5, p. 4]$

Q(A) = the set of all quasi-nilpotent (topologically nilpotent [7, p. 12]) elements of A

 $= \{q \in A | 1 + kq \in A^{\circ} \text{ for every } k \in C\} [4, p. 699]$

 $= \{q \in A \mid |q^n|^{1/n} \to 0 \text{ as } n \to \infty\}.$ [1, p. 23]

For a semigroup S in A, let

$$P(S) = \{a \in A \mid a + S \subset S\}.$$

The following theorem is proved in [5].

THEOREM 4.1. $P(A^{\circ}) = P(A_{l}^{\circ}) = P(A_{r}^{\circ}) = R(A).$

THEOREM 4.2.

 $Q(A) = \{q \in A \,|\, I + aq \in A^\circ \text{ for all } a \in A^\circ \text{ such that } aq = qa\}.$

Proof. The set on the right is obviously contained in Q(A). Now take an element $q \in Q(A)$, and let $a \in A^{\circ}$ be such that aq = qa. Clearly, $|(aq)^n|^{1/n} \to 0$ as $n \to \infty$. Hence $aq \in Q(A)$. So $1 + aq \in A^{\circ}$. This shows that q is in the set on the right hand side.

THEOREM 4.3. (1) Let $q \in A$. Then, $q \in Q(A)$ if and only if for all $a \in A^{\circ}$ such that aq = qa, $a + q \in A^{\circ}$; (2) If $q_1, q_2 \in Q(A)$ and $q_1q_2 = q_2q_1$, then $q_1 + q_2 \in Q(A)$.

Proof. (1) Clearly, aq = qa is equivalent to $a^{-1}q = qa^{-1}$. Hence, $q \in Q(A) \Leftrightarrow 1 + aq \in A^{\circ}$ for all $a \in A^{\circ}$ such that $aq = qa \Leftrightarrow 1 + a^{-1}q \in A^{\circ}$ for all $a \in A^{\circ}$ such that $aq = qa \Leftrightarrow a + q = a(1 + a^{-1}q) \in A^{\circ}$ for all a such that aq = qa.

(2) Let $q_1, q_2 \in Q(A)$ be such that $q_1q_2 = q_2q_1$. Let k be an arbitrary complex number. Clearly, $(1 + kq_1) \in A^\circ$ and $kq_2 \in Q(A)$. Since $(1 + kq_1)(kq_2) = (kq_2)(1 + kq_2)$, by (1), $1 + k(q_1 + q_2) \in A^\circ$. Since k is arbitrary, $q_1 + q_2 \in Q(A)$.

We remark that (2) also follows from [7, Th. 1.4.1(v), p. 10].

Now we shall apply these theorems to the specific problem of perturbation of operators (left, right) invertible modulo the compact operators.

Let X be a Banach space. Let B(X) = B(X, X), WK(X) = WK(X, X), $\Psi(X) = \Psi(X, X)$, $\Psi_i(X) = \Psi_i(X, X)$, $\Psi_r(X) = \Psi_r(X, X)$, $\overline{B}(X) = B(X)/WK(X)$ and $\tau: B(X) \to \overline{B}(X)$ be the natural projection. Notice that $\overline{B}(X)$ can be considered as a subalgebra of $B(\overline{X})$ [9, (5.11)] and we have $\Psi(X) = \tau^{-1}[(\overline{B}(X))^{\circ}]$, $\psi(X) = \tau^{-1}[(\overline{B}(X))^{\circ}]$.

THEOREM 4.4.
$$P(\Psi(X)) = P(\Psi_{l}(X)) = P(\Psi_{r}(X)) = \tau^{-1}[R(\bar{B}(X))].$$

Proof. Use Theorem 4.1 and the above remark.

COROLLARY 4.5. If $R(\overline{B}(X)) = 0$, then $P(\Psi(X)) = P(\Psi_l(X)) = P(\Psi_l(X)) = P(\Psi_l(X)) = WK(X)$.

Since $\overline{B}(X)$ can be considered as a subalgebra of $B(\overline{X})$ and since $R(B(\overline{X})) = 0$ [4, p. 702], $R(\overline{B}(X)) = 0$ if $\overline{B}(X) = B(\overline{X})$.

Now, let $\Omega(X) = \tau^{-1}[Q(\overline{B}(X))]$. The classical counterpart of $\Omega(X)$ is the set of all Riesz operators [2, p. 323] [8].

THEOREM 4.6. Let $E \in B(X)$. Then, $E \in \Omega(X)$ if and only if $E + F \in \Psi(X)$ for all $F \in \Psi(X)$ such that $\overline{EF} = \overline{FE}$.

Proof. Apply Theorem 4.3.1.

THEOREM 4.7. If E_1 , $E_2 \in \Omega(X)$ and $\overline{E_1E_2} = \overline{E_2E_1}$, then $E_1 + E_2 \in \Omega(X)$.

Proof. Apply Theorem 4.3.2.

Note that if we apply Theorem 4.3 to the case A = B(X)/K(X), where K(X) is the closed 2-sided ideal of all compact operators, then we obtain Theorems 9, 12, 13, of [8]. They are the classical "relatives" of Theorems 4.6 and 4.7.

It would be an interesting problem to characterize the operators in $\Psi(X, Y)(\Psi_i(X, Y), \Psi_r(X, Y))$ intrinsically.

We would like to thank Professor Martin Schechter for his help.

References

1. F. F. Bonsall and J. Duncan, *Complete Normed Algebras*, Springer-Verlag, New York, 1973.

2. J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1967.

3. S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.

4. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 1957.

5. A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Functional Analysis, 7 (1971), 1-26.

6. M. A. Naimark, Normed Rings, P. Noordhoff, N. V. Groningen, 1959.

7. C. E. Rickart, General Theory of Banach Algebras, V. Nostrand, Princeton, N. J., 1960.

8. M. Schechter, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc., 74 (1968), 1139-1144.

9. K.-W. Yang, The generalized Fredholm operators, Trans. Amer. Math. Soc., (to appear).

Received February 11, 1976 and in revised form February 4, 1977.

WESTERN MICHIGAN UNIVERSITY KALAMAZOO, MI 49008

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)

University of California Los Angeles, CA 90024

CHARLES W. CURTIS University of Oregon

Eugene, OR 97403

C. C. MOORE University of California Berkeley, CA 94720

J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, CA 90007

R. FINN and J. MILGRAM Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY	UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO	UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY	UNIVERSITY OF WASHINGTON
UNIVERSITY OF OREGON	* * *
OSAKA UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Jaurnal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of your manuscript. You may however, use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. **39**. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72 00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).

8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics Manufactured and first issued in Japan

Pacific Journal of MathematicsVol. 71, No. 2December, 1977

Krishnaswami Alladi and Paul Erdős, <i>On an additive arithmetic</i>	275		
James Bailey and Dale Rolfsen, <i>An unexpected surgery construction of a</i>	275		
lens space	295		
Lawrence James Brenton, On the Riemann-Roch equation for singular complex surfaces	299		
James Glenn Brookshear, Projective ideals in rings of continuous			
functions	313		
Lawrence Gerald Brown, <i>Stable isomorphism of hereditary subalgebras of</i> <i>C</i> *- <i>algebras</i>	335		
Lawrence Gerald Brown, Philip Palmer Green and Marc Aristide Rieffel,			
Stable isomorphism and strong Morita equivalence of C*-algebras	349		
N. Burgoyne, Robert L. Griess, Jr. and Richard Lyons, <i>Maximal subgroups</i>			
and automorphisms of Chevalley groups	365		
Yuen-Kwok Chan, <i>Constructive foundations of potential theory</i>			
Peter Fletcher and William Lindgren, On $w\Delta$ -spaces, $w\sigma$ -spaces and			
Σ^{\sharp} -spaces			
Louis M. Friedler and Dix Hayes Pettey, <i>Inverse limits and mappings of</i> minimal topological spaces.	429		
Robert E Hartwig and Jiang Lub A note on the group structure of unit	,		
regular ring elements	449		
I. Martin (Irving) Isaacs, <i>Real representations of groups with a single</i>			
involution	463		
Nicolas P. Jewell, <i>The existence of discontinuous module</i> derivations	465		
Antonio M. Lopez, The maximal right quotient semigroup of a strong			
semilattice of semigroups	477		
Dennis McGavran, T^n -actions on simply connected $(n + 2)$ -manifolds	487		
Charles Anthony Micchelli and Allan Pinkus, <i>Total positivity and the exact</i>			
<i>n</i> -width of certain sets in L^1	499		
Barada K. Ray and Billy E. Rhoades, <i>Fixed point-theorems for mappings</i>			
with a contractive iterate	517		
Fred Richman and Elbert A. Walker, <i>Ext in pre-Abelian categories</i>	521		
Raymond Craig Roan, Weak* generators of H^{∞} and l^1	537		
Saburou Saitoh, The exact Bergman kernel and the kernels of Szegö type	545		
Kung-Wei Yang, Operators invertible modulo the weakly compact			
operators	559		