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A continuous linear operator is a Fredholm operator if
and only if it is invertible modulo the compact operators.
In this note, we will generalize several theorems on Fredholm
operators to theorems concerning operators invertible modulo
the weakly compact operators.

1* Preliminaries* We fix the following notation.
C — the complex field
B — the category of complex Banach spaces and continuous linear

operators
B(X, Y) = the Banach space of continuous linear operators from

X to Y (with the sup norm | |)
WK(X, Y) — the closed subspace of all weakly compact operators

in B(X, Y)
X* = B{X, C), the conjugate space
F* = B(F, C), the adjoint of F: X — Y
Ix = the identity operator on X

X = X**lnx{X), where nz:X —*X** is the natural injection.

If FeB(X, Y), then the commutative diagram with exact rows

0 >χJ*+χ** >X >Q

o —> γ-^-> Y** — > Ϋ — > o

uniquely defines an operator FeB(X, Ϋ). (Here nZf nγ are the natural

injections.)

We will need the following results (1.1)-(1.7) from [9].

1.1. X is reflexive if and only if X = 0. [9, (3.1)]

1.2. Fe WK(X, Y) if and only if F = 0. [9, (4.1)]

1.3. Ix = Ix. [9, (2.3)]

1.4. If EeB(X, Y) and FeB(Y, Z), then FE = FE. [9, (2.3)]

1.5. \F\^\F\. [9,(2.3)]

1.6. For any a,beC and E, FeB(X, Y), aE + bF = aE + bF.

[9, (2.4)]

1.7. There exists a natural topological isomorphism Nx: (X)* —*

(X*). i.e., given any FeB(X, Y)> the diagram
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(X)* i X*

j |
(f)* — Ϋ*

is commutative. [9, (2.8)] (The naturality is not explicitly stated
in [9].)

THEOREM 1.8. If EeBiX.X,) and FeB(Y, Yx), then E@F =
, where φ denotes direct sum.

Proof. Use (j£® ί7)* * = #** φ f * * and the following commu-
tative diagram with exact rows:

0 @

E®F\ E**®F**\

o —>x 1 ®γ ι —> xr ®YΪ* —> Xi θ ? i -—> o.

2* The operators invertible modulo the weakly compact opera*
tors* An operator FeB(X, Y) is left (right) invertible modulo the
weakly compact operators if there exists an operator EeB(Y,X)
such that EF = Iχ(FE = Iψ). An operator is invertible modulo the
weakly compact operators if it is left and right invertible modulo
the weakly compact operators. Notice that this condition is quite
different from merely requiring F to be invertible. We let Ψ^X, Γ),
Ψr(X, Y), denote the set of all operators left, respectively right,
invertible modulo the weakly compact operators and let Ψ(X, Y)
denote the set of all operators invertible modulo the weakly compact
operators.

THEOREM 2.1. If E eΨ(X, Y) and F eΨ(Y, Z). Then FE e
Ψ(X, Z).

Proof. By assumption there exist E, e J3(Γ, X), Fx^B(ZyY)

such that EJ£ = I j , ~EEι = I?, FXF = Ij, FF, = Iz. Clearly,

— Iχ

and

THEOREM 2.2. Let EeB(X, Y), FeB(Y, Z). Assume FEe
Ψ(X,Z). Then,

(1) Ee(X,Y) if and only if FeΨ(Y,Z);
(2) If FeΨt(Y,Z), then EeΨ(X, Y) and FeΨ(Y,Z);
(3) If EeΨr(X, Y), then EeΨ(X, Y) and FeΨ(Y, Z).
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Proof. By assumption, there exist G e B(Z, X) such that GFE =
Ix and FEG = /^.

(1) If EeΨ(X, Γ), then there exists E^BiY, X) such that
.Ep? = i j and 2£ΐζ - Iψ. Hence EGF = If and JFXSG) = J^ This
means FeΨ(Y, Z). The implication in the other direction is proved
similarly.

(2) If FeΨt(Y,Z), then there exists Ft eB(Z, Y) such that
FXF = Iγ. This clearly implies (GF)E = Ix, E(GF) = h and =F(EG)
h, (EG)F = Iy. Hence, EeΨ(X, Y) and FeΨ(Y, Z).

( 3 ) is proved similarly.

THEOREM 2.3. Lei FeB(X, Y). If there exist E19 E2eB(Y, X)
such that EλF and FE2 are invertible modulo the weakly compact
operators, then FeΨ(X, Y).

Proof. Since E^ and FE2 are invertible modulo the weakly
compact operators, there exist Gte B(X, X), G2e B{Y, Y) such that
GjEJF) = h and (FE2)G2 = J f . Hence FeΨ{Xf Y).

THEOREM 2.4. // FeΨ(X, Y), then F*eΨ(Y*, X*).

Proof. LetJΓ_eΨ(X, Y). Thenjhere exists EeB(Y,_X) such
that EF=h and FE = If. By 1/7, J5*F* = {Nγ{ETN~x

ι){Nx{F^Nγι) =
IF, and F*£;* = {Nx{FYNγ%Nγ{ETN-χ

ι) - fe. Hence F* 6 ?P\Γ*, X*).

THEOREM 2.5. If FeΨ(X, Y) and Ke WK(X, Γ), then F + Ke
Ψ(X, Y).

Proof. F + K = F + K = F.

As is shown in [9, Theorem 5.10], if the Banach spaces X and Y
enjoy the property that every closed reflexive subspace of X is
complemented and every closed subspace of Y with reflexive quotient
is complemented, then every generalized Fredholm operator is invertible
modulo the weakly compact operators.

There are, however, other kinds of operators invertible modulo
the weakly compact operators. Let X be any Banach space. Let
U:X-+X be an invertible operator, and Ke WK(X, X). Then,
clearly, U + KeΨ(X, X).

To construct a nontrivial operator invertible modulo the weakly
compact operators which is not a generalized Fredholm operator, we
start an operator F — U + KeΨ{X, X) such as the one constructed
above. We choose a reflexive Banach space Y and an operator G 6
B(Y, Y) which does not have a closed range. If we form the direct
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sum ί 7 φ _ G : I φ 7 ^ I 0 7 , we see, by Theorem 1.8, F φ G =
Fξ&G = Fζ&O. Hence F φ G is invertible modulo the weakly
compact operators but it is definitely not a generalized Fredholm
operator because it does not have a closed range. (Also see [3, V.
2.6].)

3. The operators left (right) invertible modulo the weakly
compact operators.

THEOREM 3.1. (1) If Fe Ψι{X, Y), Ke WK(X, Y), then F + Ke
ΨIX, Y).

(2 ) If E e Ψt(X, Y), F e ¥,( Y, Z), then FE e Ψt(X, Z).
(3) If Ee B(X, Y), FeB(Y, Z) and FEeΨ,(X, Z), then Ee

Ψ,(X, Y).
(4) If Fe Ψr{X, Y), Ke WK{X, Y), then F + KeΨr(X, Y).
(5) If EeΨr{X, Y), Fe¥r(Y, Z), then FEeΨr(X, Z).

(6) If EeB(X,Y),FeB(Y,Z) and FEeΨr(X, Z), then Fe

VΛY, Z).

Proof. (1) F + K = F + K = F.
(2) If Ee¥,(X,Y) and FeΨ,(Y, Z), then_there exist ^ e

B(Y, X), F1 6 B(Z, Y) such that ~E~JΪ = Ij and ΎjΓ = If. Clearly,
EJ\FW= I*. Hence FE&Ψι{X, Z).

(3) If FEeW,(X,Z), then there exists GeB(Z,X) such that
G(F¥) = I-x. Hence E e Ψt(X, Y).

(4), (5), (6) are similarly proved.

THEOREM 3.2. (1) If FeΨ,(X, Y), then F* e¥r(Y*, X*).
(2) If Fe Ψr(X, Y), then F* e Ψt(Y*, X*).

Proof. (1) If FeΨι(X,Y), then there exists F.eBi.Y, X) such
that FJF= Iχ. Hence (J*)*(FX)* = J ( Σ ).. By 1.7,

whence F*F* = Ix,. This shows F* eΨr(Y*, X*).
(2) is proved similarly.

4. Perturbation. Let A be a Banach algebra with identity (1),
A0 be the group of invertible elements in A, A°(A°) be the set of
all left(right) invertible elements of A. Let

R(A) - the radical of A
= {reA\l + areA° for every aeA) [6, p. 163]
= {reA\l + areA° for every aeA0} [5, p. 4]
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Q(A) = the set of all quasi-nilpotent (topologically nilpotent [7,
p. 12]) elements of A

= {geA|l + kqeA0 for every keC} [4, p. 699]
= {qe A I \qn\1/n-+0 as w— oo}. [i, p . 23]

For a semigroup 5 in A, let

= {aeA\a + SaS} .

The following theorem is proved in [5].

THEOREM 4.1. P(A°) = P(Aΐ) = P(Ar°) -

THEOREM 4.2.

Q(A) = {q 6 A11 + αg 6 A° /or all a e A° swcft £ftα£ αg =

Proof. The set on the right is obviously contained in Q(A).
Now take an element qeQ(A), and let ae A° be such that αg = gα.
Clearly, | (aq)* \1/n -> 0 as % — °o. Hence aq e Q(A). So 1 + aq e A°.
This shows that # is in the set on the right hand side.

THEOREM 4.3. (1) Let qeA. Then, q e Q(A) if and only if for
all a e A° such that aq = qa, a + q e A°;

( 2 ) If qlf q2 e Q(A) and qxq2 = q2q19 then qx + q2 e Q(A).

Proof. (1) Clearly, αg = qa is equivalent to α"1^ = qa~\ Hence,
q e Q(A) <=> 1 + aq e A° for all α e A° such that αg = qa <=> 1 + a~^q e
A0 for all a e A° such that aq = qa<=> a + q — α(l + α"]g) 6 A° for
all α such that aq = gα.

(2) Let qΊ, g2 € Q(A) be such that -g^ = 9 ^ . Let fc be an arbi-
trary complex number. Clearly, (1 + kqt) e A° and kq2 e Q(A). Since
(1 + kq^kq^ = (fcg2)(l + fcga), by (1), 1 + k(qλ + q2) € A°. Since & is
arbitrary, gx + g2 e Q(A).

We remark that (2) also follows from [7, Th. 1.4.1(v), p. 10].
Now we shall apply these theorems to the specific problem of

perturbation of operators (left, right) in vertible modulo the compact
operators.

Let X be a Banach space. Let B(X) = B{X, X), WK(X) =
wκ{x, X), ψ(X) - w(x, x\ ψι{X) = ψι{x, x), vr(X) = yr(x, X),
JS(X) - J5(X)/JΓ^:(X) and r: J5(X)-^5(X) be the natural projection.
Notice that B(X) can be considered as a subalgebra of B{X) [9,
(5.11)] and we have Ψ(X) = r-ι[(5(X))°], ^

THEOREM 4.4. P(Ψ(X)) = P(Ψι(X)) = P(Ψr(X)) =
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Proof. Use Theorem 4.1 and the above remark.

COROLLARY 4.5. // R{B{X)) = 0, then P{Ψ(X)) = P(Ψι(X)) =
P(Ψr(X)) =

Since i?(X) can be considered as a subalgebra of 2?(Jf) and since
R(B(X)) = 0 [4, p. 702], R(B(X)) = 0 if 5(X) = 5(JP).

Now, let β(JC) = τ-ΊQCBίX))]. The classical counterpart of Ω(X)
is the set of all Riesz operators [2, p. 323] [8].

THEOREM 4.6. Lei EeB(X). Then, EeΩ(X) if and only if
E + FeΨ(X) for all FeΨ(X) such that EF = FE.

Proof. Apply Theorem 4.3.1.

THEOREM 4.7. If El9 E2 eΩ(X) and ΊJjH2 =ΊEJSlf then Et + E2e
Ω(X).

Proof. Apply Theorem 4.3.2.

Note that if we apply Theorem 4.3 to the case A = B(X)/K(X),
where K(X) is the closed 2-sided ideal of all compact operators, then
we obtain Theorems 9, 12, 13, of [8]. They are the classical "relatives"
of Theorems 4.6 and 4.7.

It would be an interesting problem to characterize the operators
in Ψ(X, Y)(Ψι(X, Y), Ψr(X, Γ)) intrinsically.

We would like to thank Professor Martin Schechter for his help.
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