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An example is given of a convolution measure algebra
which has a bounded weak approximate identity, but no norm
approximate identity.

1* Introduction* Let A be a commutative Banach algebra, Ar

the dual space of A, and ΔA the maximal ideal space of A. A weak
approximate identity for A is a net {e(X):\eΛ} in A such that

χ(e(λ)α) > χ(α)

for all α e i , χ e A A. A norm approximate identity for A is a net
{e(λ):λeΛ} in A such that

||β(λ)α-α|| >0

for all aeA. A net {e(X):\eΛ} in A is bounded and of norm M if
there exists a positive number M such that ||e(λ)|| ^ M for all XeΛ.

It is well known that if A has a bounded weak approximate
identity for which /(e(λ)α) —>/(α) for all feA' and αeA, then A
has a bounded norm approximate identity [1, Proposition 4, page 58].
However, the situation is different if weak convergence is with re-
spect to ΔA and not A'. An example is given in § 2 of a Banach
algebra A which has a weak approximate identity, but does not
have a norm approximate identity. This algebra provides a coun-
terexample to a theorem of J. L. Taylor [4, Theorem 3.1], because
it is proved in [3, Corollary 3.2] that the structure space of a con-
volution measure algebra A has an identity if and only if A has a
bounded weak approximate identity of norm one.

2* The example* Throughout this paper the set of complex
numbers is denoted C and the set of real numbers R.

Let S be a commutative semigroup, and sλ(S) the Banach space
of all complex functions a:S—*C such that | | α | | = Σ*es |#0&)| is
finite, made into a convolution algebra under the product

where 3X represents the point mass at xeS, a = Σ*es cc(x)δx and
J3 = ΣβesiβCcc)^. A semicharacter on S is a bounded nonzero func-
tion χ: S—>C such that χ(xy) = χ(x)χ(y) for all x,yeS. The set of
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all semicharacters is denoted S.
It has been shown in a previous paper [3] that if /X{S) is semi-

simple, then the existence of a bounded weak approximate identity
of norm one in ή(S) is equivalent to the existence of a net {ud} in
S such that χ(ud) —>1 for all χeS. It has also been shown that the
existence of a norm approximate identity bounded by 1 is equivalent
to the existence of a net {ud} in S with the following property: for
each xe Sf there exists dx such that xud = x for all d ^ dx. For
the particular semigroup S to follow, it will be shown that ή(S)
does indeed have a bounded weak approximate identity, but does
not have a norm approximate identity.

Let the set of integers be denoted by Z and the set of positive
integers by Z+. Further, let S = {m/n: m, ne Z+} under addition.
Then S is a cancellative semigroup and so <(S) is semisimple [2].
If χ e S, then χ is uniquely determined by its values on {1/n: n e Z+}.
For if m is any positive integer, then for all n e Z+, χ(m/n) = χ(l/n)m.
In fact χ(l) = χ(n/n) = χ(l/n)n for all n e Z+, and so χ(l/n) is an
nth root of χ(l). Now, each pair (k, z), where keZ and z — reiθ

with I z I 5̂  1 and r, θ eR, determines a semicharacter χk>z of S by
defining

for all m/n in S. It is clear that χfc,2(l/n) —> 1 for each χk>z e S.
However, not all semicharacters have such a nice form. In con-
structing an arbitrary semicharacter χ, there are very few restric-
tions imposed upon how the nth root of χ(l) is to be chosen. Thus,
a more elaborate argument is required to obtain a weak approximate
identity for <(S)

LEMMA 2.1. Let G be an infinite discrete group with identity
e. Then there exists a net {gλ} c G, gλ Φ e for all λ, such that
χ(gx) -> 1 for each χeG.

Proof. Let G be the Bohr compactification of G. Then there
is an algebra isomorphism i of G onto a dense subset of G. Spe-
cifically, for each geG, there exists a net {i(gχ):gχ£G} such that
i(Qx)-+ Q'> equivalents, χ(i(gλ))->χ(g) for each χeG, where χ is the
unique extension of χ e G to χ e G [3]. Since G is infinite and com-
pact, the identity i(e) of G is not isolated in G. Hence, there is a
net {i(ffj): ίfc eG}, Qx ^ e ίor all λ, such that i(gχ)—*i(e). Therefore,

X(9χ) = X(i(9i)) > χ ( i ( β ) ) = 1 f o r e a c h χ e G .

Let T = {2;eC: |«| = 1} and D = {zeC:\z\<, 1}. Then the pre-
vious lemma yields the following number-theoretic result.
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THEOREM 2.2. Let {zlf z2, •••, zp}c.T, peZ+. Then for each

ε > 0 there exists meZ+ such that | (zj™ — 11 < ε for all i, 1 ^

i ^ p.

Proof. Consider the group G = Z under addition. Then G =
{χ^zeT}, where χt(n) = zn, neG. Now, let ε > 0 be given. By
Lemma 2.1, there exists a net {nλ: XeΛ} c G, nλφ Q for all λ, such
that s** = χf(w;ι) —> 1 for each χ z e ( r . Without loss of generality,
assume that nλ e Z+ for all λ. Hence, given fe, sa, , zp} c Γ, there
exist \, λ2, •• ,λ ί, in yl such that |«J^ — 1| < ε for all λ ^λ<, 1 ^
i ^ p. Thus, if λ0 e /ί is such that λ0 ^ λt, 1 5£ i ^ j>, then with
m = ̂ ;0,

K ^ r - l l < ε for i = l ,2, . . . , p .

COROLLARY 2.3. Leέ {̂ , ^2, , zp} c Γ, p e Z+. Then for each
ε, 0 < ε < 1, there exist neighborhoods Ulf U29 , Up and there exists
m0 e Z+ such that

( 1 ) ZiβUi and UiCiD, 1 ^ i <S p,

( 2 ) \u - 1| < ε for all

u 6 Uf° = {w1w2 wmQ: wjeUι) , 1 ^ i ^ p .

Proof. Let ^ = e<tfi, 1 <; i ^ p . By Theorem 2.2, there exists
m0 6 Z+ such that | mQθά (mod 27r) | < ε/2 for all j . Now, for each j ,
let

4m0

and Γ l -
L

Then if ue Up, u = w ^ ••• ^ W o , ^ A 6 Z/̂  for all k, so that \ωL +
ω2+ + ωmo - mo(9i) < ε/4 and | wx | | w21 I wmo | > 1 — ε/4. Thus,
if % 6 U?°, then

After a technical lemma, the desired result will be proved. S
continues to be the semigroup of positive rationale under addition.

LEMMA 2.4. Let {χlf χ2, " ,χp}c:S,pe Z+. Then there exists a
subsequence {ljnk: k e Z+} of {1/n: n e Z+} and there exist zlf z29 ,
zp e T such that χt(l/nk) —• zt for each i, 1 ^ i ^ p.

Proof. Note that for each i, Xi(l/n) is an ^ th root of χ€(l) and
so I χt(l/n) I —• 1 as n —> oo.
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Now, {XxCL/n): neZ+} is a subset of the closed unit disk D, and
so by compactness has a convergent subsequence with limit zj zxeT
by the above remark. Further, if a subsequence {1/n/: seZ+} exists
such that Xi(l/ns) —* zt for i = 1, 2, , j , then by compactness
{χ3'+ί(l/n/): se Z+} has a convergent subsequence {Xs+ί(l/nk): k e Z+}
with limit zj+1 e T. Thus, the induction proof is complete.

THEOREM 2.5. There exists a net {qd: d e £&} c S such that
l f°r eacJι Xe§. Therefore, s^S) has a weak approximate

identity of norm one.

Proof. Let ^(S) denote the collection of all finite subsets of
S and let & = Z+ x J ^ ( S ) be directed by (n, A) ^ (m, B) if and
only if n ^ m and A c J5.

Now, define a mapping dt-+qd of £§^ into S as follows: For each
d = (w, A), A = {%!, , χ^}, fix a subsequence {1/%*: fc 6 Z+} such that
XiiV^k) —>Zi£T for all i. Then there exist m0 e Z + and neighborhoods
Uί9 •••, Up of ^i, •••, ίsp, respectively, such that \u — 1| < 1/n for
all ue UJ°, 1 ^ i <^ p. Now, there exist KteZ+ such that k^,Kt

implies Xi(l/nk) e Ut for I ^ i ^ p. Hence, for each if 1 ^ i ^ pf

for all & ̂  JSζf. Set ίΓo = max {iΓέ: i = 1, 2, , p). Then define qd =

Finally, it remains to show that for each χ 6 S, χ(gd) —̂  1. So,
let ε > 0 be given. Then choose n0 such that (l/n0) < β, and let
A - {χ}. If d = (wf A) ^ (n0, Λ) = d0, then |χ( ? d ) - 1 | < (1/Λ0) < ε.

COROLLARY 2.6. There exists a net {l/nd:de^}c.{lfn:neZ+}
such that χ(l/nd) —> 1 /or eαcΛ χ e S.

Proof. Repeat the proofs of Lemma 2.4 and Theorem 2.5 with
{l/n:n$Z+} replaced by {l/nlmeZ*}. Then in the proof of Theo-
rem 2.5 choose Ko such that

(1) JKO ;> max {jKi: i = 1, 2, , p] and
(2) nKo ^ m0. Thus, qd = mJnKol is of the form l/wd for some

Theorem 2.5 and Corollary 2.6 make it clear that /&S) has a
bounded weak approximate identity {δί/nA: d e £&} [3]. However, S
does not have relative units. That is, given m/n e S, there is no
v e S such that v(m/n) — m/n. Thus, <(S) does not have a norm
approximate identity, bounded or unbounded.
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3* A general result* The same techniques developed in § 2 can
be used to prove a useful result about weak approximate identities
of norm one for a commutative Banach algebra.

THEOREM 3.1. Let A be a commutative Banach algebra. Then
A has a weak approximate identity of norm one if and only if
there exists a net {v(p):pe^} in A, \\v(p)\\^l for all p, such
that I χ(v(p)) \ —> 1 for all χ e A A.

Proof If A has a weak approximate identity of norm one,
then there exists a net {v(p): p e <J^} in A, \\v(p)\\^l for all p,
such that

χ(v(ρ)a) > χ(ά) for all a e A , χ e A A .

Thus, for each χ 6 A A, χ(a) Φ 0 for some a e A implies that χ(v(ρ)) —> 1
and hence \χ(v(p))\ ~-*l.

Conversely, assume that {v(ρ)} is such that | χ(v{p)) | —• 1 for
each χeAA. Let ^(AA) be the collection of all finite subsets of
AA and let A == Z + x Jf(AA) be directed by (n, F) ^ (m, E) if and
only if n <Ξ m and F c E.

Then define a mapping λ i-> e(λ) of A into A as follows: for each
λ = (w, ί7), where neZ+ and F = {χ̂  χ2, , χr}, there exists by
compactness of D a subnet M/θ')} of {̂ (̂ 0)} such that χt(pr)->^eΓ
for ί, 1 ^ i ^ r. By Corollary 2.3, there exists m0 e Z + and neigh-
borhoods Ui of ^ in D such that | z — 11 < 1/w for all z e UT°, 1 ^
i ^ r . Now, let p'o be such that χt(v(pΌ))eUi for all i, 1 ^ i ^ r,
and define e(X) = v{ρ^)m. Note that for each i,

*) - i\

Thus, χ(β(λ))—>l for each χeAA and hence χ(e(λ)α) —• χ(α) for
each χeJA, α e i . Also, ||β(λ)|| = | |<^) m ° | | ^ 1 for all λ e i

COROLLARY 3.2. Let S be a commutative semigroup for which
<(<S) is semisimple. Then <(S) Λαs α weak approximate identity
of norm one if and only if there exists a net {s(p):(p) e J^)} in S
such that |χ($(j0))|—»1 for all χeS.

Proof. The Banach algebra <(S) has a weak approximate iden-
tity of norm one if and only if there exists a net {s(λ):λeΛ} in S
such that χ(8(λ))—>1 for all χeS [3]. Thus, the proof is completed
by applying Theorem 3.1 with v{ρ) = δsiP) for all p.
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