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The purpose of this note is to give a characterization for
compact central double centralizers on any C*-algebra A in
view of the Dixmier's representation theorem of central double
centralizers on A. The proof makes use of the Urysohn's
lemma for spectra of C*-algebras and algebraic properties
of a central double centralizer.

Throughout the note, A denotes a C*-algebra. Let Prim A
denote the structure space of A, that is the set of all primitive
ideals of A, with the hull-kernel topology. Let M(A) denote the
double centralizer algebra of A and Z(M(A)) the center of M(A).
Busby [1] has noted that the algebra Cδ(Prim A) of all bounded
continuous complex-valued functions on Prim A can be canonically
identified with Z(M(A)), which is equivalent with a result of Dix-
mier ([5], Theorem 5). Moreover, we can regard the algebra
Z(M(A)) as the algebra of all bounded linear operators T on A such
that (Tx)y = x(Ty) for all x,yeA. In its final form, this identi-
fication Φ between Z(M(A)) and Cδ(PrimA) can be described as
follows: If TeZ(M(A)), then To, + P = Φ(T)(P)(a + P) for all aeA
and P e Prim A, where a + P for Pe Prim A denotes the canonical
image of a in A/P (Dauns and Hofmann theorem [3] shows that
every functions in Cδ(Prim A) can be realized uniquely in this way).
We will characterize the set of all compact central double centrali-
zers on A in view of this representation theorem of Z(M(A)). Our
characterization is similar to ones established by Kellogg [6] and
Ghing and Wong [2] for H*-algebras, and this is also a generaliza-
tion of one proved by Rowlands [7] for dual J3*-algebras.

Let ZC(M(A)) denote the compact central double centralizers on
A. If LC(A) is the algebra of all compact operators on A, then
ZC(M(A)) = Z(M(A)) Π LC(A), so that ZC(M(A)) is a closed ideal of
Z(M(A)). Let Ic be the set of all functions / in Cδ(PrimA) such
that for any closed compact subset K in supp (/), A/Iκ is finite
dimensional. Here supp (/) denotes the set of all P e Prim A such
that f(P) Φ 0, and Iκ denotes a closed two-sided ideal of A with
Prim (A/Iκ) ~ K (cf. [4], § 3.2). Note that if K is the empty set,
then Ajlκ is zero-dimensional, so that Ic contains the zero function.
Now Ic is a closed ideal in Cό(PrimA). For since supp(/)3
supp(/#) for each /, g in Cδ(PrimA), Ic is an ideal in C&(PrimA).
Let {fn} be a sequence of functions in Ic which converges uniformly
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to a function / in C&(Prim A). Let K be any nonempty closed
compact subset in supp (/). Set

d = inΐ{\f(P)\:PeK}.

Then δ > 0 and \\fN - f\\ < δ for sufficiently large number N. This
implies K c supp (fN). Then A/Iκ is finite dimensional since fNeIc.
Hence f βlc and so Ic is uniformly closed. Let C0(Prim A) be the
set of all bounded continuous complex-valued functions on Prim A
which vanish at infinity. Let I0Q = Ic Π C0(Prim A). Then Ico is a
closed ideal of Cδ(Prim A).

We now show that these ideals ZC(M(A)) and Ico can be canoni-
cally identified and thus obtain a characterization for ZC(M(A)).

THEOREM 1. ZC(M(A)) is isometrically *-isomorphic to Ico.

To show the above theorem, we need the following Urysohn's
lemma for arbitrary C*-algebras.

LEMMA 2 ([8], Theorem). Let A be the spectrum of A and let
Slf S2 be two nonempty closed subsets in A. Then the following
two conditions are equivalent

(i) s ,ns 2 = 0.
(ii) For any element a ^ 0 in A there exists an element x in

A such that 0 <; x <; a, π(x) — 0 for all π e S19 and π(x) = π(a) for
all π e S2.

Proof of Theorem 1. Let Φ be the canonical *-isomorphism of
Z(M(A)) onto Cδ(Prim A) as be stated above. We will show that
Φ(ZC(M{A))) — Ico going through three steps.

(I) Φ(ZC(M(A))) z> Ico. Let / e Ico and ε > 0 be chosen arbit-
rarily. Set

Kε = {PePrimA: |/(P) | ^ ε}

and

Fε = {P e Prim A: \ f{P) \ ̂  ε/2} .

Let {uλ} be a positive approximate identity for A (in the sense of
Appendice B29 in [4]). By Lemma 2, for each λ there exists an
element xλ)£ in A such that 0 <; xλ>ε <; uλ, xλ>ε + P = uλ + P for all
PeKε and xλ,ε + P = 0 for all PeFε. Set T = Φ'\f), so that T is
a central double centralizer on A. Moreover, set

TM = T{xhεa)

for each λ and a e A. Then Tλy£ is a bounded linear operator on A.
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We will show that TXε is an element of LC(A). Let supp(Γ^,s) be
the set of all P e Prim A such that Txλ>ε<£P. Since Txλ,εeT(P)c.P
for all PeFε, we have Fε is included Prim (A)\supp (Txλ,ε). This
implies that

cl (supp (Txλ,ε)) c cl (Prim (A)\Fε) c Kε / 2

where cl denotes closure in the hull-kernel topology. Since Kε/2 is
compact, it follows that cl (supp (Txλ,ε)) is a closed compact subset
in supp (/). Let Iλte is a closed two-sided ideal of A such that
Prim (A/Iλtε)czc\ (supp (Txλ,ε)). Then A/Iχt8 is finite dimensional since
felc. Let {an} be a sequence of A with | | α n | | < ; i for all n =
1, 2, . Then {α% + ii,.} is also a bounded sequence in A/Iλ,ε, so
that there exists a convergent subsequence {α%i + 7;>e}. We now
have

= sup {|| (Γa^.Xα.y - a%k) + P | | :PePr im A}

= sup {|| (Txλ>ε + P ) K . - ank + P) ||: P e cl (supp (Txλ,ε))}

£ sup {|| T|| Ha., - α^ + P | | : Pee l (supp (Txλ,ε))}

for all j , k = 1, 2, •••. Then {Γ;,ε(αMi)} is Cauchy and hence conver-
ges in A. Thus Γ;,ε is compact for each λ. Now since felo and
Kε is a closed compact subset in supp (/), it follows that A/IKε is
finite dimensional C*-algebra and hence {uλ + IKε\ converges to the
identity lε of A/IKε. Then there exists a λe such that | | lβ — (uit +
Iκε)\\ < e. Set Tε = TXε>ε and a;ε = xXε>ε. For any αe A we further
set

α - sup {||(Γα - xεTa) + P| | : P e

β = sup{||Γ(α - α;£α) + P| | : PePrim

Since xε + P = W;£ + P for all PeK$9 we have

α = sup{||(Γα + P) - (^ε + P)(Γα +

= 11(1.-(^ + 1 0 X ^ + 1̂ )11
£\\Ta\\ε.

We further have

β = βup{|/(P)| ||(α - a,yx) + P||:PePrim(A)\iΓ.}
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Therefore || Ta - Tεa\\ ^ α + β ^ (II Ta\\ + 2 | |α| |)e for all α e i , so
that || Γ - Tε || ^ (|| T\\ + 2)ε. Since Γε is compact and ε is arbitrary,
T is also compact and (I) is proved.

(II) Φ{Zc{M{A)))aIc. Let feΦ(Zc(M(A))) and TeZc(M(A))
with / = Φ(T). Suppose that f$Ic, so that there exists a non-
empty closed compact subset K in supp (/) such that A/Iκ is infinite
dimensional. Then there exist elements an in A such that
I K + / * | | = 1 (rc = 1,2,-.-) and H K + J J - (<*„ + I*)11 ^ 1/2 ( n ^ m ) .
We can assume that | | α Λ | | ^ 2 (n = 1, 2, •)• Set

Then § > 0 since i£ is compact and we have

\\Tan - Γ α J | ^ βup{|/(P)| | | K - <O

for all distinct numbers nf m. Then {Taj contains no convergent
subsequence. But this is imposible since T is compact and (II) is
proved.

(Ill) Φ(ZC(M(A))) cC0(Prim A). Let T e ZC(M(A)) and ε > 0. Set

/ = Φ{T) and Kε = {PePrim A: | / ( P ) | ^ ε} .

We only show that Kε is compact. Let IKε be a closed two-sided
ideal of A with Prim (A/IKε) ~ iΓε, as be stated above. Suppose that
A/I^ is infinite dimensional. Then, as in the proof of (II), there
exist elements an in A such that | |α j |<^2, \\an + IKε\\ = l (w = l, 2, •••)
and ||(αΛ + 1^) — (αw + / r £ ) | | ^ 1/2 (nΦm). By the same computa-
tion in the proof of (II), we have \\Tan - Tam\\ ^ ε/2, so that {Tan}
contains no convergent subsequence, which contradicts T is compact.
Thus A/IKε is a finite dimensinal C*-algebra. Then A/IKs can be
canonically identified with its enveloping von Neumann algebra.
Suppose that Prim (A/IKg) contains an infinite countable subset {P19

P2, •••}. Let ;rt be a nonzero irreducible representation of A/IKε

with Pi = Ker TΓ̂  and f< a norm one element in the Hubert space
associated with π% for each i. Set

/t(» + J^) - (πt(x + /^)f, I ξt) (i = 1, 2, - )

for each α; + /#, eA/IKε. Since TΓ̂  9̂  ττy (i ^ i), it follows that
11/, - fό\\ = 2 (i ^ i) (cf. [4], 2.12.1). Let ^ denote the support of
ft for each i. Then {pj are mutually orthogonal (cf. [4], 12.3.1).
But this is imposible since each pt is an element in A/Iκ and so
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Prim (A/IKε) is finite set. Then Kε is also a finite set, so that it is
compact and (III) is proved.

We will next show that a result of Rowlands ([7], Theorem 2)
is a special case of Theorem 1. Let Ω(A) be the space of minimal
closed two-sided ideals of A with its discrete topology, in case A
is dual. Let {Iλ: XeΛ} be the family of all minimal closed two-sided
ideals of A and ΛQ = {λ e Λ: Iλ is infinite dimensional}. Let Jo be the
set of all functions / in the algebra C\Ω(A)) of all bounded com-
plex-valued functions on Ω(A) such that f{Iλ) = 0 for all XeΛQ; if
Ao = 0 , let Io = C\Ω(A)). Let C0(Ω(A)) be the subalgebra of C\Ω{A))
which consists of functions vanishing at infinity.

COROLLARY 3 ([7], Theorem 2). If A is a dual C*-algebra, then
ZC(M(A)) is isometrically *-isomorphic to Io Π C0(Ω(A)).

Proof. By ([4], 10.10.6), Prim A is discrete. For each P e
Prim A, we define a function δP on Prim A by the equation: δP(P) —
1 and δP(Q) = 0 if Q Φ P, and set μ(P) = Φ"\δP)(A). Then we can
easily see that P—>μ(P) is a bijection of Prim A onto Ω(A). Let
μ* be the dual map of μ. Then μ* is a isometric ^-isomorphism of
C\Ω(A)) onto Cδ(PrimA). By the definitions of Ic and Io, we see
that μ*(I0 n C0(Ω(A))) = 7C0. Set Ψ(T) = (μ*r\Φ(T)) for each Te
^(ikί(A)). Then r(^(lf(A))) = Io n C0(Ω(A)) by Theorem 1 and the
corollary is proved.

The author wishes to thank the referee for his useful comments.
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