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This paper characterizes the projective symplectic groups
PSp(2m, q) and the projective orthogonal groups PJ2(2m+l, q)
as the only transitive rank 3 permutation groups G of a set
X for which the pointwise stabilizer of G has orbit lengths
1, q(q2m~2—l)/(q—1) and qlm~γ under a relatively weak hypo-
thesis about the pointwise stabilizer of a certain subset of
X. A precise statement is

THEOREM. Let G be a transitive rank 3 group of permu-
tations of a set X such that the orbit lengths for the point-
wise stabilizer are 1, q(qr~2—l)/(q—l) and q1"1 for integers
q>l and r>4. Let x1 denote the union of the orbits of
length 1 and q(qr-2—l)/(q—l). Let R(xy) denote Π {zL: x,ye z1}.
Assume R(xy)Φ{x, y} for yex1— {x}. Assume that the point-
wise stabilizer of x1 Π yL for y g xL does not fix R(xy) point-
wise. Then r is even, q is a prime power and G is isomor-
phic to either a group of symplectic collineations of projective
(r—1) space over GF(q) containing PSp(r, q) or a group of
orthogonal collineations of projective r space over GF(q)
containing PΩ(r+l, q).

1* Introduction* The projective classical groups of symplectic

type PSp(2m, q) for m ̂  2 are transitive permutation groups of
rank 3 when considered as groups of permutations of the absolute
points of the corresponding projective space. Indeed the pointwise
stabilizer of PSp(2m, q) has 3 orbits of lengths 1, q(q2m~2 - ΐ)/(q - 1)
and q2m~\ In a recent paper [7], the author characterized the
symplectic groups PSp(2m, q) for m ^ 3 as rank 3 permutation
groups.

THEOREM A. Let G be a transitive rank 3 group of permuta-
tions of a set X such that Gx, the stabilizer of a point x e X, has
orbit lengths 1, q(qr~2 — l)/(q — 1) and qr~x for integers q ^ 2 and
r ^ 5. Let xL denote the union of the Gx-orbits of lengths 1 and
Q(Qr~2 — 1)/((Z — 1) Let R(xy) denote P[{zL: x,yezλ}. Assume
R(χy) Φ {x, y}. Assume that the pointwise stabilizer of x1 is tran-
sitive on the points unequal to x of R(xy) for ygx1. Then r is
even, q is a prime power and G is isomorphic to a group of sym-
plectic collineations of projective (r — 1) space over the field of q
elements, which contains PSp(rf q).
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We note that the orthogonal group PΩ(2m + 1, q) for m ^ 2
acts on the singular points of the orthogonal geometry of a projec-
tive 2m-space over the field of q elements as a rank 3 permutation
group in which its pointwise stabilizer has the same orbit lengths
of 1, q(q9m~2 - ΐ)/(q - 1) and q2™~1 as PSp(2m, q) in its action on the
absolute points of the symplectic geometry. In the proof of Theo-
rem A, the possibility that G was an orthogonal group was elimi-
nated because of the hypothesis that a hyperbolic line R(xy) for
y ίx1 carried at least 3 points. It seems reasonable to expect that
with a change of hypothesis a characterization of the rank 3 groups
G in which the pointwise stabilizer has orbit lengths 1, q(qr~2 — 1)/
(q — 1) and q2r~ι is possible and that these groups will be subgroups
of the collineation groups of the symplectic geometry or of the
orthogonal geometry. We establish a result of this nature in the
following form.

THEOREM B. Let G be a transitive rank 3 group of permuta-
tions of a set X such that the orbit lengths for Gx, the stabilizer
of a point x in X, are 1, q(qr~2 — ϊ)/(q — 1) and qr~ι for integers
q>l and r > 4. Let x1 denote the union of the Gx-orbits of length
1 and q(qr~2 — ϊ)/(q — 1). Let R(xy) denote (λ{zL: x, yez1}. Assume
R(xy)Φ{x, y) for yex1 — {x}. Assume that the pointwise stabilizer
of xL Π y1 for y$xL does not fix R{xy) pointwise. Then r is even,
q is a prime power and G = H where either H is a group of
symplectic collineations of protective (r —1) space over GF(q) such
that H ^ PSp(r, q) or H is a group of orthogonal collineations of
protective r space over GF(q) such that Hξ^PΩ(r + 1, q).

The proof of Theorem B actually yields the following corollary
which distinguishes between the two cases.

COROLLARY. Assume the hypotheses of Theorem B.
(i) Assume that the pointwise stabilizer of x1 is nontrivial.

Then r is even, q is a prime power and G = H where H is a
group of symplectic collineations of protective (r — 1) space over
GF(q) such that H\^PSp(r, q).

(ii) Assume that the pointwise stabilizer of x1 is trivial and
that the pointwise stabilizer of xL Π y1 for y£x[ does not fix R{xy)
pointwise. Then r is even, q is a prime power and G = H where
H is a group of orthogonal collineations of protective r space over
GF(q) such that H^PΩ{r + 1, q).

Note that Corollary B(i) is a stronger result than Theorem A.
We consider this paper a continuation of [7] and note that the
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proof of Theorem B is similar to that of Theorem A. In § 2 we
will prove Theorem B. At times we will refer the reader to [7] for
the proofs of several statements. There are other characterizations
of the rank 3 classical groups, due to D. Higman, W. Kantor and
D. Perin [3, 4, 5].

2* The proof of Theorem B* In this section assume that G
is a rank 3 permutation group on X which satisfies the hypotheses
of Theorem B. Let D(b) denote the Gδ-orbit of length q(qr~2 - 1)/
(q — 1) and let C(b) denote the (?6-orbit of length qr~\ Let vr denote

LEMMA 2.1. (i) G is primitive of even order.
(ii) μ = λ + 2 == vr_2.
(iii) a1 Π bL Φ R(ab) for b e D(a).

Note that 2.1 (iii) eliminates problems with generalized qua-
drangles.

LEMMA 2.2. ( i ) | a1 Π C(b) \ = qr~2 for b e D(a).

(ii) Gab is transitive on the points of aL Π C(b) for beD(a).

For the proofs, see Lemmas 3.1 and 3.2 of [7].

NOTATION. If {x19 x2, , xτ) is a set of i ^ 2 distinct points of
X, then let R(x19 %2, , xt) denote

Π {z1: xί9 x2, , Xt e z1 for zeX} = R(x19 x29 , xt) .

LEMMA 2.3. ( i ) y ^R{xιx2- --xτ) if and only if y1 2 Π {xfi 1 ^
3 ^ i}.

(ii) 0(5(0102 »<)) = R(g(Pι)gfa) 0(3i)) /or ^ G .
(iii) jRί̂ αJa •»<) = R{y1y2- 2/*) i/ and only if

Π {a?/: 1 ^ i ^ i} = ΓΊ{^: 1 ^ i ^ i} .

REMARK. This lemma is valid for any permutation group G on
X and for any self-paired orbit D(x) of Gx where xL = {it;} U

Proof. In the proof the intersections are taken from i = l to i.
( i ) Assume y 6 jR^αv •»<). Let we ΐ\xj. Then α?w x2, , ^ e

^M;1 by Lemma 2.1 (vi) of [7]. Since y e Rix^ α?<) and ϋί^av «^)£
w1, it follows that yew1 and wey1.

Conversely assume f j f i a?/. Let xίf x2, , xt e wL. Then
w e f] xfQ y1. So yew1 and 2/ e iϋ^av -a?,).



276 ARTHUR YANUSHKA

(ii) By (i) zeRWxMxJ gfri)) iff z^Πg(xjY iff (g'\z)Y^
f][xf iff g~\z)eR(xιx2'"Xι) iff zeg{R{xιx2-^x,)).

(iii) Assume i ϋ ^ α v xt) = R(yxy2- --yd- For 1 <; i ^ i, ^ G
Λ(1W« •»<). By ( i ) xf 2 Π vί for l ^ j ^ i . So n » | 2 n ϊfc1. It
follows that Π xj = ΓΊ y£.

Conversely assume |Ί xj- — n 2/j. Then z e R{xxx2' -α )̂ iff ^ 2 ίl
a J-= η ̂ /j- iff zGRiyMi yϊ). This completes the proof of the
lemma.

DEFINITION. A l-clique is a set {#} for xe X.

For i ^ 2, an i-clique is a set {α̂ , &2, , a;J of points of X
such that {xlf x29 , ̂ . J is an (i — l)-clique, xt e ΰ f e ) for 1 ̂  i <Ξ
i — 1 and ^ ί iϋίXαv •»<_!) where i?(^) = {αjj.

If {a?!, a?2> •••> ̂ } is an ί-clique, then we will call R{xιx2* --x%) an
"i-space."

Note that a "2-space" is a totally singular line of [2] and a
"3-space" is a "plane" of [7]. Eventually an "ί-space" will corres-
pond to a totally singular subspace generated by i linearly inde-
pendent singular points of a classical geometry.

NOTATION. Let T(xy) denote the pointwise stabilizer in G of
xι Πy1 for yeC(x). Thus

T(xy) = Π{Gz:zexλ ny1} .

PROPOSITION 2.4. T(xy) <2 GR{xy) and T(xy) is transitive on the
points of R{xy) for ygx1.

Proof. First we prove that GR{xy) is primitive on the points of
R(xy). Indeed if \R(xy)\>2, then GR{xy) is 2-transitive on the points
of R(xy) by a lemma in [2]. If R(xy) = {x, y}, then \G:GR{xy)\ =
nl/2 if yίx1 and \G: Gxy\ = nl. Therefore \GR{xy): GR{xy)x\ = 2 because
GR(χy)x = Gxy.

If ^ e GJJK^,, then

g{R{xy)) = R(g(x)g(y)) = R{xy)

and

g(χY n ^T/) 1 = χL ny1

by Lemma 2.3. But

T(xyY - n {Gg(z): z e a;1 Πi/1} = T(g(x)g(y))
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and so T(xy)9 = T(xy). Therefore T(xy) is a normal subgroup of
the primitive group GR{xy). Since T{xy) does not fix R{xy) pointwise
by hypothesis of the theorem, it follows that T(xy) is transitive on
the points of R{xy).

Note that GR{xy) is a doubly transitive group on the points of
R(xy) and has a normal subgroup I(xy). By familiar classification
theorems not needed here, \R(xy)\ — 1 is usually a prime power.

Note that if T{x), the pointwise stabilizer of xL, is nontrivial,
then T(xy) does not fix R{xy) pointwise for y g xL because T(x) is
semiregular off xL by a lemma in [2] and T{x) ^ T(xy).

Denote the group generated by T(xy) for all x, y e X with
y e CO) simply as K. Thus

if = (T(xy): x,yeX,ye C(x)) .

P R O P O S I T I O N 2 . 5 . ( i ) // {xί9 x 2 , « , α ; J is a set of i distinct
points of X, then KXίX2...x. is transitive on the points of
Π {xf: l ^ j ^ i } - Ripfo- .a?,)*

(i i) K is transitive on i-cliques.

Proof. ( i ) In the proof the intersections are taken from
3 = 1 to i. Let c and h be distinct points of n xf — R{xxx2* #f).
Either ceC(h) or ceD(h). If ceC(h), then S(cΛ) is a hyperbolic
line in Πa;/. Since |G | is even, ^ , a;2, •• , x i 6 c L n ^ i and so T(ch)
fixes a?!, #2, , Xt. By Proposition 2.4, there exists teT(eh)^
KXlX2 - x. such that ί(c) = h.

Assume now that ceD(h). Since c, h $ R(xtx2- •#<), there exists
by Lemma 2.3 (i) w e n a?/ Π C(c) and v e i l »/ Π C(h). There are 3
possible cases to consider:

(1) ueC(h), (2) veC(c) and (3) ueD(h) and veD(c).
( 1 ) If tten^n C(c) Π C(fc), then R(cu) is a hyperbolic line in

Πxf By Proposition 2.4, there exists t eT(cu) ^ KXlX2...x. such that
t(c) = u. The line R(uh) is hyperbolic and lies in Π xf. By Proposition
2.4, there exists s e T(wfe) ^ KXlX2...x. such that s(%) = h. Thus sί(e) = fe
and steKXlX2...x..

( 2 ) If v e ί l ^ j n C(c) Π C(fe), then a proof similar to that of
case (1) yields the desired result.

( 3) uenxfΓί C(c) Π D(h) and v e n xj Π -D(c) Π C(fe). Since ce
jD(fe), there exists weR(ch) — {c, h) because by hypothesis \R(ch)\>2.
Note weC(u), for if weuL, then ceR(ch) = R(wh)Quλ

9 a contra-
diction in case (3). Now w eR(ch) Q Π a?̂  . But w ί Rix^x^ a?t)
because % G n xf Π C(w). So % e Π a?j- Π C(c) Π C(w). By case (1)
there exists teKXίX2...x. such that t(c) = w. Note weC(v), for if
wet ; 1 , then heR(ch) = R{wh)^vλ, a contradiction. Now v e Γ\xfΓ\
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C(w)Γ\C(h). By case (1) there exists seKXlX2...x. such that s(w) — h.
So st(c) = h and ste KXlX2...x..

(ii) Let {xlfx29 •••,#,} and f̂ , ?/2, ••-,#,} be 2 i-cliques. The
proof is by induction on i. First note that K is transitive on X
because if is a normal subgroup of the primitive group G. If ΐ = l,
then there exists ί e ί such that k(x^ = ylβ Assume i > 1. By
the induction assumption there exists g eK such that g{x§) = #y for
j = 1, 2, , i — 1. From Lemma 2.3 (ii) and the definition of i-
clique, it follows that {yif y2, , yt_19 g(xx)} is an ί-clique because
{xlf x2, - , Xi-19 Xi} is an i-clique. Since

9(x<), Vi^ Π {2/j: 1 ^ j ^ ΐ - 1} - R(y1y2- -^--i) ,

by (i) there is heKVιy%..*Vi^ such that h{g(xτ)) = 2/,.. Thus hg(Xj) = yj
for i = 1, 2, , i. This completes the proof of the proposition.

Note that 3-cliques exist by Lemma 2.1 (iii).

PROPOSITION 2.6. Ga is a rank 3 permutation group on the set
of totally singular lines through a. For b e D{a), GaRίab} has non-
trivial orbits

{R(ac): c e a1 n b1 = R(ab)}

and

{R(ac):ceaA Π C(b)} .

The proof is similar to that of Proposition 3.4 of [7]. This
proposition follows from Lemmas 2.2 and 2.3 and Proposition 2.5 (i)
for i = 2 just as Proposition 3.4 of [7] follows from Lemmas 3.2
and 2.2 and Proposition 3.3 of [7].

PROPOSITION 2.7. Totally singular lines carry q + 1 points.

PROPOSITION 2.8. If beD(a), the X = u{c1: ceR(ab)}.

PROPOSITION 2.9. X together with its totally singular lines
forms a nondegenerate Shult space of finite rank ^ 3 in which
lines carry q + 1 points.

The proofs of the above three statements are identical to the
proofs of Propositions 3.5, 3.6, and 3.7 of [7].

LEMMA 2.10. / / {x19 x2, •••,#*} is an i-clique9 then R(x1x2 xi)

is a Shult subspace of X.
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Proof. In the proof the intersections are taken from j = 1 to i.
Let d, eeR{xxx2' •»<)• By definition of i-clique, ^eί l ίc , 1 for

1 ^ & ^ j and so by definition of "i-space" and by Lemma 2.3 (i) it
follows that

deRfaXi xjQ Π xjQeL .

Thus any two points of R{xιx2- -xι) are adjacent. Let the line
R{xy) meet R{x1x2- -xι) in {w, v). Then i?(α;̂ /) = jβ(ιw) and xL C]yL =
uλ Ov1. If z6J2(a?2/), then

since w, ve R{xιx2- •»<) by Lemma 2.3. Thus zeR(xtx2* - -x%) and
R{xy)ξ^R(xιx2- a?J. Therefore i2(θ/\α;2 xt) is a Shult subspace of
X, as desired.

PROPOSITION 2.11. ( i) q is a prime power and r is even.
(ii) Either X is isomorphic to the polar space S associated

with an alternating form f defined on a protective space P of
dimension r — 1 over GF(q) or X is isomorphic to the polar space
S associated with a symmetric form f defined on a protective
space P of dimension r over GF(q) for q odd.

For the proof see Proposition 3.9 of [7].
Since r is even and r ^ 5, there exists a natural number m ̂  3

such that r = 2m.

PROPOSITION 2.12. ( i ) G is isomorphic to a subgroup of
PΓU(f), the group of collineations of P which preserve the form f.

(ii) For xeX, φ(xL) = {weP: f(w, w) = 0, f{w9 φ{x)) = 0} where
φ: X—>S is a polar space isomorphism.

(iii) For an i-clique, \R(x1x2ι- -x%)\ = vt and \ Π {xj: 1 ̂  j ^i}\ =

(iv) X contains m-cliques but does not contain (m + l)-cliques.

Proof. For (i) and (ii) see Proposition 3.10 (i) and (ii) of [7].
(iii) From (ii) it follows that

φ{R(xxx2- -a?,)) - Π {φ(zY: φ{x,)9 Φ(x2), , φfa) e φiz1})

which equals the set of singular points in the intersection of all
the hyperplanes containing φ(x^, Φ&z), •••, Φ(Pi)* But this set is the
projective subspace generated by φ{x^)f Φ(x2), "*9Φ(^i) since φ(xk)±
φ(Xj) for all k, j . Thus \R{x1x2---xl)\ — vt.

From (ii) \ f) {xf:l <> j <> i}\ = vr_t.
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(iv) Since r = 2m, (iv) follows from (iii).

Now let {x19 xi9 , xm} be a fixed m-clique of X. Then

xλ c R{xιx9) a R{xιx2x^) c c R{xιx2- xm)

is a chain of Shult subspaces of X of length m ^ 3. Define sub-
groups Ki of K as follows:

!£ = if

Kt = K^ n ^(,1,2..., ί_1) for 2 ^ i ^ m + 1 .

Note the choice of the fixed ί-clique is arbitrary since K is transi-
tive on ΐ-cliques.

PROPOSITION 2.13. (i) Ki is transitive on the set of "i-spaces"
containing R{xxx2' -α^), for 2 <; i ^ m.

(ii) |JΓ: iΓm+1 | = ΠΓ=i ^ i .

Proof, (i) Let ^(α ̂  -α^jd) and ^(α ̂  • α?<_1β) be "ΐ-spaces"
containing R(xίx9 a;ί_1). Then

i —1

5 = 1

a set on which K^. . .^^ is transitive by Proposition 2.5. There
exists k e KXlXl...Xi_x such that k(d) = e. By Lemma 2.3 (iii), it follows
that

and that k e K^
(ii) For 2<^i<>m the number of "i-spaces" containing R{xix2*

is

So I JSΓ<: -BΓ<+11 = (̂m-ct-D) by (i). Since if is a normal subgroup of
the primitive group G, K is transitive and l ^ : ίΓ2| = v2m. Now (ii)
follows.

PROPOSITION 2.14. ( i) ψ(K) is a flag-transitive subgroup of
PGU(f), the group of protective transformations of P which pre-
serve /.

(ii) If X is symplectic, then ψ(K) ^ PSp(2m, q).
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(iii) If X is orthogonal, then ψ(K) ^ PΩ(2m + 1, q).

Proof. Let x, yeX with yeC(x). Since T(xy) is the pointwise
stabilizer in G of xL n y1, it follows that ψ(T(xy)) is the pointwise
stabilizer in ψ(G) of ^(X)1 Π ^(i/)1. If ί is a nontrivial element of
T(xy), then ψ(t)ePΓU(f) and fixes ^(α;)1 n Φ(y)L pointwise. This
implies that ψ(t)ePGU(f) and so ψ(K) ^ PGU(f).

Now f{Km+ι) fixes the flag

If 5 is the subgroup of PGU(f) which fixes the above flag, then
B is a Borel subgroup of PGU(f) and B f] ψ(K) = ψ(Km+ί). There-
fore by Proposition 2.13 (ii)

= \B\.\f(K):ψ(Km+1)\

Thus 5Ψ(JSL) = PGU(f) and ^(ίΓ) is a flag-transitive subgroup of
PGU(f). By a theorem of Seitz [6], it follows that

ψ(K) ^ PSp(2m, q)

if X is symplectic and

ψ(K) ^ P^(2m + 1, q)

if X is orthogonal, as desired.

REFERENCES

1. F. Buekenhout and E. Shult, On the foundations of polar geometry, Geometriae
Dedicata, 3 (1974), 155-170.
2. D. G. Higman, Finite permutation groups of rank 3, Math. Z., 86 (1964), 145-156.
3. D. G. Higman and J. McLaughlin, Rank 3 subgroups of finite symplectic and uni-
tary groups, J. Reine Angew Math., 218 (1965), 174-189.
4. W. Kantor, Rank 3 characterizations of classical geometries, J. Algebra, 36 (1975),
309-313
5. D. Perm, On collineation groups of finite protective spaces, Math. Z., 126 (1972),
135-142.
6. G. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. of Math., (2)
97 (1973), 27-56.
7. A. Yanushka, A characterization of the symplectic groups PSp(2m, q) as rank 3
permutation groups, Pacific J. Math., 59 (1975) 611-621.

Received July 17, 1975 and in revised form July 9, 1976.

SOUTHERN ILLINOIS UNIVERSITY

CARBONDALE, IL 62901





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor)

University of California
Los Angeles, California 90024

C. W. CURTIS

University of Oregon
Eugene, OR 97403

C. C. MOORE

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
E. F. BECKENBACH B. H. NEUMANN F. WOLF

J . DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. F I N N AND J. MILGRAM

Stanford University
Stanford, California 94305

K. YOSHIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 72, No. 1 January, 1977

Kazuo Anzai and Shiro Ishikawa, On common fixed points for several
continuous affine mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Bruce Alan Barnes, When is a representation of a Banach ∗-algebra
Naimark-related to a ∗-representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Richard Dowell Byrd, Justin Thomas Lloyd, Franklin D. Pedersen and
James Wilson Stepp, Automorphisms of the semigroup of finite
complexes of a periodic locally cyclic group . . . . . . . . . . . . . . . . . . . . . . . . 27

Donald S. Coram and Paul Frazier Duvall, Jr., Approximate fibrations and a
movability condition for maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Kenneth R. Davidson and Che-Kao Fong, An operator algebra which is not
closed in the Calkin algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Garret J. Etgen and James Pawlowski, A comparison theorem and
oscillation criteria for second order differential systems . . . . . . . . . . . . . . 59

Philip Palmer Green, C∗-algebras of transformation groups with smooth
orbit space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Charles Allen Jones and Charles Dwight Lahr, Weak and norm approximate
identities are different . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

G. K. Kalisch, On integral representations of piecewise holomorphic
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Y. Kodama, On product of shape and a question of Sher . . . . . . . . . . . . . . . . . . 115
Heinz K. Langer and B. Textorius, On generalized resolvents and

Q-functions of symmetric linear relations (subspaces) in Hilbert
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Albert Edward Livingston, On the integral means of univalent, meromorphic
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Wallace Smith Martindale, III and Susan Montgomery, Fixed elements of
Jordan automorphisms of associative rings . . . . . . . . . . . . . . . . . . . . . . . . . 181

R. Kent Nagle, Monotonicity and alternative methods for nonlinear
boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Richard John O’Malley, Approximately differentiable functions: the r
topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Mangesh Bhalchandra Rege and Kalathoor Varadarajan, Chain conditions
and pure-exactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Christine Ann Shannon, The second dual of C(X) . . . . . . . . . . . . . . . . . . . . . . . . 237
Sin-ei Takahasi, A characterization for compact central double centralizers

of C∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Theresa Phillips Vaughan, A note on the Jacobi-Perron algorithm . . . . . . . . . . 261
Arthur Anthony Yanushka, A characterization of PSp(2m, q) and

P�(2m+ 1, q) as rank 3 permutation groups . . . . . . . . . . . . . . . . . . . . . . . 273

Pacific
JournalofM

athem
atics

1977
Vol.72,N

o.1

http://dx.doi.org/10.2140/pjm.1977.72.1
http://dx.doi.org/10.2140/pjm.1977.72.1
http://dx.doi.org/10.2140/pjm.1977.72.5
http://dx.doi.org/10.2140/pjm.1977.72.5
http://dx.doi.org/10.2140/pjm.1977.72.27
http://dx.doi.org/10.2140/pjm.1977.72.27
http://dx.doi.org/10.2140/pjm.1977.72.41
http://dx.doi.org/10.2140/pjm.1977.72.41
http://dx.doi.org/10.2140/pjm.1977.72.57
http://dx.doi.org/10.2140/pjm.1977.72.57
http://dx.doi.org/10.2140/pjm.1977.72.59
http://dx.doi.org/10.2140/pjm.1977.72.59
http://dx.doi.org/10.2140/pjm.1977.72.71
http://dx.doi.org/10.2140/pjm.1977.72.71
http://dx.doi.org/10.2140/pjm.1977.72.99
http://dx.doi.org/10.2140/pjm.1977.72.99
http://dx.doi.org/10.2140/pjm.1977.72.105
http://dx.doi.org/10.2140/pjm.1977.72.105
http://dx.doi.org/10.2140/pjm.1977.72.115
http://dx.doi.org/10.2140/pjm.1977.72.135
http://dx.doi.org/10.2140/pjm.1977.72.135
http://dx.doi.org/10.2140/pjm.1977.72.135
http://dx.doi.org/10.2140/pjm.1977.72.167
http://dx.doi.org/10.2140/pjm.1977.72.167
http://dx.doi.org/10.2140/pjm.1977.72.181
http://dx.doi.org/10.2140/pjm.1977.72.181
http://dx.doi.org/10.2140/pjm.1977.72.197
http://dx.doi.org/10.2140/pjm.1977.72.197
http://dx.doi.org/10.2140/pjm.1977.72.207
http://dx.doi.org/10.2140/pjm.1977.72.207
http://dx.doi.org/10.2140/pjm.1977.72.223
http://dx.doi.org/10.2140/pjm.1977.72.223
http://dx.doi.org/10.2140/pjm.1977.72.237
http://dx.doi.org/10.2140/pjm.1977.72.255
http://dx.doi.org/10.2140/pjm.1977.72.255
http://dx.doi.org/10.2140/pjm.1977.72.261

	
	
	

