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A DECOMPOSITION OF ADDITIVE
SET FUNCTIONS

WAYNE C. BELL

In this paper it is demonstrated that if z is an additive
function from a field F into the nonnegative reals, then
can be separated into two mutually singular parts, /; and y,,
where /; is representable in the sense that its Lebesgue de-
composition projection operator has a refinement integral
representation and /., is such that for each E € F' the contrac-
tion of u, to E is representable iff u,(E)=0. If p, is
maximal, then the decomposition is unique.

1. Introduction. Suppose S is a set, F' a field of subsets of
S, b(F') the set of bounded functions from F' into R, and ba(F) the
set of functions in b(F) which are additive on disjoint elements of
F. For HZ ba(F) denote by H' the set of nonnegative valued
elements of H and let g be in ba(F)*. For neba(F)" denote by A,
the set of elements in ba(F) which are absolutely continuous with
respect to » and by «; the Lebesgue decomposition projection opera-
tor for X, i.e., for peba(F), a,(n) is that part of » which is absolute-
ly continuous with respect to X [5]. For »eba(F)* we say that »

is representable if there exists a g: FF'— R such that a;(9) = S g7 for
each neba(F) in which case g will be said to represent .

2. Preliminary theorems. All integrals in this paper are
refinement limits of sums over finite subdivision of S by elements

of F. If B: F— R and S B(I) exists we will denote by S B the
S

function {v,g B(I))‘veF}. For further details concerning the
integral and 2. K. 1 and 2. K. 2 below see [1].

TurorEM 2. K. 1. If a: F— R and S a(l) exists, then
S

oo~ e

exists and 1s zero. Consequently, if Beb(F) and veF, then
S BI) S a(J) exists iff ‘ B)a(l) exists tn which case they are equal.
v I Jo

Proof. [9].

CoroLLARY 2. K. 2. If a: F—R and B:. F— R and each of
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L a(l) and 5 B(I) exists and M 1is either max or min then SM{a, B8}
8

exists iff SM {g a, SB} exists in which case they are equal.

Proof. [1].

Notice that if & represents g, then for \eba(F)"™ we have
0< a0 = th < so that | &n = | max {0, min {, 1}}» and there-

fore h can be replaced by a bounded function. Also any representa-
tion for ¢ which is valid for ba(F)* is valid for 7eba(F) since
a(n) = a)") — @ (n”) [5] where %™ and %~ are the positive and
negative parts of 7, respectively. Consequently we will restrict our
attention to ba(F')".

We will also have need of the following theorem due to Appling.

THEOREM 2.A. If peba(F)*, neA,, Beb(F) and S,Bpe exists,
then g,87] exists.

Proof. [3].

If in subsequent statements the existence of a given integral or
its equivalence to a given integral is an immediate consequence of
the statements of this section, the integral will often only be written
and the proof of existence or equivalence will be left to the reader.

3. Two lemmas. By the remarks of the previous section if w
has a representing function, then it has a bounded representing
function which, by the following lemma we may assume to be the
characteristic function of some subset of F.

LEMMA 3.1. Suppose heb(F) and for each »\cba(F)*™ we have

hn exists and is equal to \ h \ hn. Then there exists a g: F' — {0, 1}

such that for each neba(F)™ we have Sg)y exists and is equal to
th.

Proof. Let @« = h*, 8 = min{a, 1} and suppose 1 eba(F)*. It is
an easy consequence of 2.K.1 and 2.K.2 that

SathaZN:SaSaxzs}w\, and SBN:SBSBN———SBZL

Also
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Sah < Smax{a, V=N +r< Smax{a’, 1}(max {a@, 1} — Dx + 0 = A
hence S Bn = Smin {a, I\ = S N = ghx. Now

0= |min(6,1—Bh = |0~ &) min (8,1~ A + | fmin (8, 1 - o)
- Smin (8 — B, (L— B + Smin {S Bzx,gb’x - Sﬁzx}
:Smin{gm— S,Bzh,g(l—ﬁ)*h} +0=0.

it A() < 1/2

For each veF let Il(v)= {g“’) B = Then 0<1<
min {8, 1 — B} so that SD\, exists and is zero. For each ve F let

1 if Bw) >

9(v) = = min {2(8(v) — U(v)), 1} .

1
2
0HBM§%

Now by 2.K.2. Sg)u exists and we have

ggx:Smin{2(B—l),1})\,=Smin{2g,8>v—2gl)v,)\,}
:Smin{ZSBk,x}zS,B)x,—l—gmin{g,@?\,,x—g,@)\,}
:Sﬁx—Smin{B,l—B}ngﬁx.

If D is a subdivision of S, i.e., a finite disjoint subset of F
whose union is S, then H is a refinement of D, H € D, means that
H is a subdivision of S and for each v e D there exists a subset H,
of H whose union is wv.

LEMMA 2. Suppose ncba(F)*, (H,) is a disjoint sequence in

F, B> 0 and for each 1€ N we have g,;: F — [0, B] and Sgix exists.

Suppose also that if i€ N, Ic¢F and ¢,(I)# 0, then 1< E,. Then

for each veF, S oM exists and is z;f;lg g(IMI), where g(I) =
. 9.I) for each IcF. ’

Proof. LetveFandec > 0. Letmn be such that 3.2 ME;, Nv) <
¢/4B. For each ¢ < n let D; < {E;N v} be such that if K € D,, then

SoDMD = | g(DMD| < ojzn. Let

vNE



308 WAYNE C. BELL

D=UD)U{~UE)

and suppose H <K D. Let H,={IcH|IZ E;} for each ¢ and H =
H ~ U, H,. Note that if Ie H,, then g(I) = g(I). Now

S oDMD - 3| sl
S5 oOMD -3 aDuD)|

=1 II;

=

+ |Zon| + |5 amwD)|

<3 SaOMD - | adMD)|
+ S OMDI e B, IS Byno and j>n)
+ 3\ BME. (1v)

< Zn'. c/2n + i BME; N v) + B-¢/AB
1 w1
<¢/2+ B-¢/AB +c¢/d=c¢.

For v F denote by z, the characteristic function of {I e F'|IC v}
and by ¢, («) the contraction of g to », i.e., ¢, (1) = Sxmu.

A linear transformation, 7T, from ba(F') into ba(F') is in the class
& [2] iff there exists a K > 0 such that for each v € F and ¢ in ba(F')
we have

RELCOIES JREGTR
THEOREM 3.A. If Te%®, necba(F)" and dcA,, then T(0) =
| cxenpme.
Proof. [2].

In [4] it was shown that the elements of & commute. Now,
if veF and M€ A4}, then ¢,, a, and «a; are clearly in &. Therefore
for £cba(F') we have a,(&) € A,, so that

Bel () = a(a(d) = a@ld) = | (@@imel

consequently if g is representable, then A is also. If we replace A,
in 8.c.1, by ¢, (¢) we have:

3.@.2. acv(#)(E) = (cvoa#)(S) y
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hence we may say that if g represents c¢,(¢) and I€ F' is such that
I < v, then g-x; represents c,(z).

4. The decomposition. Suppose R < F'is a ring of subsets of
S such that Ie F and I S ve R implies that Ie R, then if f is the
characteristic function of R and ) € ba(F')* the expression >, f(I)\I)
is nondecreasing for successive refinements and bounded by \(S) so

that ka exists.

THEOREM 1. Suppose R S F is a ring of subsets of S for which
IcF and ICveR imply IcR. Suppose further that c, () is re-

presentable for each ve R and \ fit = ¢ where f is the characteristic
function of R. Then pt is representable.

Proof. Since p = Sf}u we have for each % there exists D, < {S}

such that if E < D,, then z(S) — >, ;f(I)(I) <1/n and D, can be
chosen so that D, < D,_,. Therefore if v, = U {I€D,|f(I) =1}, then
v, S v,., and S ~ v,) < 1/n for each n. Let E, = v, and E, = v, ~
v, for ¢ >1. For each 7 let ¢, = ¢; () and g F'— {0, 1} be such
that g,-@;, = g, and a,(\) = S g\ for each M eba(F)". Letg =379
and suppose A € ba(F)*. By Lemma 2, S gn exists and is X7 S g\ and

for each 7 we have a,,(\) = S gneA, < A, and therefore S INEA,.
Thus, if A = ng, then e A..

Now suppose v€ A;. Let ¢ > 0 and n be such that p(I) <1/n
implies that MI) < ¢. Then

0 =1(8) ~ |, dDMD = MS) = 32 | glDMD = 1(8) — S, ()
= MS) = 3% e, 2 @ONS) = MS) — 3 &, (M(E)

= \(S) — z ME) = MS) — Mov,) = MS ~ v,) < ¢ .

Therefore xe A, iff v = S g\.
Now, as previously established, S gveA,.  Since S gL E N it

follows that \ N = a(\) = S ga,(\) = S g\, hence g represents p.

If » and ¢ are in ba(F)* we will say that they are mutually
singular if whenever M e€ba(F)" and A <7 and N <9, then A =0.
This is the notion of singularity used in [5] and [10] which is

equivalent to that of [6]. It is also equivalent to Smin {n, 6} = 0.
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Since 7 and ¢ are only finitely additive we cannot, necessarily, obtain
disjoint sets s, and s, such that 7(s)) = d(s,) = 0 with s, Us, =¢.

THEOREM 2. There exist p, and t, in ba(F)* such that:

(1) p and p, are mutually singular and p = p, + t.

(2) p is representable.

(8) Foreach ve F we have c,(t.) is representable iff p,(v) = 0.

(4) If psisin ba(F)*, p, < M < 1t and for each ve F we have
c(tt,) is representable iff p(v) =0, then p, = p,.

Proof. If I, veF, I Z v and h represents c,(¢), then by 3.c.2.
%;-h represents c,(¢). Consequently R = {v € F'|c, (1) is representable}
is a ring satisfying the conditions of Theorem 1 since for I and w»
in R with h, k representing c,(¢) and ¢,(#¢) respectively we have
h + z,.;-k represents ¢, ,(¢#). Let f be the characteristic function of

R and y, = Sf;z. Then for each ve R we have
efth) = E T, = S%Sfy = vaf/x = va/«e = ¢,(1)
so that ¢,(x,) is representable. Also
Sfpa: ngf# = szﬂ = Sf/x= t

and thus, by Theorem 1, p, is representable. Let g, =p — p, =
(1 — f) and note that g, and p, are mutually singular since

min {f, 1 — f} = 0. Therefore for \ € ba(F)* we have a,,(\) and a,,(})
are mutually singular hence

() + @) = | max (@n(), @) = @) S @) + @0
ie., @, + @, =a. Now suppose v€F and c,() is representable,

then ¢,(¢) = c,(tt) + c(t.) is representable so that ve R. Therefore
J(I) =1 for each Ie F for which I £ v. Hence

mo) = | (= fun =o.
Finally suppose f;e€ba(F)t and g, < ¢, < ¢ and e¢,(y,) is repre-

sentable iff yp(v) = 0. For each ve€ R we have c¢(t,;) is representable
by 3.c.1. so that p(v) = 0. Therefore

m=\m+a-pr=o+fa-ne=mn.

This decomposition differs from those of [6], [7] and [10] in that
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it does not give rise to a normal subspace [5]. To see that this is
true suppose that the set B of those elements of ba(F) whose total
variations are representable is a normal subspace and note that
if @ eba(F)" and for each ve F we have a(v)€{0, a(S)}, then acR.
Therefore for any summable sequence, (a,), of such elements we
have x = 3%, a, € R. Consequently «; has an integral representation.
However by [4] this is true iff the linear functional 7 — a;(9)(S) has
an integral representation and in [8] it was shown that this is not
always true.
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