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THE INNER APERTURE OF A CONVEX SET

ARNE BR0NDSTED

It is a standard fact that the asymptotic cone O(C) of a
convex set C in Rn is the polar of the barrier cone B(C).
In the present note we show that the inner aperture P(C)
of C may be obtained from B(C) in a similar manner. We
use this result to study relations between O(C) and P(C),
and to give a short proof of D. G. Larman's characterization
of inner apertures.

1* With each nonempty convex set C in Rn one can associate
certain convex cones which give information about the "nature of
unboundedness" of C. Among such cones are the barrier cone

B(C):= {y eRn\suipxeC (x, y) < + <*>},

the asymptotic cone

O(C):= {yeRn\lxeCVλ ^ 0: x + Xy e C) ,

and the inner aperture

P(C):= {yeRn\lxeC: sup^0dist (x + Xy, bd C) = + oo} .

The barrier cone and the asymptotic cone are well established con-
cepts. (See, e.g., [3]. Note that O(C) in our notation is 0+clC in
the notation of [3].) The inner aperture was introduced by D. G.
Larman [2],"see also [1]. (Note that ^(C) in the notation of [2]
is P(C) U {o} in the notation of the present note. Also, P(C) in the
notation of the present note may differ from P(C) in the notation
of [1] when aff C Φ Rn.) In the following we shall use that

(1) P{C) = {yeRn\VxeRnlX ^ 0: x + Xy e C} ,

cf. [1]. We find this description of P{G) in terms of the linear
structure easier to handle.

In the present note we shall study relations between B(C), O(C)
and P(C). In § 2 we shall introduce a new polar operation A H* AΔ,
closely related to the usual polar operation A ι-> A0, such that

Based on this fact (which we find interesting in itself) and the
standard fact that

( 2 )
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(see, e.g., [3]) we shall next examine relations between 0(C) and
P(C). Finally, in § 3 we shall use the insight obtained in § 2 to
give a proof of the main result of [2], a characterization of those
convex cones that are inner apertures.

By a convex cone we mean a convex set A such that Xxe A for
all xeA and all λ > 0; note that o is not required to be in A. For
any nonempty convex set C, the sets B(C), O(C) and P(C) are in
fact convex cones. One has oeB(C) and oeO(C). Also, one has
o $ P(C) unless C = Rn; in that case P(C) = Rn.

2* For any set A in Rn we let

A : = {y e Rn | Vα; e A\{o}: (x, y) < 0} .

Geometrically speaking, AΔ is the intersection of all open halfspaces

{yeRn\(x,y} < 0} ,

where x runs through A\{o}. In particular, it is a convex cone (not
containing o unless Ac{o}). Also, A* = (cone A)d where cone A
denotes the convex cone generated by A.

Furthermore, we let

A°:= {yeRn\Vxe A: (x, y) ^ 0} .

This is a standard polar operation. Note that A0 is a closed convex
cone, A0 = (cl (cone A))0 and A00 = cl (cone A).

In the following, when A is a convex cone we denote by
rel int A the interior of A relative to the subspace span A generated
by A.

LEMMA. For any convex cone A in Rn one has:
(a) A0 = (intA)JU{o}.
(b) int A0 = (cl A)Δ.
(c) rel int A0 = ((cl A)\V)\ where V denotes the largest linear

subspace contained in cl A.

Proof. Statement (a) is an easy consequence of the definitions.
To prove (c), note first that V = UL where U:= span A0. Con-

sider 2/erel int A0, and let xe(clA)\V. Then there is ueU such
that (x, u) > 0, and there is λ > 0 such that y + Xu e A0. Since
A0 = (cl A)0 we obtain (x, y) < (x, y + Xu) ^ 0, showing that y 6
((cl A)\F)J. Conversely, consider y £ rel int A0. Then by a standard
separation theorem there is x Φ o such that (x, z) < 0 ^ <&, #> for
all s G rel int A0. The first inequality shows that

x 6 (rel int A0)0 = A00 = cl A ,
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and it also shows that

x ί (span (rel int A°))L = U1 = V ,

whence xe(c\A)\V. But then the second inequality shows that yί
((c\A)\V).

To prove (b) note that when int A0 Φ 0 , then U — Rn and so
V = {o}. Since (cl A)Δ = ((cl A)\{o})\ we see that (b) follows from
(c) when intAΦ 0. On the other hand, if int A0 = 0 , then U Φ
Rn and so V contains a line. But then clearly (cl A)Δ = 0 , and
hence (b) also holds when int A0 = 0 .

We shall use the Lemma to obtain:

PROPOSITION. For any convex cone A in Rn one has:
(d) int AoaAΔc: A\
(e) A0 = AJ U {o} ΐ/ αwd ow% i/ A\{o} is open.
(f) int A0 = AΔ if and only if every exposed face {Φ{o}) of cl A

contains a ray of A; this holds in particular if A is closed.
(g) rel int A0 c AΔ if and only if AΔ Φ 0 .

Proof. The first inclusion in (d) follows from (b), the second is
obvious (and is in fact contained in (a)). Statement (e) follows from
(a), and (f) follows from (b). To prove the if part of (g), let y e A&.
Then (x, y) < 0 for all x e A\{o}, and since by (d) we have AΔaA°(Z
F 1 , it follows that no point of A\{o} can be in V9 i.e., A\V = A\{o}.
But then we have ((cl A)\W c (A\V)J = (A\{o})Δ = AΔ, and therefore
the desired inclusion follows from (c). The only if part of (g) is
trivial.

REMARK. If follows from (d) and (e) that AΔ U {o} is closed if
and only if A\{o} is open, and it follows from (d) and (f) that AΔ is
open if and only if every face of cl A contains a ray of A.

Next we shall prove:

THEOREM 1. For any nonempty convex set G in Rn one has

Proof. Let yeB(C)Δ. Suppose that there exists xeRn such
that x + Xy g C for all λ ^ 0. A standard separation theorem then
yields the existence of zeRn\{o} and aeR such that

(x + Xy, z) ^ a ^ (u, z)

for all λ ̂  0 and all ueC. Now, the first inequality implies (y, z) ̂  0,
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whence z$B(C)f whereas the second inequality shows that zeB(C).
Thus we have obtained a contradiction, and (1) then shows that
yeP(C).

Conversely, let y£B{C)Δ. Then there exists zeB(C)\{o} such
that (y, z) ί> 0. Let a e R be such that (u, z) < a for all ueC.
Let x by any point in Rn with <#, z) ^ «. Then <& + \y, z) ^ a
for all λ ^ 0, whence χ.+ XygC for all λ ^ 0. By (1) we see that
V ί P(C).

Combining now the Proposition, Theorem 1 and (2) we obtain:

COROLLARY. For any nonempty convex set C in R% one has:
(h) intO(C)cP(C)cO(C).
(i) 0{C) = P{C) U {o} if and only if B(C)\{o) is open.
(j) int O(C) = P{C) if and only if every exposed face {Φ{o})

of cl B(C) contains a ray of B(C); this holds in particular if B(C)
is closed.

(k) rel int O(C) c P(C) if and only if P(C) Φ 0.

REMARKS. Statement (h) is of course also a direct consequence
of the definitions. When C is a cone, then B(C) = C°, and therefore
O(C) = C00 = clC and P(C) = int(clC) = intC, the latter by (j); this
is also a fairly obvious consequence of the definitions.

3* Every asymptotic cone is closed, and every closed convex
cone is its own asymptotic cone. D. G. Larman [2] characterized
those convex cones that are inner apertures. In our terminology
his theorem is essentially as follows:

THEOREM 2 (D. G. Larman). A nonempty convex cone K in Rn

is the inner aperture of some convex set C if and only if there is
an Fσ set A in the unit sphere S of Rn such that K — Ad.

For any set B we have Bά = (cone B)Δ, and if B is a closed
subset of S, then coneB is closed. Hence, Bι is open by (f). Con-
versely, for any open convex cone D, the set S Π D° is a closed
subset of S with (S Π D°)Δ = D; in fact, using (f) we have (Sf]D0)Δ =
(D°Y = int D00 = int (cl D) = D. In conclusion, Theorem 2 is equiva-
lent to the following:

THEOREM 3. A nonempty convex cone K in Rn is the inner
aperture of some convex set C if and only if there is a (decreasing)
sequence (D i)ieN of open convex cones such that K = Γ\iBN Ot.

Proof. We may assume that K Φ Rn.
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First, assume that K = P(C). Then K = B(C)ά by Theorem 1.
Let yeK. Then for each ieN

Ai'.= {x e Rn I sup t t e c (u, x) ^ - i<α,

is a closed convex cone. Also, At c Ay for i < j , and

5(C) = U A< .
ieN

Therefore, we have

K = B(cy = ( u A%Y = n A; ,
ieΛΓ ί e v

and here (Ai)ieN is a decreasing sequence of open convex cones, cf.
(f). (Actually, B(C) is the effective domain of the support function
σ of C; the set At is the set of points x such that σ{x) ^ — i(x, y).)

Conversely, assume that (Di)ieN is a sequence of open convex
cones such that K — n<e* A Clearly, we may assume that D^Dj
for i < j . Since if ^ Rn, at least one of the D/s in contained in
an open halfspace, and therefore Kx Φ <Z> Let zeKΠ ( —relintir0);
the existence of 2 follows from a standard separation theorem. Then
ze —Kά by (g). Since each Dt is an open cone containing z, there
exists an increasing sequence of positive reals λ* such that

JS(o, i) c - λ,z + A

for each i e N, where B(o, ί) denotes the closed ball centered at o
with radius i. Let

C:=Π(-\* + A).
ΐ e i V

Then C is convex, and it is clear that

P(C) c P ( - M + A) = P(A) = A

for each i 6 N, whence P(C) c if. Conversely, let yeK, and let x
be arbitrary in i2w. Then for each ieN there is μt ^ 0 such that
a? + λy 6 — λ^ + A f° r aH ^ ^ Λ I n order to show that y e P(C)
we shall show that one may obtain μt rg a for some a e R and all
ieN, cf. (1). Since yeK and -zejKΛ it follows that {y, z) > 0.
Therefore there exists a unique βeR such that <# + βy, z) = 0,
and then <α; + λy, z) > 0 for λ > /S. Let i 6 N be such that ||a? + i8#||^ j .
Then x + βye—XiZ + Dt for all i ^ i, and since yeDi9 it follows
that we actually have x + Xy e —Xtz + Di for all λ ^ /3 and all
i ^ i But then any α >̂ max {̂ , , jMy.!, β) will fulfil the re-
quirement.
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