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The metrizability of a &ω-space can be characterized in
terms of its ^-structure by whether or not it contains one
of two canonical subs paces.

A natural generalization of countable CW-complexes, the kω-
spaces, have recently appeared in papers on topological groups.
(See, for example, [2], [5], and [6].) A decomposition of a space
X = \Jn=i -3Γ» where each Xn is a compact Hausdorff space, the Xn

are increasing, and X has the weak topology of the Xn is called a
kω-decomposition of X. Any space with a /^-decomposition is a kω-
space. For example, R — \J}™=ι[ — n, n] is a Λvspace.

One metrizability theorem for άω-spaces is a corollary of known
results. A kω-space is metrizable iff it is second countable. (Morita
has shown that each &ω-space is (normal and) Lindelof [4], and hence,
if metrizable, is second countable. Conversely, a second countable
regular space is metrizable.)

Since &ω-spaces are composed of compact pieces, it is natural to
hope that the metrizability of the pieces will yield that of the space.
The example of a nonlocally finite countable CW-complex shows
this to be a vain hope. We are left with the question of exactly
how the process can fail, which is the subject of this note.

We will need two examples. The first, called the sequential
fan, is the union of countably many convergent sequences with
their limit points identified. The pieces (finitely many convergent
sequences plus limit point) are metrizable. The sequential fan is a
&ω-space (Morita has characterized them as quotients of locally com-
pact Lindelof spaces [4]). However it is not first countable and
hence not metrizable.

The second example will require more description. Think of S2,
as it is called [1], as consisting of a sequence {s3} converging to a
point s0, together with another sequence of isolated points {8Sti} con-
verging to each Sj. Take the topology resulting from thinking of
S2 as a quotient of a disjoint sum of countably many convergent
sequences with limits. Clearly, then S2 is a Λvspace. One ^-decom-
position is given by S2 = (J~=i -X»> where

X» = {so} U {sj\jeN} U {sjtί\j ^ n, ieiV} .

Each Xn is metrizable but S2 is not even a Frechet space.

Are there other examples? Not any essentially different ones.
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THEOREM. A kω-space with metrizable "pieces" is metrizάble iff
it contains no copy of S2 and no sequential fan.

For the proof we will use a short sequence of lemmas and pro-
positions.

LEMMA 1 (Steenrod [7]). If X = U»=i-X» i* a kω-decomposition,
then each compact subset of X is contained in some Xn.

LEMMA 2. Any subsequence of a kω-decomposition is again a
kω-decomposition.

In fact, one easily shows that given a /^-decomposition X —
Uϊ=i Xn and another increasing cover X = U"=i %ή, the X'n form a
^-decomposition iff each Xn is contained in some X'n. The lemma
follows.

LEMMA 3. A closed subspace Y of a kω-space X = U~=i X% has
a kω-decomposition Y = \Jn=i {Xn Π Y).

The heart of the matter lies in the following.

PROPOSITION 1. Suppose X — \J Xn is a kω-decomposition with
each Xn first countable and that X is not first countable. If X is
Frechet it contains a sequential fan. If X is not Frechet, it con-
tains a copy of S2

Proof. If a point xoeX has no countable neighborhood base,
then each of its neighborhoods must meet cofinally many Xn. Let
Tn = X\L^=i -Xi b e t h e n*h t a i l of the ^-decomposition. If m is the
least integer with x0 e Xm, thet xQ e cl Tn\Tn for each n^m. If X
is Frechet, some sequence £ζ in Tm must converge to x0. Since
£ζ U {x0} is compact, Lemma 1 says SH is wholly contained in some
X%1 with nγ > m. But x 6 cl Tn\Tnι so that some sequence S2 in T%1

also converges to x0. In this way we construct a sequence of distinct
sequences {S^k}, each converging to Xo, such that Si Q Xnje Π T%k_x

with m <nt<n2< < nk < . Then F = {x0} U U ^ meets
each Xn]e in a finite union of convergent sequences and is therefore
closed (by Lemma 2) in X. Let Dn — {x0} U U*=i 5^ ^^ Lemma 3
JF7 = U D% is a ^-decomposition of F and hence F is a quotient of
02).. i*7 then is a sequential fan.

The proof of the second assertion is more delicate. It depends
on the fact that every sequential space which is not Frechet contains
a subset whose sequential coreflection is Si ([1]> Prop. 3.1). X is
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certainly sequential since it is the quotient of a first countable space,
namely the disjoint sum of its "pieces". If X is not Frechet take a
subset A, with sequential coreflection Sif and write it as A — {x0} U
A, U A2 with A, = {xn \ n e N} and A2 = {xnJ \ (n, j)eN x iV} all distinct
points. Sequential convergence in A is the same as in J?f. (See the
description of ^f.) Thus x0 has no countable neighborhood base since
x0 e cl A2 and no sequence in A2 converges to it. Thus x0 can belong
to the interior of no Xn. Hence if n0 is the least integer with x0 e XnQ,
then x 6 bdyXw for each n ^ n0. Similarly, no infinite subset of A1

is contained in the interior of any Xn. Otherwise we would have
xoeXn — cl (A2 Π Xn) with no sequence in A2 Π Xn converging to x0,
contradicting the first countability of Xn. However, {x0} (J At is
compact and thus, by Lemma 1, is contained in some Xn. Let nx

be the least such n. Then for each n ^ nl9 {x0} U A, £ bdyX%. Write
A2 for the sequence {xi3 \jeN} in A2. A\ converges to xim For n^^1?

at most finitely manyAa can meet Xn infinitely many times because
of the first countability of Xn. However, each At is contained in
some Xn since {#J U At is compact. Choose m1 ^ ^ with At £ XWl.
Let ^ = At and let ΐx = 1. Let i2 be the least i such that At2f]Xmi is
infinite. Choose m2 > mi with At2 Q Xm2. Let B2 — Ai2\Xmί. In this
way we recursively define a subsequence {Xmk} of {Xw} and a se-
quence {iy with each Bk an infinite subset of some Atk and with
Bk £ X m ,\^-i L e t -δ' = {*<* I & 6 ΛΓ} and β = {α;0} U ί ' U U ft. By
(9) X = U Xmk is a ^-decomposition of X and

s n i m f c = {χ0} u F u U δ ,

is the union of finitely many compact sets and hence is closed. Thus
B is closed in X. Being closed B is sequential and thus its own
sequential coreflection, in this case clearly f̂. (B, containing x0, a
subsequence of the xn, and for each such n the corresponding xnJ

is sequentially homeomorphic to Si.)
To complete the proof of the theorem we need only the follow-

ing analogue of a well known fact about CTF-complexes.

PROPOSITION 2. If X = U"=i X* i s a K-space with each Xn

metrizable, then X is metrizable iff it is first countable.

Sketch of proof. First countability gives local compactness
(Ordman [6]) which, in turn, implies that each Xn is contained in
the interior of some subsequent one (cover each point of Xn with a
compact neighborhood, reduce to a finite subcover, union and apply
Lemma 1). Using Lemma 2, we may assume that Xn £ int Xn+ί.
Choose a countable base for each int Xn. Their union is a countable
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base for X which is hence metrizable.
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