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Let T, and 7, be maximal tori of a connected linear
algebraic group G < GL(n,r), and suppose some (algebraic
group) automorphism o of (G stabilizes both 7, and T.,.
Suppose further that o also stabilizes two Borel subgroups,
B, and B,, of G. This paper is about the following natural
questions:

(1) Are T, and T, conjugate by a o-fixed point of G?

(2) Are B; and B, conjugate by a o-fixed point of G?

(3) If T < Bs, (1=1,2), are the T; and B; respectively
conjugate by a single o-fixed point of G?

(4) Are at least T, and T, described in (3) above con-
jugate by a o-fixed point of G?

In this paper is treated the case in which ¢ is an algebraic
automorphism. If either »p = char £ = 0 or ¢ is semisimple, then
the answer to (4) above is yes; but there are counterexamples for
(1), (2), and (3). (See below, Counterexamples A-1 and B.) More-
over, if both p > 0 and ¢ is not semisimple, then there is also a
counterexample for question (4). (See below, Counterexample C.)

Incidental in the proofs is the simple result that when ¢ is
algebraic, a o-stable maximal torus is pointwise fixed by some finite
power of g, and by o itself for »p = 0, ¢ unipotent (Theorem 1).

Robert Steinberg has studied the questions above in [3], for the
case that ¢ has finite fixed-point set in G, finding that the answers
to questions (2), (3), and (4) are all yes. There is a counterexample
for question (1) in the finite fixed-point set case, when the o-stable
maximal tori are not respectively contained in o-stable Borel sub-
groups. (See below, Counterexample A-2.)

When ¢ is an algebraic automorphism of a general algebraic
group @G, its fixed-point set may be infinite. In fact, Steinberg
shows (by [3], 10.10) that if ¢ is algebraic with finite fixed-point
set, then G is necessarily solvable.

Throughout the paper the (now standard) terminology and basic
results of Borel ([1] and [2]) are used, including the name Borel
subgroup for a maximal solvable connected subgroup. In addition
the mnemonic clag is used for a connected linear algebraic group,
and the expression “the pair T'< B” for a maximal torus 7 and a
Borel subgroup B containing T.

In all of the following theorems, G is a clag and ¢ an algebraic
automorphism of G.
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THEOREM 1. If G has a o-stable maximal torus T, them T 1is
pointwise-fixed by some power o” of 0. If p = 0 and o is unipotent,
then T is pointwise fized by o.

Proof. Since o is an algebraic automorphism of G, there is a
closed linear algebraic group % with GA £ and an element se &
such that o(g) = sgs™* for each geG. (In fact this may be taken
as the definition for an algebraic automorphism of G.)

Form the algebraic group generated by T and s, (T, s) = &%
in & (see [1], §3). T is normalized by s, so T is normal in .7
Moreover, T is a torus in .7, and so is contained in a maximal
torus of .94. Thus T is contained in every maximal torus of .97,
hence is contained centrally in every Borel subgroup of .&4 by ([1],
§18, 18.1). T is therefore central in .o by ([1], §18, 18.5).

Now s € .% = some power s” of s is in .94, whence s" centralizes
T. Equivalently, o fixes T pointwise.

Suppose now that p = 0 and ¢ is unipotent. Since s* centralizes
T; so does .%(s™). Now ¢ unipotent = s unipotent; and for p = 0,
(8" = 7(s) (see [1], 8.2). Thus s also centralizes T, i.e., o fixes
T pointwise.

THEOREM 2. Let G be solvable, and let either p =0 or ¢ be
semistmple. Then two o-stable mazimal tort T, of G (1 =1, 2) are
conjugate by a o-fixzed point of G.

Proof. (1) Since ¢ has finite order, say » (n is prime to p
when p > 0), on T, and T,, it may be assumed without change in
hypothesis that ¢ has such finite order on all of G, by replacing G
with (G,.),, the connected component of the set of o"-fixed points in
G.

(2) Let U be the unipotent part of G, and let V be the uni-
potent part of C(T,), the Cartan subgroup of 7,. ThereexistsucU
such that wTu™ = T,, and for any such u, u™'-o(u)€ V. Therefore
it suffices to show that whenever there is a u with v™*-c(u)eV,
then there must exist ve V with w'-o(u) = v™*-0(v). For in that
case, uv~* is o-fixed with uv™'Tyou™ = T,.

In view of (1) and (2) it suffices to prove the following lemma:

LEMMA 8. Let G be a unipotent clag with automorphism o of
finite order m (prime to p when p > 0). If G has a o-stable subclag
H, and an element g€ G such that g*-o0(g)e H, then Ih € H such
that g~*-0(g) = h™*-a(h).

Proof. TFor any subset X of G, denote by X, the o-fixed point
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set of X; and for any element z €@, set a(x) = x7'-0(x). There is
no non-identity element of the form a(x) in G, because if a(z)eG,
for some ze @, then

(a(x)" = a(x)-o(a(®)) 0% (a(x)) - -+ 0" Ha(x))
= g t-0(x)-0(x7")- 0% (x)o*(x™") - - - 0" (&7 )o™(%)
=g o™x) = e ;

but only the identity element can be both unipotent and of order x.

Case I. H normal in G. H is unipotent, hence nilpotent, so
one may use induction on the length [ of the lower central series
for H.

If 1 =1, then H is commutative, so a|; is an endomorphism of
H with kernel H, and image a(H). Therefore dim H = dim H, +
dim a(H), and H, N a(H) = {¢}. So H = H,-a(H) as a direct product.

Thus 3k, € H,, h, € H such that a(g) = h,-a(h,). Thatis, g7'-0(g) =
hyhit-a(h,) = hy'-h,-o(h,); and this implies that

hy g™t a(g)o(h:”) = (gh:") 7 -0(ghs”) = al(gh:”) = b, e H, S G, .

So a(gh;') = e = h, and a(g) = a(h,).

Now suppose | > 1. If a(g) € H', then by induction 3k e H' with
a(g) = a(h). So suppose a(g)¢ H'. Then a(g) # ¢ in H = m,(H),
where 7,1 is the projection of G with kernel H'. H is commutative,
and a(g) =g *-0(9) = g '-0(g) = d(g), so as in the case for [ =1,
ah € H such that a(g) = a(h). That is,

g6 = h*-6(h), and (gh™) -o(gh) =¢.

In other words, a(gh™) e H*, whence by induction 3#’ ¢ H' such that
algh™) = a('). We now have (gh ™) 'g(gh™) = hglo(g9)o(h)™ =
h'~t.o(h'), implying ¢ *-0(g) = h*h"'-a(h")o(h) = (W'h)'a(h'h). Hence
al(g) = alh’'h) € a(H).

Case II. If H is not normal in G, set H = (,, and let G, be the
connected normalizer in G of G,_,, for ¢ =2. Since a proper subclag
of a nilpotent clag is properly contained in its connected normalizer
by ([1], 20.8), there is a chain of g-stable subclags of G:

H=GAGA.---AG, =G,
= T *

each of which is a normal and proper subclag of the following one.
Now the element g € G with which we are concerned is contained
in G, for some (minimal) ¢, with ¢ = 2. Since a(g) e HZG,_,, and G,_,
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is normal in G,, there is by Case I an element g, ,€G,, for which
a(g) = a(g;-.).

If (i — 1)= 2, apply Case I again to obtain an element g, ,€G,_,
for which a(g,_,) = a(g,_,), since a(g,_,)e H < G,_,, and G,_, is normal
in G,_,.

Similarly, by a total of (¢ — 1) application of Case I, one obtaing
an element he H =G, = G,_,_,,, for which a(h) = a(g,) = a(g,) = --+ =
a(g,-,) = a(g).

This completes the proof of Theorem 2.

THEOREM 4. Let G have two o-stable pairs, T, < B, (1 =1, 2).
If p =0, or iof ¢ ts semisimple, then the T, (¢ = 1, 2) are conjugate
by a o-fixzed point of G.

Proof. Let T < B be any o-stable pair of G.

First consider o,, the semisimple component of 6. (Any o-stable
clag is also o,-stable.)

Let S be a maximal torus of (G,),. By ([3], 7.4), S S a o,-stable
Borel subgroup R of G. S is also a maximal torus of (R, ).

G
/ \
o,-stable Borel — B R <« o-stable Borel
’ (G4, / }
N S
0,-stable max. tor.— T (R,)e € <« o,-stable max. tor.
|/
s
(T,,)s (@)

By ([3], 7.6), R has a o,-stable maximal torus Q. Now R=Q-V
(semi-direct product), where V is the unipotent part of BR. So any
o,-fixed point f € R has Jordan decomposition f = ¢-v for some ¢ €@,
veV. Thus f = o,(f) = 0,(¢)0,(v), with ¢.,(¢) €@, o,v)eV, whence
o(q) = ¢ and o,(v) = v. Hence (R,), = (@) (V,)oy and (@), is a
maximal torus of (R, ),. Thus dim (Q,), = dim S, so (Q.,), is also a
maximal torus of (G,),.

Now 3g € G such that gRg™ = B, gQg* = T, and (since Q € R,
T < B are all g,-stable), g7*-0,(g) € Ng(R) N Ng(Q) = B N N(Q) = C(Q),
the Cartan subgroup of @ in G. This implies that g(Q,,)0™ = (T4,)o
so that dim (T,), = dim (Q,,),, and (T, ), is itself a maximal torus of
(Ga,)o

Moreover, (T,), is a torus of (G, ), because T = (G, ),. There-
fore (7,,), is a maximal torus of (G,),N (G,), = (G,),. Thus the
[(T),,), are both maximal tori of (G,); so they are conjugate by a
fixed point ye(G,), that is, Y(T,, )y~ = (Ty, )0 Set Ty=yTy™.
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Both T, and T, belong to the connected centralizer Z of (T}, ), in G.
By ([4], Cor. 4), Z is solvable. Also, Z is o-stable with maximal
tori T, and T, so by (Thm. 2), T, and T, are conjugate under a o-
fixed point z€ Z; that is, 2T, = T,. Then for g = y7'2, g is a o-
fixed point of G for which gT,9™' = T,.

[Note on the field of definition &: If « is algebraically closed,
the point of conjugacy in Theorems 2 and 4 may be taken to be
k-rational; and theorems analogous to Theorems 2 and 4 hold for
r-groups. The proofs are mechanical glosses on those here and are
found in the author’s Ph. D. thesis.]

Counterexample A-1. o is semisimple; G has two o-stable
maximal tori which are not both contained in o-stable Borel sub-
groups, and are not conjugate by a o-fixed point:

Take G = SL(2, 2), p #+ 2. Let T, consist of matrices of the

form
[a

and let 7, be given by matrices of the form
1 1 1 1
Flerg) gle-3)

Yo-d). Hoed)

#0;

Q[r—*o

|-

, a=+0,

T, is the maximal torus of G which has diagonal form; T, is

the conjugate of T, by the element

l/_?[ 11 e@ )
2 1-11
Take ¢ = Inn, g, where g = [2 (ﬂ The effect of ¢ is to inter-

change diagonally the corner entries in each matrix of G. The o-
fixed point set G, of G is therefore

Ga:{[z ab]:aﬁ—bzzl}.

G, is infinite; and since ¢* = 1 and p = 2, ¢ is semisimple.
Now T, is pointwise o-fixed, and T, is not, although it is o-
stable. So T, and T, cannot be conjugate by a o-fixed point of G.
(Note. The only Borel subgroups of G containing T, are the
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upper and lower triangular matrix groups in G, and o leaves neither
of these stable, but maps one onto the other.)

Counterexample A-2. o (nonalgebraic) is the Frobenius map for
» = 2, having finite fixed-point set; G has two o-stable maximal tori
which are not both contained in a o-stable Borel subgroup, and are

not conjugate by a o-fixed point.
Take G = SL(2, 2), p = 2. Let

[a 0"
Tl:“() _1_:0#036.9};

and let

a+a<a+—i—>, <a+
(e kol

o fixed such that ¢* +a + 1 =0.

T,= 0 acf;

le—‘ Q|+~
N——" N——"

For o take the Frobenius map o: (x,;) — (¢3;). T, is clearly o-
stable. T, = 2Tz, where

a (a+1) . [0 1
_[<a+1> p } and ”(”)”[1 OJGN(T‘)’

so T, is o-stable too.
It can easily be seen that 7T, and T, are not conjugate by a o-
fixed point of G, since there are only 6 fixed points.

Counterexample B. ¢ is semisimple; G has two o-stable pairs;

but the o-stable Borel subgroups are not conjugate by a o-fixed

point.
Take G and ¢ as in Counterexample A-1 (p # 2). Let

(3D 32
| %@—%) Fla- %M

Set 4 = {[g l/g:\: a, fef, a+ 0} < @G, a Borel subgroup of G. Set

= s —
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1 -1 1 L
x = . ;eG, and y = ¥ ;eG.
Take
_1_ +_1_ —B,l — =)+ B
B, = x4x7' = :i(a Clz> i<a L a, Bel, a+0
gla-g)-sglarg)+s
and
—;—(%—Fa)%-/s’,%(%-a)#-,@
B, = y4y™ = e, Be,a+0
B OO RV CR

Recalling that o diagonally interchanges the entries of a matrix,
one sees that B, and B, are o-stable, and T is pointwise o-fixed.
Moreover, T is clearly a maximal torus of both B, and B, (i.e.,
when 8=0). So TS B, and T & B, are o-stable pairs.

Suppose now that B,, B, are conjugate by a o-fixed point feG,,
i.e., that B, = fB,f™'. Then B, = x4x™ = fB,f™' = fydy ™ f ' =4 =
2 fydy~ e = a7 fy € Ng(4) = 4.

Say that 2 'fy = b = [6“ 1/§] €d, and f = B/ 3] e G,, for some
a, B, Y, 6e2 with * —6*=1, and @« #+ 0. Then

7'fy = b — fy = xb

1 1
1 = 1 —=
ry BJ 5 5 || f
= = 0 L
o 7 -1 i 1 i 144
2 L 2
r 1 1
Y—0 —(v+96 -
z( +9) 3 ® 8 20
1 - 1
0—7 —=(v+96 -
I 2( + 0) @ B+2a

—— Y —0=0—"T=7=0=7"—-0=0,

a contradiction of the fact that v* — 6* = 1.
Thus B, and B, cannot be conjugate by a o-fixed point of G.

Counterexample C. G solvable, o unipotent, and p > 0. G has
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two o-stable maximal tori which are not conjugate by a o-fixed
point.
Take p = 2.
Let T be the torus & GL(6, 2) consisting of diagonal matrices
t of the form
- -
z-2
(!

t = , T T,€82, T77,#0.
2'2

T

L Ty
Let U be the unipotent clag consisting of upper triangular
matrices u of the form

1 a = 1
18
1
U = ’ a,B,x;yeQ’
1 8y
l «a
L 1

satisfying: « + ¥y — aB = 0.

The reader may verify that U is closed under multiplication,
and since u* =¢, Vuc U, U is also closed under inverses. Hence U
is well-defined.

Moreover, U is normalized by T, as the reader again may verify.

One may therefore form the solvable clag G = T-U (semi-direct
product).

Let the automorphism ¢ on t-u€G be given by the following
action on the entries of ¢ and u

O:T, 7T,

a—fB
C—y
o is thus conjugation by the permutation matrix:
M 1 0]
0 1
0 1
s =
1 0
1 0
0 1 ]
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So s and ¢ are unipotent of order 2.
T is a o-stable maximal torus of (G, whose Cartan subgroup is
C(T) =T x C(T),, where

(1L 0 =z )
1 0 0
0 1
C(T). = 4 o . txeQ).
0 10
L 0 1)

Now if w € U, then uTu™* is g-stable if and only if v *-o(u) € C(T),.
Moreover, 3 a o-fixed element fe U, such that «Tu™* = fTf* if and
only if f~ueC(T),; i.e., if and only if 3¢ e C(T), such that uc"' = f
is o-fixed.

However, all ¢ C(T), are o-fixed; So a o-stable maximal torus
wTu™* of G is conjugate to T by a o-fixed point if and only if «
itself is o-fixed.

However, for the unipotent matrix

1 a = ]

l « 0

0 1
n = ’

1l a y
0 1l «
\ 0 1.

satisfying z +y — a* = 0, a % 0, one gets

(1 0 —z+4+y N
1 0 0
0 1
uteo(u) =
1 0 —2+y
0 1 0
L 0 1

That is, u™*-o(u) € C(T),, so uTu™' is o-stable. But w is not o-fixed,
so T and «Tu™* are not conjugate by a o-fixed element of G.

(Note. This counterexample in p = 2 is due to D. Winter. The
present author has generalized it in a separate paper for all » > 0.
The resulting group may be of some interest in itself.)
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