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Let » be a rational prime =1 (mod 7). Williams shows
that a certain triple of a Diophantine system of quadratic
equations has exactly six nontrivial solutions. We obtain
here a congruence condition which uniquely fixes one of these
six solutions. Further if 2 is not a seventh power residue
(mod p) then we obtain a congruence (mod p) for 2% 9/7 jn
terms of the above uniquely fixed solution.

1. Introduction. Let ¢ be an integer = 2 and p a prime =
1 (mod ¢). Rulers criterion states that

(1.1) D' =1(modp), p=ef +1

if and only if D is an eth power residue (mod p), so that if D is
not an eth power residue (mod p) then

1.2) D’ = «, (mod p)

for some eth root a, = 1 (mod p) of unity.

Obviously @, = —1. For D = 2 and ¢ = 3, 4, 5, 8 Lehmer [2] gave
an expression for «, in terms of certain quadratic partition of p.
For arbitrary eth power nonresidue D, Williams [6], [7] treated the
cases ¢ = 3, b.

When ¢ = 5 Dickson [1] (Theorem 8, page 402) proved that for
a prime p = 1(mod 5), the pair of Diophantine equations

16p = 2* + 50u® + 50v* + 126w*

(1.8) sw = v* — 4uv — w* (x = 1 (mod 5)) .

has exactly four solutions. If one of these is (z, u, v, w) the other
three are given by (z, —u, —v, w), (z, v, —u, —w), (&, —v, U, —w).
Lehmer [2] (case & = 5) gave a method of fixing a solution uniquely.
She proves that if 2 is a quintic nonresidue (mod p) then

2(1)—1)/5

(1.4) = w(25w® — 2*) + 2(xw + 5uv)(25w — & + 20w — 10v)
) w(126w* — 2?) + 2(xw + buv)(2bw — & — 20u + 10v)

(mod p)

for a unique solution (x, u, v, w) fixed by the condition
(1.4") 2\u, v = (—1)*% (mod 4) .

513



514 BUDH SINGH NASHIER AND A. R. RAJWADE

In this paper we treast the Case p =1 (mod 7). For such primes
Williams [4] has shown that the triple of diophantine equations
T2p = 22° + 42(25 + 25 + ) + 343(aF + 323) ,
1222 — 1227 + 14727 — 44127 + 5622, + 2422, — 24,2,
(1.5) + 48z, + 98z, = 0,
1207 — 1222 + 4922 — 147x% + 28,2, + 2822, + 48w,%,
+ 24z, + 24z, + 49022, = 0, (x, = 1 (mod 7)) ,

has exactly 6 nontrivial solutions, the two trivial ones being (—6¢,
+2u, +2u, F2u, 0, 0). Out of the nontrivial solutions if one is

S, = (&, 2y, %3, T,y %, ;) the other five are

S, = (@, — @ — Ty — B,y Tpy To)

S; = <x1, —Xygy Xyy — s,y —%(xﬁ — 3%), _%(xs + f”c))
(1.6) S4 = <Q}1, Lyy — gy Py ———%—(3’25 - 3x6)’ __;—(x.') + xs))

S, = (xv L3y — gy — Xy _%(xﬁ + 3x,), _;'(xﬁ - 976))

S = (xu — X3y Lyy T,y —“%(375 + 3a,), %(% - xs)) .

Here we obtain a congruence analogous to (1.4) together with
a congruence condition fixing uniquely one out of these six solutions.

2. In the sequel p is a prime=1(mod 7). For any D = 0 (mod p)
we define the Jacobsthal sum

(2.1) $(D) = pi (ﬁ%——J“—m )

=1

where (-/p) is the Legendre symbol. Using FEuler’s criterion we
expand (2® + #D)”~"/* by the binomial theorem and interchange signs
of summation, the result is

=

(p—1)/2 N p — 1 -1 .
¢(D)= >, D’ 2 g'»~b="  (mod p)
7=0 .

J

Il

(p—-1)/2_ _Z_)_i p—1 .
=, DI 2 x (mod p) .

But
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=

= {—l(modp); if 77 =0 (modp — 1)
V=

1 0 (mod p); otherwise

8
Il

and 75 = 0 (mod p — 1) if and only if f|j, i.e., if and only if j = mf,
m=20,1,2,3.
Hence we obtain

3 p—l
$(D) = —ZD""< 2 ) (mod p)
m=0 mf
(2.2) —[1+ D))
»p—1 »p—1 »p—1
sz< 2 >+D2f< 2 )+D3f< 2 ) (mod p) .
f 2f 3f

We write (2.2) for D =4d",r =0, 1, 2, 3, 4, 5, 6 where d is any septic
nonresidue (mod p).
Let

Cr = '—[1 + ¢7(4dr)] ('l“ = 0, 1, 2; 3’ 4; 5: 6)

p—1 »p—1 p—1
(2.3) 71=4f( 2 ), 72=42f< 2 ), 73:43f( 2 )
S 2f 3f

Then (2.2) gives us the following 7 congruences

Co=7+7%+7
C,=7d" + 7,d* + v,d*
C;, = 7,d¥ + 7,d¥ + 7,d¥
(2.4) Cs = 7, d + 7,d% + v, d*
C, = 7d¥ + 7,d" + 7.d*
C; = 7, d° + 7, d + 7.d”
Co = 7.d¥ + 7, d7 + v, d* .

We first get 7,, 7,, 7; (mod ») in terms of C, C, C, C,, C,, C;, C;. Let

a=d +d¥ +d’ [Note that 1, 2, 4 are quadratic residuces and
B=d¥ +d¥ +d¥ 8,5,6 are quadratic non residues (mod 7).]

Then a + 8 = —1 (mod p) and af = 2 (mod p).
(2.5) a— 8= ;;(df)xz (mod p)

is a Gaussian sum and (@ — 8)*= —7 (mod p), since (@ — B)* = (a + B)* —
4aB=1 — 8= —7 (mod p).
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We take suitable combinations of the latter six congruences in
(2.4). These combinations are motivated by noting that the quadratic
residues (mod 7) are 1, 2, 4 and the nonresidues are 3, 5, 6; while since
3 is a primitive root (mod 7) the nonzero residues are 3, 3, 3% 3¢, 3°, 3°.
These form three classes

A—o = {33’ 36} = {6, 1}
Al = {3’ 34} = {3, 4}
Az = {329 35} = {2’ 5}
where 8’ € A, if and only if j = ¢ (mod 3).
All congruences below are taken (mod p).
2.6) C.C, + CC, + CC, + CGC; + CC; + CCs
) = —(7V 4+ 47 — 2V, + BV, + 5V,
@27 CCi+ CCy,+ClC,= (Vi + 7+ 7 — (77, + VY5 + V57
(2-8) Cl+Cz+C4_Cs_Cﬁ—“CGE(71+72”‘73)(a_/8)

29 C,C, + CC, + CC, — CC; — C,C, — CC,s
' == = LB - @)

(2.10) C,C,C,+ C,C,.Cs = 2(7 + 75 + 73 + V775 + Co(V Ve + VeV + V7)) «
Squaring the first congruence in (2.4) and using (2.7) we obtain

2.11) Yoy z%«:g + 2(CC, + CC, + C,C)

@.12) Ve 4 Vs 4+ Vv, = %(303 —~ (CC, + CC, + CC) .

Now (2.11), (2.12) and (2.6) give us
7Y, = 2C%
—(C,Cs+ C,Cy + CC, + CC, + CC, + C,C, + CLC; + CC, + CCy)
and from (2.10) we get
7,7, = C,CLC, + C;CCs + C(Ct — C,Cy — C,C5 — CC,)

(using the identity a® + b® + ¢® — 8abec = (@ + b + ¢)(@* + b* + ¢* — ab —
be — ca)) so that

C.CC, + GGG
203 - (CICG + 0205 + 0304 + Clcz

X + Co(Cg - CICG _ CZCE _ 0304)
+ CC, + CLC, + CLCy + GG, + CLCy)

Vs =

(2.13)
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Also (2.8) yields
(“":8)(00—273)Ecl‘l‘cz“f“a;“Cs—Cs—Cs

or
C,+0C,+C,—C,— C, — C,
2.14 _ = 2 4 3 5 6
(2.14) a—pB C. 2.
(2.9) together with (2.11) leads to
Y, — T, = (0102 + CIC4 + 02C4 _ Cacs ‘— Csce _ Cﬁce)(B - a)_l
1 '73
+m~%m+mqmw%+@@)
X

whereas

Y+ Y=C— 7.

Thus we obtain

(0102 + C1C4 + 0204 - Caca - CSCS - Cbcﬁ)(B _ a>_1

!
v, =

2.15
(2.15) +ﬁ+@%—%wma@q+ga+@@)
X
72 = —<C1C2 + CICA + Czc4 "' C3CE _ Cscs _ Csce)(/g — a)_l
27,
(2.16)

-%ﬂ+@%+%@“ﬂ@@+@@+@@)

X

Since 7, is a function of the C’s therefore so is @ — 8 and hence
v, Y Vs all are functions of the C’s.
If (%, %, -+, %) is a solutions of (1.5), then in [4] the C’s have

been evaluated interms of the a’s viz.

C,= —um,

120, = 2z, — 42, — 49w, — 14T,
12C, = 2z, — 42z, — 492z, + 147z,
(2.17) <12C, = 2z, — 42z, + 98x;

12C, = 2x, + 42z, + 98z

12C, = 2z, + 42z, — 49z, + 14Tz,
12C; = 2z, + 42x, — 49m, — 147, .
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Thus 7, 7, 7, are functions of the 2’s say:
(2.18) Vi = GdTy, By Tay Ty Ty, B) 1= 1,2,3.

Also (2.14) gives the Gaussian sum @ — £ as a function of the 2’s
say

(2.19) a — B = (X, Ty Ty Ty sy o) -

3. In this section we show that g,, g,, 9; in (2.18) are independent
of the choice of solutions of (1.5).

Let S, = (%, 2, ---, %) be a solution of (1.5) and the C’s be given
as in (2.17). For a change of solution S,—S;, 7 =2,3,4,5,6 we
want to see how the C’s change.

We see that:

If S,— S, then
¢—¢C,C,—¢C,C,—C,, C,—C,, C;—> C,, C;, —C;;
: S,——S; then
¢, —¢(C,C,—C, C;—> C,, C,— C,, C; — C;, C;— C;;
: S,— S, then
C, C,, C, Cs, Cs C, C, C,, C;—> C,C,— C,;
: S,——S; then
C, C,C,—C, C; ¢, C,—C, C;— C,, C;— Cj;
: S, —— S; then
C, C, C, C, C, c,C,—GC,C,—>C,C,—C,.

(3.1)

We observe that C’s get permuted in such a way that the set {C,,
C,, C,} with suffixes quadratic residues (mod7) either remains unaltered
or interchanges with the set {C,, C,, C;} with sufixes quadratic non-
residues (mod 7).

This implies that the combinations of the C’s taken in (2.6), (2.7)
and (2.10) do not change with the change of solutions while (2.8)
and (2.9) either both remain the same or change signs simultaneously.
Thus (C,C, + C,C, + C,C, — C,C; — C,C; — C,Cy) (B — ) is also unchanged
under the change of solutions.

This shows in view of (2.13), (2.15), (2.16) that g¢,’s are independent
of choice of solutions of (1.5).

4. In the last section we fix a solution of (1.5) uniquely. For
any A # 0 (mod 7) \, 2X, 3\, 4N, BN, 6) is a reduced residue system (mod 7)
therefore we write A for » in the latter six congruences in (2.4)

to get
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C: = %d + % & + 7, d*¥

Co = 7@ + 7 d*Y + 7, d
Ca = V@ + 7, dY + 7,d*
C =7, d% + 7, d¥ + 7, d*
Co = 71, A% + Y, d* + 7,d*
Cor = 7, A% + 7,d 4+ 7,d .

4.1) 1

We solve the above system for d* as follows. Take suitable com-
binations of four of the above congruences and get
Cy — dCy = T — 1) + 7(d*™ — d™)
Cox — A Cy = YA — d) + 7 (d* — d*) + 75(d — 1)
dVCy — dMCy = 7,1 — d) + N(d¥ — 1)

or

A (7, + Cy) + (=) + & (7)) =7, + Cy
A (v, + Cp) + & (Y, — 7)) + &M (v, — 7,) =7 + Gy,
A1y — 7)) + PY(=Cp) + &V (C) =7, — 7, .«

Solving this system by Cramer’s rule we obtain

(4.2) o = CulVs =) + Ca(Y) + M+ Y — 717 (mod p)
032(72 - 71) + 022(73) + 7; + '73 - '71'72

so that by putting » =1 we find

(4.2)) df = C7, — 7)) + Cy(7) + 75 + 75 — 1\, (mod p) .

TG =) + GV + M+ VE— Y,

This last expression depends on the choice of the solution S, since
the C’s depend on the choice of the solution of (1.5). Indeed the
R.H.S. of (4.2") takes different values (mod ») for different solutions.
This is seen as follows:

It is easy to see that ¢,(n) = ¢,(n’) if ind, (») = ind, (»’) (mod 7)
(see [3]) hence C, = C,, if | = m (mod 7).

In view of (8.1) and (4.2) we see that if S,—S;, 57 =2, 8, 4,5, 6;
the R.H.S. of (4.2") takes value

=dv, 4, ¥, d¥, d¥

respectively which are distinct (mod p).

Thus precisely one (out of the 6) solution satisfies (4.2"). When
2 is not a seventh power residue, (mod p) then for d = 2 we can
identify which solution shall satisfy (4.2'). This is done as follows:
We have
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Ci= —[1+ ¢(2)], C; = —[L + ¢(2], Co = —[1 + $:(2)]

4.3 ‘
3 e = —[L+ 6@, C = —[L + 6], G = ~[1 + 6:®)] .

Since X" 4+ 1 = 0 (mod p) has exactly 7 solutions, ¢,(1) is composed
exclusively of p — 8 plus and minus ones and hence must be odd.

Moreover (27) = (27) #z 1(mod p), 5 =1,2,3, 4,5,6 so that by
Euler’s criterion X’ + 2/ = 0(mod p) is not solvable. Therefore
(2 (1 =1,2,8,4,5,6) is even. Thus we conclude that C; is even
and the other C’s are odd.

In (8.1) we notice that the corresponding C, of a solution is
replaced by some other C; under a change of solution, therefore for
one and only one solution (w,, %,, s, %, ®;, ©;) We have

C, = 0 (mod 2)
or what is the same thing

2%, + 422, — 492, + 1472, = 12C, = 0 (mod 8), i.e.,

(4.4)
2, + 28, — 2, + 32, =0 (mod8).

This determines a unique solution of (1.5). Our results can be stated
as the following:

THEOREM. Let p=1(mod7) be a prime. If 2 is a septic non-
residue (mod p), then of the six nontrivial solutions of the quadratic
partition (1.5) one and only one satisfies the two congruences

C4(72 - 71) + C5(73) + 72 + 72 - 7172

mod
CoY, — 1) + C(75) + 75+ 7 — 717, ( 2

( 1 ) 2(1’*1)/7 =

(ii) 22, + 20, — x; + 3w, =0 (mod 8)
with C,, C,, C, Cy, 7y, 7a Vs gtven as functions of the x.’s by (2.17) and
(2.18).

This fixes a unique solution for us.

ExXAMPLE. p=29="7.4 + 1.
Here the six nontrivial solutions of (1.5) are

S, =,-2 -3 -2, —-1,1); S,=(,2,3,2, —1,1),
S3 = (1; 27 -2, 3, 2, O); S4 = (1r ——2, 2, _3y 2; 0) .
S5 = (ly _37 27 2’ _17 —1); SG = (1: 3’ _2! _2, _17 ""1)'

Precisely one satisfies the two congruences of the theorem viz.
S:7, =12, 7, = —6,7, = —T (mod 29) and we have
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. (—15)(—18) +6(—T7)+36 + 49+ 72 _ 9+ 16 + 12

2r1/T g = _
(—1)(—18) + 27(—7) + 36 + 49 + 72 18 + 14 + 12
= % =16 (mod 29) .

For the remaining five solutions the R.H.S. of (i) of the theorem
takes value: 9, 25, 7, 24, 23 respectively (mod 29). We see that none
satisfies (i) and of course none satisfies (ii).

By taking A = 3 in (4.2) we have a similar expression

@5 gevr = G = %) + G(%) + Y 4 v — v,

d
Cz('yz - 71) + Cs('\/s) + ’73 + ’Y§ - ’7172 (mo p)

with the condition
2%, + 2%, — 2, + 32, =0 (mod8) .

By taking reciprocal of (i) of the theorem and (4.5) we can get
expressions for (2°) and (16)’ too.

We should like to thank Dr. Kenneth S. Williams for suggesting
this problem.
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