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DETERMINATION OF A UNIQUE SOLUTION OF THE
QUADRATIC PARTITION FOR PRIMES

p = l (MOD 7)

BUDH SINGH NASHIER AND A. R. RAJWADE

Let p be a rational prime = 1 (mod 7). Williams shows
that a certain triple of a Diophantine system of quadratic
equations has exactly six nontrivial solutions. We obtain
here a congruence condition which uniquely fixes one of these
six solutions. Further if 2 is not a seventh power residue
(mod p) then we obtain a congruence (mod p) for 2 C p l ) / 7 in
terms of the above uniquely fixed solution.

1* Introduction* Let e be an integer ^ 2 and p a prime ==

1 (mod e). Eulers criterion states that

(1.1) F Ξ I (mod p) , p = ef + 1

if and only if D is an eth power residue (mod p), so that if D is
not an eth power residue (mod p) then

(1.2) Df
 ΞΞ αe (mod p)

for some eth root ae ^ 1 (mod p) of unity.
Obviously α:2 = —1. For D = 2 and e = 3, 4, 5, 8 Lehmer [2] gave

an expression for ae in terms of certain quadratic partition of p.
For arbitrary eth power nonresidue D, Williams [6], [7] treated the
cases e = 3, 5.

When e = 5 Dickson [1] (Theorem 8, page 402) proved that for
a prime p Ξ l(mod 5), the pair of Diophantine equations

jlβp = x2 + 50u2 + 50v2 + 125 w2

law = i>2 — 4uv — u2 (x ΞΞ I (mod 5)) .

has exactly four solutions. If one of these is (x, u, v, w) the other
three are given by (α?, —u, —v, w), (x, v, —u, —w), (x9 —v,u, —w).
Lehmer [2] (case k = 5) gave a method of fixing a solution uniquely.
She proves that if 2 is a quintic nonresidue (modp) then

„ 4 x Ξ w(125w2 - α;2) + 2 ( a ; w + 5 u v ) ( 2 5 w - x + 20u - l O y ) , 0 ( j v

w(125w2 - x2) + 2(xw + 5uv)(25w - x - 20u + lOv)

for a unique solution (a?, u, t;, w) fixed by the condition

(1.4') 2|w, v = (-l)u/2x (mod 4) .
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In this paper we treast the Case p = l (mod 7). For such primes
Williams [4] has shown that the triple of diophantine equations

(1.5)

72p = 2x\ + 42(α,1 + x\ + xϊ) + 343(α;

12x1 + 147a? - Ulxl

4 + 98xδxβ = 0 ,

12a?| - 12a?4

2 + 49x1

+ 24a?2£4 + 24aj3α?4 + 490α;5α;6 = 0, (x, Ξ 1 (mod 7)) ,

has exactly 6 nontrivial solutions, the two trivial ones being ( —6έ,
±2u, ±2n, +2u, 0, 0). Out of the nontrivial solutions if one is

SL — (xlf x2, Xs, x4, xδ, xδ) the other five are

2 — \^it ^2, U/3, *t/4, *o 5 , u>6;

(1.6)

S3 = (xίf -x,, x*, -X3, --^(Xs - 3a?β), - — ( a ? 5 +

lf x2, - x 2 s, —2"(»5 - 3a?β), " γ (

S5 = 3, - α ? 4 , - a ? 2 , - — ( α ? 6 + 3α?β), — (α?5 - α?β)

a?s, α « a?2, - — ( a ? 6 + 3α?β), — (a?5 -
Δ Δ

Here we obtain a congruence analogous to (1.4) together with
a congruence condition fixing uniquely one out of these six solutions.

2* I n the sequel p is a prime = 1 (mod 7)* For any D ̂  0 (mod p)
we define the Jacobsthal sum

(2.1)

where («/p) is the Legendre symbol. Using Euler's criterion we
expand (xs + xD){p~1)/2 by the binomial theorem and interchange signs
of summation, the result is

Φr(D) = (mod

(mod p)

But
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p-ι . (—1 (moάp); if Ίj = 0 ( m o d p — 1)

*=i { O(modp); otherwise

and 7i = 0 (mod p — 1) if and only if / | i, i.e., if and only if j = m/,
m = 0,1, 2, 3.
Hence we obtain

(̂£>) = - Σ ί>w / 2 (mod p)

\ mf j
(2.2) - [1 + (D)]

/ P " l \ / P - 1 \ / P - 1 \
Ξ= D ' 2 + ΰ 2 ^ 2 + D 3 / 2 (mod p) .

\ / / \ 2f I \ 8/ /
We write (2.2) for .D = 4dr, r = 0, 1, 2, 3, 4, 5, 6 where eZ is any septic
nonresidue (modp).

Let

(2.3)

Cr= - [ 1 + ί*7(4dr)] (r = 0, 1, 2, 3, 4, 5, 6)

/ / \ (
7, = 4f[ 2 ) , Ύt = 4V 2 , 7, = 4" 2

\ / / \ 2/ / \ 3/

Then (2.2) gives us the following 7 congruences

Co Ξ 7 t + 72 + 73

(2.4) C3 = V&' + Ύzd
βf + Ύ3d

2f

We first get 7U 7V 73 (mod p) in t e r m s of Co, Clf C2, Cit Ct, C6, Ca. Let

a = df + d2f + dif [Note that 1, 2, 4 are quadratic residuces and

β = dsf + dif + d°f 3, 5, 6 are quadratic non residues (mod 7).]

Then a + β = —1 (mod p) and aβ = 2 (mod p).

(2.5) a - β s Σ W (mod p)
ίC=0

is a Gaussian sum and (a — βf = —7 (mod p), since (α — βf = (a + β)2 —
= l - 8 Ξ -7(modj)).
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We take suitable combinations of the latter six congruences in
(2.4). These combinations are motivated by noting that the quadratic
residues (mod 7) are 1, 2, 4 and the nonresidues are 3, 5, 6; while since
3 is a primitive root (mod 7) the nonzero residues are 3, 32, 33, 34, 35, 3β.
These form three classes

A = {33, 36} = {6, 1}

A = {3, 34} = {3, 4}

A2 = {32, 35} = {2, 5}

where 33' 6 At if and only if j = i (mod 3).
All congruences below are taken (mod p).

CA - , δ 3 6 + C5C6

= -(Ύt + 72

2 + 73

2) - 27^2 + 57273 + 5737X

C2Cδ + C3C4 ΞΞ (72 + 72 + 72) - (7,72 + 7273 + Ύ^

C + Ct-C-Cs-C^ (7, + 72 - 73)(α - β)

(2.6)

(2.7)

(2.8)

( 2 ' 9 ) - = (72 + Ί\ - Ί\ + 7,73 - 7273)(^ - a)

(2.10) CfiΆ + C,CδCβ = 2(7? + 72

3 + 7ί) + 7t7273 + Co(7172 + 7273 + 7 ^ )

Squaring the first congruence in (2.4) and using (2.7) we obtain

(2.11)

(2.12)

It + 71 + 7̂  =γ(Cl + 2(C1C6 + C2C6 + C3C4))

7 2 7 3 (Cfi, + Cβ5 + Cfiύ)

Now (2.11), (2.12) and (2.6) give us

7%72 s 2CI

3 4 β2 βt 2 4 S 6 C3C6

and from (2.10) we get

77,7,7a = C£fi< + C3C5<7β + C0(Cl - CfiB - Cβ6 - C3C4)

(using the identity a3 + b3 + cs - Zabc = (a + b + c)(α2 + ¥ + & - ab -
be — ea)) so that

(2.13)
C3C4

x
C 5 C β )



DETERMINATION OF A UNIQUE SOLUTION

Also (2.8) yields

(α - /3)(C0 - 273) = Cγ + C2 + C4 - C3 - C5 - C6

517

or

= C t -1- C 2 -f- C 4 — C 3 — C 5 — Cβ

C o - 2 7 3

(2.14)

(2.9) together with (2.11) leads to

7, - 72 =

X-
7'

C2C5

whereas

Thus we obtain

(2.15)

Ξ Co - 73 .

,C 4 + C2C4 - C 3 C 5 - C 3 C 6 - C5C6)(/3 -

(2.16)

L _
/2 —

X

fl + C{ίz

:2 + cfit

Ί + C073

- i(C! + 2
•

+ cβt - a

7

(PC1 Λ- C C _L Γ* C\\

C6 - C3Ce - CsCe)(β - α ) - 1 ̂

//>'/0' \ C C J^ Π C \\
^O]_L/g ~Γ O2O5 ~r O 3 w 4 ^J

Since 73 is a function of the C's therefore so is a — β and hence
%L, 72, 73 all are functions of the C's.

If (xlf x2, •••, xd) is a solutions of (1.5), then in [4] the C's have
been evaluated interms of the x's viz.

Co = —x1

12Cι = 2x1 - A2x2 -

12C2 = 2 ^ - 42a?3 -

(2.17) J l 2 C 3 = 2a?! - 42z 4 + 9Sx5

12C4 = 2a?! + 42a;4 + 98α?5

12C5 = 2a?! + 42a;3 - 49α5 + 147α;6

12C6 = 2x1 + 42α;2 - 49# 5 - 147α?6 .
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Thus Ύ19 τ2, 73 are functions of the x's say:

(2.18) 7< ΞΞ glxu χ2, x3, χ4, χ6, χ6) i = 1, 2, 3 .

Also (2.14) gives the Gaussian sum a — β as a function of the α 's
say

(2.19) a β ~ ψ(χί9 χ29 χz, χi9 α?5, xQ) .

3* In this section we show that glf g2, g3 in (2.18) are independent
of the choice of solutions of (1.5).

Let Sj_ — (x19 x2, , x6) be a solution of (1.5) and the C's be given
as in (2.17). For a change of solution S± —> Sd, j = 2, 3, 4, 5, 6 we
want to see how the C's change.

We see that:

(3.1)

C1

If S, >S2 then

> G6, C 2

 > C5, C 3

: S, >S3 t h e n

> C4, C 2 > C19 C3

: S, >S4 t h e n

> G3, G2 - > G6, C 3

: S, >Sδ then

> C2, C2 > Cif C 3

: S, >Se then

> C5, C2 > C3, C3 -

•»ct

•»ct
C3;

•C.f •clt

C6,

it G 6

> C 3 , CQ

We observe t h a t C's get permuted in such a way that the set {Clf

C2, CJ with suffixes quadratic residues (mod 7) either remains unaltered
or interchanges with the set {C3, C5f C6} with sufixes quadratic non-
residues (mod 7).

This implies t h a t the combinations of the C's taken in (2.6), (2.7)
and (2.10) do not change with the change of solutions while (2.8)
and (2.9) either both remain the same or change signs simultaneously.
Thus (0,0, + 0,0, + C2C4 - C3Cδ - C3C6 - C5C6) (/S - a) is also unchanged
under the change of solutions.

This shows in view of (2.13), (2.15), (2.16) that gt'& are independent
of choice of solutions of (1.5).

4* In the last section we fix a solution of (1.5) uniquely. For
any λ ί O (mod 7) λ, 2λ, 3λ, 4λ, 5λ, 6λ is a reduced residue system (mod 7)
therefore we write λ r for r in the lat ter six congruences in (2.4)
to get
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^x = 7 1 α -

We solve the above system for dXf as follows. Take suitable com-
binations of four of the above congruences and get

« s 7,(1 - d") + 7s(dw - 1)

or

= 72 + C«

, - 72) = % + Cδ,

s 7, - 7t .

Solving this system by Cramer's rule we obtain

(4.2) 7 t 7 2

CU7, - 7t) + C«(7,) + 7i + 7i - 7/r,

so that by putting λ = 1 we find

(4.20 df g

 C ^ ' " ^ + y ^ + 7- + 7- ~ 7-7- (modp).
C8(72 - 7X) + C2(78) + 7ί + 7! - 7 ^

This last expression depends on the choice of the solution S4 since
the C's depend on the choice of the solution of (1.5). Indeed the
R.H.S. of (4.2') takes different values (mod p) for different solutions.
This is seen as follows:

It is easy to see that φ7(n) = φΊ(nr) if indp (n) = indp (n') (mod 7)
(see [3]) hence Gx = Cm if I = m (mod 7).

In view of (3.1) and (4.2) we see that if S1^SSf j = 2, 3, 4, 5, 6;
the R.H.S. of (4.2') takes value

= d6f, dif, dzf, d2f, d5f

respectively which are distinct (mod p).
Thus precisely one (out of the 6) solution satisfies (4.2'). When

2 is not a seventh power residue, (mod p) then for d = 2 we can
identify which solution shall satisfy (4.2'). This is done as follows:
We have
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[Cx = - [ 1 + fr(2*j], C, = - [ 1 + φ7(2% C, = - [ 1 + φ7(25)]
( 4 ' 3 ) ' c 4 = - [ 1 + φ7(2% Cδ = - [ 1 + φ7(l)], C. == - [ 1 + φΊ{2)\ .

Since X7 + 1 = 0 (mod 2)) has exactly 7 solutions, ^(1) is composed
exclusively of p — 8 plus and minus ones and hence must be odd.

Moreover (2 jy = (2f)j =£ 1 (mod p), j = 1, 2, 3, 4, 5, 6 so that by
Euler's criterion X7 + 2j = 0 (mod p) is not solvable. Therefore
07(20 (i = 1, 2, 3, 4, 5, 6) is even. Thus we conclude that C5 is even
and the other C's are odd.

In (3.1) we notice that the corresponding C5 of a solution is
replaced by some other C£ under a change of solution, therefore for
one and only one solution (xlf x2, x3, x4, xδ, x6) we have

C5 Ξ 0 (mod 2)

or what is the same thing

2x, + 42α;3 - 49α;5 + 147z6 = 12C5 = 0 (mod 8), i.e.,

2x, + 2x3 - xδ + 3α;6 = 0 (mod 8) .

This determines a unique solution of (1.5). Our results can be stated
as the following:

THEOREM. Let p = 1 (mod 7) be a prime. If 2 is a septic non-
residue (modp), then of the six nontrivial solutions of the quadratic
partition (1.5) one and only one satisfies the two congruences

(i) 2<»-1)/7 Ξ C ^ ~ 7 l ) + C δ ( 7 3 ) + Ίl + Ίl "" 7 l T a (mod©)
C(7 - 7X) + Ca(78) + 7ί + 7Ϊ - 7,7,

( i i ) 2ajx + 2a;3 - α;5 + 3α;6 = 0 (mod 8)

with C2, C3, C4, C5, 7j, 72f 73 given as functions of the x/s by (2.17) and
(2.18).

This fixes a unique solution for us.

EXAMPLE, p = 29 = 7.4 + 1.

Here the six nontrivial solutions of (1.5) are

S1 = (1, - 2 , - 3 , - 2 , - 1 , 1) S, = (1, 2, 3, 2, -1,1) ,

SB = (1, 2, - 2 , 3, 2, 0); S4 = (1, - 2 , 2, - 3 , 2, 0) .

Sβ - (1, - 3 , 2, 2, - 1 , - 1 ) ; S6 = (1, 3, - 2 , - 2 , - 1 , - 1 ) .

Precisely one satisfies the two congruences of the theorem viz.
St: Ύ, Ξ= 12, 72 = - 6 , 73 Ξ - 7 (mod 29) and we have
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op-i/7 = 2* = (-15X-18) + 6(-7) + 36 + 49 + 72 Ξ 9 + 16 + 12
(-1X-18) + 27(-7) + 36 + 49 + 72 18 + 14 + 12

== — = 16 (mod 29) .
15

For the remaining five solutions the R.H.S. of (i) of the theorem
takes value: 9, 25, 7, 24, 23 respectively (mod 29). We see that none
satisfies (i) and of course none satisfies (ii).

By taking λ = 3 in (4.2) we have a similar expression

(4.5) 8(ΪJ-1)/7 ΞΞ C^Ύ2 ~ 7 l ) + C^Ύs) + 7* + 7* ~~ 7 l 7 a (mod p)
C2(Ύ2 - 7X) + C6(73) + 71 + 73

2 - 7,72

with the condition

2xί + 2xs — x5 + 3α;6 Ξ 0 (mod 8) .

By taking reciprocal of (i) of the theorem and (4.5) we can get
expressions for (26)/ and (16)f too.

We should like to thank Dr. Kenneth S. Williams for suggesting
this problem.
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