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MERCERIAN THEOREMS VIA SPECTRAL THEORY

FrANK P. CAss AND B. E. RHOADES

Given a regular matrix A, Mercerian theorems are con-
cerned with determining the real or complex values of a for
which al + (1 — a)A is equivalent to convergence. For a=+1,
the problem is equivalent to determining the resolvent set for
A, or, determining the spcetrum o(4) of A, where ¢(4) =
{21 A — Al is not invertible}. This paper treats the problem
of determining the spectra of weighted mean methods; i.e.,
triangular matrices 4 = (a,,) with a,, = p./P,, where p, > 0,
D=0, 270 p = P,. It is shown that the spectrum of every
weighted mean method is contained in the disc {A| |2 —1/2| =
1/2} (Theorem 1), and, if lim p,/P, exists,

o(A) =112 —@2—¢]
=1 — /@2 — &} U{Dn/Prl 0al Py < &/(2—6)},
where ¢ = lim p,/P,.
Let 7 = lim p,/P,, 6 = lim p,/P,, S = {p,/P,|n = 0}. When
7 < 0, some examples are provided to indicate the difficulty

of determining the spectrum explicitly. It is shown that
PI2—2—0"1=01—0/2—0USES (A4 and

sA s 2-C—p=0—-—n/2—1US.

Theorem 1 is a generalization of the corresponding
theorems of: S. Aljancic, L. N. Cakalov, K. Knopp, M. E.
Landau, J. Mercer, Y. Okada, W. Sierpinski, and G. Sunouchi.

Using spectral theory we obtain the best possible Mercerian
theorems for certain classes of weighted mean methods of summability.

The weighted mean method is a triangular matrix 4 = (a,,) with
@ui = Du/P,, where p,>0,p,=20,2=0,P, =37 ,p, and A is a
bounded linear operator on ¢, the space of convergent sequences.

For o + 0 we may write al + 1 — a)A = a(l + qA), where ¢ =
(1 — a)/a. Mercer’s original theorem [9] states the following: Let
{x,} be a sequence such that z,., — 2z, + 7'z, =N\ as n— oo, (i)
If » is finite and g > —1, then z,,, — z, and » 'z, both tend to
M(pe+ 1) as n—oe, (ii) If N is infinite and ¢ > —1, then n7'%,—X\
and z,,, — %, — M only if 0 = ¢« > —1.

Landau [8] showed that, if {x,} is a complex sequence, g a positive
integer, then lim,(x, + (¢/n) >\—, ©;,) = 0 implies lim,x, = 0. Sierpinski
[14] extended Landau’s result to real numbers ¢ > —1 and showed
it could not be extended to q < —1. Sierpinski’s result for ¢ > —1
was reproved in [3].
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Let >imes 0./(0, + D2 + <+ + D,._,) be a divergent series of positive
terms, {x,} a complex sequence. Okada [10] showed that if ¢ > —1,
then lim, (z, +¢(3 k-, 22%:/> k-, D)) =1, | finite, implies lim, z,=1/(1+q).
He also verified that the theorem does not hold for lim, 3\o=! p./p, >
—1+qg)=0.

Using a different technique, Knopp [6] reproved Okada’s result.
Beekman [2] showed that, if A is a conservative triangle with inverse
satisfying a,. > 0,a,; =0 for n >k, then I+ g4 is equivalent to
convergence for Re (g) > —1.

We determine the spectrum of A, 6(A4), in every case in which
lim p,/P, exists (Corollaries 1 and 2). When {p,/P,} does not converge,
in which case A is necessarily regular, the situation seems pathological:
Theorems 2 and 8 do give set inclusions for o(4), but, as we show
by examples, ¢(A) can be disconnected and is very difficult to describe
explicitly.

Let B= A — A\I. Our first task is to compute the entries of B™.
Except for Theorem 1, we shall restrict our attention to regular
weighted mean methods; i.e., those for which P,— . For, if P,
tends to a finite limit, then A is compact and ¢(4A) = {»,/P,: k = 0} U{0}.
(See, e.g. [13, Theorem 1].)

LEMMA 1. Let A be a weighted mean matriz, B=A — AN, )\ a
scalar such that b,, = 0 for each n. Then D = B has entries

P
dn=————"———~,
" . — MNP,

n+k>" pk Pj
nk'—( 1) Pn ,;I:[kpj——)\,P k<’n-

(1)

Proof. A direct computation verifies d,, and d,, ... By induction
one can show that

i~ Pn-j P,_, — (—1)\F _____L_
(2) Z( 1) Pn_,-tnop,,i—hPH (—1) I:IoP,,, NP

With (2), one verifies by induction that (1) is true.

THEOREM 1. Let A be a weighted mean method. Then o(A)<
{z|1z — 1/2| = 1/2}.

Proof. Let n = x + iy satisfy |» — 1/2| > 1/2. This inequality
is equivalent to @ > —1, where —1/A» = a + 8. Since a > —1 and
0 < p;/P; <1 for all j,|1 — p;/NP;| = |1 + ap;/P; =1 + ap,/P;. For
k< n,|dal S 0/ INPP, T U + apy/P;) = fory s2Y.

Using finite induction we can show, for each 0 < » < =,
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i_f‘nk = ‘E:: .
T IR+ @) T (L + apy/Py)

Therefore >3t o |duu| £ [duul + 2020 Far = [Gun| + Paci/|NPP,.

1 + o)1 + ap,/P,) = [p./Pp — M + BINT(A + )™
= BITA+/MA + @),

where S=1ifa=0and =1+ a&)if -1 <a<0. Sinced,, #
0 for each n, from Problem 32 [16, p. 232], the convergence domain
of D, (D), is equal to ¢, and N € p(4), the resolvent of A.

Theorem 1 is a special case of [2, Theorem 1]. Since 0 is not
an interior point of ¢(A), Theorem 1 provides another proof of the
fact that every weighted mean method lies in the closure of the
maximal group of invertible elements in 4, the subalgebra of B(c)
consisting of triangular matrices. (See [11, p. 287].)

Let 6 = lim, p,/P,, ¥ = lim, p,/P,.

THEOREM 2. Let A be a regular weighted mean method. Then
o(A) 2N AN=2-0) =1 —)/(2—0)} U S, where S={p,/P,|n = 0}.

Proof. Fix A satisfying [v — (2 — )| < @ — 8)/(2 — 6) and A #
./P, for any n. From (1) we obtain

(3) || = P

NPT 1+ (1- %)_I?J"T

Note that |1 + (1 — (1/\)P,+./P.| <1 if and only if

A+ A+ A)puii/Po) + B/ P =1,
where —1/n» = a + i6; i.e.,
(4) 21 + a)P,sa/Py + (1 + @) + BUDps/Pa) <0

For each n» such that p,., = 0, (4) is automatically satisfied. For
each n such that p,., > 0, (4) is equivalent to

(5) 21+ a) + (A + @ + fYP4s/Pa = 0.

For (5) to be true for all n sufficiently large, it is sufficient to
have 0 satisfy

(6) 20+ a)+ (A +a) + 65/ —-06) <0,

since 9,.,/P, = DPuis/Puii(l — Duss/P,y), Which is monotone increasing
in p,/P,. Inequality (6) is equivalent to [x — (2 —0)!| < A — 98)/(2 — 9).
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Therefore, for all n = N, using (8),

PILMES,

n—1 n—1
D > 1
NF 2P, = T 2

D
P’
which diverges by the Abel-Dini theorem [7, p. 290].
If » = p,/P, then A belongs to the spectrum of A. Theorem 2
follows since the spectrum is always closed.

COROLLARY 1. Let A be a regular weighted mean method with
0 =0. Then o(A) = {N||N—1/2] £ 1/2}.

Proof. Combine Theorems 1 and 2, observing that S is already
contained in the disc.
Special cases of Corollary 1 for A real appear in [1], [6], and [10].

THEOREM 3. Let A be a regular weighted mean method with
v>0. Then c(A) S{NIA—C =)< A —=N/(E2—-"}US.

Proof. Let \ be fixed and satisfy [ A — (2 — )7 > A —-7/2—7)
and \ # p,/P, for any n. We shall show that A€ p(4), the resolvent
of A. From Theorem 1 we need consider only those values of X
satisfying |N —1/2| £1/2; i.e., a<—1. The value a=—1 corresponds
to A =1, which we know lies in the spectrum, since p,/P, = 1.
Therefore we shall assume a < —1.

Under the assumption on M we wish to verify that

11+ (1 — 1/M)p;/P;|

is strictly larger than one for all j sufficiently large. To this end,
define f(t) =1+ 2 + @)t + (A + @)* + BHt. f has a minimum at
to=—1 + /1 + a)f + B).

The assumption on A\ is equivalent to

(7 Y@+ B +2>7—2.
Therefore

¥ —1 + a)
20 —7) " QL4+ aP+ 4

=t,

and f is monotone increasing for all £ > v/2Q1L — 7).

Let ¢ > 0 and small. f((v/A — 7)) —e) = f(7/A — 7)) — 2€ g(e),
where g(6) =1 + a + (1 + a)* + BH(V/(L — 7)—¢/2). g(e) > 0 for small
¢, since f is monotone increasing for t > 7/2(1 — 7).

We shall now show that f(v/(1 — 7)) > 1. From the hypothesis
on )\ and (6),
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a2+,[;?2+_29_> Y -2
v

’

which is equivalent to

1y
I—7v M-

>1.

But 1/1 —7v) =1+ 7/(1 — 7), so we have
O/ =")=11+A =1A\)7/A-7F>1.

Now choose & >0 and so small that f(v/(1 —7) — &)= f(7/1 — 7)) —
2eg(e) = m* > 1. Then, by the definition of v there exists an N
such that » > N implies p,../P, > 7/(1 — %) — ¢, so that f(p,/P,_,) >
fO/@A — ) — &) = m.

Using (3), |duel/|@nsse] = (f Pnss/Pn)) > m* > 1 for all n = N.
Therefore |d,.| is monotone decreasing in » for each %k, » = N, so
that D has bounded columns. Thus, to show that D has finite norm
it is sufficient to show that |d,,| is bounded, and that 3=} |d,..| is
bounded.

Recall that p,/P,_, is monotone increasing in p,/P,. For the ¢
we are using, we can enlarge N, if necessary, to ensure that p,/P,_, <
0/l — &)+ 1 for n = N.

From (8),
n—1 1 5 n—1 ” . -L pj -1
&, [10ml = |M2(1 —5 7 1)%(313,‘ 1+ (1 x)PJ-_l
1 0 o
< - n+k—1
= |x|2<1—3+1>k=wm <#,
where H is independent of #.
[d l = P"‘ = P'” = P"‘
P,/P,_, — (A + p./P,_y)

T INIT @ — 10/ Pa] ML+ @ — 1P P

1+6/1—08)+1
< In|m )

Therefore D has finite norm. From [16, loc. cit.], (D) =c¢ and M€
p(4).

COROLLARY 2. Let A be a regular weighted mean method with
lim, p,/P, =7>0. Then c(A)={|IN—C2—-")=ZA-7)/2—-7}U
E, where E = {p,/P,|p./P, < 7[(2 — 7)}.
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Proof. Combine Theorems 2 and 3 and note that S\E is already
contained in the disc, and ¥ is a finite set.

We now obtain a necessary and sufficient condition for a weighted
mean method to be equivalent to convergence.

THEOREM 4. Let A be a regular weighted mean method. Then
(A) = ¢ if and only if 6 = lim, »,.,/P, > 0.

Proof. 6 > 0 implies p,../P, = 0/2 for all n sufficiently large.
For each np,.\/Puiy = (Pnss/ Pu)/(1 + D41/ P,). Note that f(y) = y/(L + y)
is monotone increasing in y, so that, for all » = N, 9,./P,., = 0/(2+8),
and the diagonal entries of A are nonzero for n = N. If a,,=0
for any n < N, replace the zero by 1. The new matrix B has the
same convergence domain as A. For » = N, the nonzero terms of
B~ are by, = P,/Dy, bijnoy = — Py_i/D..

Suppose a,, = 0 for some ¥ < N. Thenp,=0,b,,=1andb,, =0
for w > k. Thus by =1, bil,, = 0 and, by induction, b, =0 for
n > k.

Therefore || B™ || =sup, [Po_./D, + P./D,] = sup, 2P,/p, = 2(2+6)/6 <
o, By [16], (B) =¢. Thus (4) =c.

Suppose § = 0. Then there exists a subsequence {n,} of n such
that lim, p,,../P,, = 0.

Case I. p, = 0 for at most a finite number of values of n. Let
B be the matrix A with each zero diagonal entry replaced by 1.
Then (B)=(4). Since p,./Pryy= (Ouis/Pa)/(L+Dosi/ Py, lim, P, /D, = 0.
Therefore ||B7*|| = supy |bsl,.,| = oo, and (B) # c.

Case II. p, = 0 for an infinite number of values of n. Let {n;}
denote this set. Define a sequence {x,} by =, = 1, 2, = 0 otherwise.
Then Az = 0, and (4) = c.

The special case of this theorem for 0 < p, <1 appears in [4].

A special case of the sufficiency of this theorem appears in [5, p. 59].
We now consider the pathology which may arise when ¥ < é.

With 9,=1,»,=0 for »>0,c¢, = p,/P,, then, as in [12, pp.
163-4], one can show that p,=¢,J[}-.(1 —¢)™ ¢, =1,0=<¢,<1
for » > 0, and P, — o is equivalent to X7 ,¢, = .

For any sequence s = {s,} define u, = >3, 0,8;,/P,. Then u, —
A -ec)u,_, = c,8,. Let

(8) t, = Uy, — NS, +
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For each ¢, # 0,
(9) tn = )"(1 - cn)u'n—l/cn + (1 - )"/cu)un .

Now for the examples. Let p, ¢ be real numbers satisfying 1 <
» < g. Define {c,} by ¢, =1, ¢ = 1/p, €3,_, = /g, » > 0. Using (8)
and (9), t, =1 — MUy s = (D — DMUgpy + (L — DN) U, and £y, =
(@ — 1)Mugs + (1 — qN)Ugnr,. Therefore ¢ = Bu, where by, = 1, by 5, =
1 — DN bancizncs = 1 — @M bgpony = (@ — DN, bypi00—e = (P — 1N, >0,
b.. = 0 otherwise. From Theorem 4, (4) = ¢.

Suppose N # {1/p,1/q,1}, and let E= B If ||E| < -, then
from [16, loc. cit.] E is conservative and (B) = ¢. Thereforetec=
wec=secc and (4 — M) = ¢, which implies A ¢0(4). Conversely,
if veo(4), then (A —NI) =¢, so that tec=scc=ucc—=FE is
conservative = || E|| < «. We have shown that, if \ = {1/p, 1/q, 1}
then A ¢o(A) if and only if || E|| < .

To compute the norm of E, observe that b,.¢., + b0,,_1€. ;=0
for &k < m, so that e,, = —ba..—16u_1.1/bun.

Thus 6y, = —(® — DNsr i/ (L — DN), k<20, n =1, 2, -+, and
i = —(@ — DNy /1 — qN). Let R, = 37, ]e,|. For n=1,

2n—1
R2n = kz_:‘l) Iezn,k‘ + [ezn,Zn]

— (@ —=DM= 1
10 = ] 2n—1,k —_—
o T—p &l Ty

_ 1 _

= m[(p DIN R,y + 1],
and, for n = 0,

1

11 Ry = ——— (g — DINR,, + 1] .
(1) I1_(1)\11[01 YN R + 1]

Substituting (11) into (10) we have

——-D@—-D\p (=DM 1
o T pMT—an ™ = paL—an] L pn
and
By =P =D@—DAfp (¢ D] 1

11— M1 — )| 1 —pr[1—gn  J1—gn|”

Let {o,} be defined by o,,, = a0, + b, where @ and b are fixed
positive constants. Then
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so that

0ﬂ+1 _ 00 —

_bd—-a"
artt al a (1 —a™) ’

Or 0,4, — 02" = b(a"*" — 1)/(a — 1). For 0 < a <1, /{o,} is bounded,
and, for ¢ = 1, {s,} is unbounded. Therefore

o(A) = {M || E|| = ~} U {1/p, 1/g, 1}
={[@-—-1D@—-DINF=|1—pM|1—q\]},

since 1/p, 1/g and 1 already belong to those values of )\ for which
| Bl = oo.

For p =2,q =38,00(4) is an oval with z-intercepts of 1/4, 1.
For » = 2, ¢ = 8, the boundary consists of a pair of ovals which are
tangent at 2 = (10 — 178)/23. For p = 8, ¢ = 13, 6(A) is contained
in two disjoint ovals., The left oval has x-intercepts at 1/15, 1/9,
and the right oval has x-intercepts at 1/7, 1.
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