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We prove that if f is an extreme point of the class
N(G, p) of all holomorphic functions g on the region G in C"
such that Reg >0 on G and g(p) =1, and if three conditions
on G hold, then the Cayley transform (f — 1)/(f + 1) is ir-
reducible.

1. Introduction.

1.1. Let G be a nonempty open connected subset of C". We
will denote by H(G) the class of all holomorphic functions on G, we
will denote by N(G) the class of all f in H(G) such that Re f > 0,
and we will denote by W(G) the class of all f in H(G) such that
|f1 £1. Thus W(G) is the closed unit ball of the Banach algebra

{f: fe HG), || F1l < oo}
where
IIf Il = sup{|f(2)]: 2 G} .
Let pe G and let
NG, p) = {f: fe N(G), f(p) =1}.

Thus N(G, p) is convex (and compact with respect to the compact
open topology). Furthermore let

W(G, p) = {g: g € W(G), g(p) = 0} .
Thus
NG, p) = {1 + 9)/1 — 9): g€ W(G, p)} .

We will denote (as is usual) by Aut(G) the group of holomorphic
homeomorphisms of G, and by HYG, Z) the first Cech cohomology
group of G with integer coefficients. We recall [1, p. 769] that if
g€ W(@), if g is not constant, and if g is not the product of two
nonconstant members of W(G), then g is said to be irreducible. The
purpose of this paper is to state and prove the following theorem.

THEOREM 1.2. Let G be such that (a) Aut (G) acts transitively
on G, and (b) HY(G,Z)= 0. Furthermore let gc W(G, p) and let
f=Q0A+ 9@ —g). If NG, p)=+{1} and if f is an extreme point
of N(G, p), then g s irreducible.
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1.3. With regard to Theorem 1.2 if
G={z:2€eC" |2z| <1}

and if n = 2, then the fact that g is irreducible does not imply that
f is extreme. For example if g(z) = 2,, then (as is easily seen) g is
irreducible. Whereas if h(z) = 2%/2, then g + e“h e W(G, 0) and

f= 'l—szn[(l + 9+ e’h)/(1 — g — e“h)}do .
27w Jo

If
G={z:2€C,|z| <1},

then (as is well known) f is extreme if and only if ¢ is irreducible.

We do not know if Theorem 1.2 holds if we omit one or both
of the hypotheses (a) and (b). With regard to this we remark that
these hypotheses are not used in §§2 and 3. They are used only
in §4.

2. The beginning of the proof of Theorem 1.2.

ProrosiTION 2.1. If N(G, p) # {1}, then 1 4is mnmot an extreme
point of N(G, p).

Proof. We have W(G, p) + {0}.
Furthermore if g € W(G, »), then

Re(1+9g)=1+ Reg >0,

hence 1 + ge N(G, p). Likewise 1 — g€ N(G, p), hence 1 is not an
extreme point of N(G, p).

LEMMA 2.2. Let ge W(G, p) and let f=Q1Q+9)/A—g). Ifg=h?
where h € HG) and if N(G, p) # {1}, then f is not an extreme point
of N(G, p).

Proof. If j=2h/1 —g), then f+757=1+h)/1—h) and f—j=
1 — h)/A + h), hence f+ 4, f— jeN(G, p). Thus if h =+ 0, then f
is not an extreme point of N(G, p). If h = 0, then by Proposition
2.1 f is not an extreme point of N(G, p).

2.3. We recall the following theorem of Ahern and Rudin (which
is proved by means of the theory of normal families) [1, Lemma 3.3
and the postscript on p. 777].

PROPOSITION 2.4. If ge W(G, p) and if g+#0, then g = ab where
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a € W(G, ), a is irreducible, and b<c W(G).

2.5. We will denote (as is usual) by D the class of all z in C
such that |z| <1, by D the class of all z in C such that |z| =<1,
and by T the class of all z in C such that |z]| = 1.

PROPOSITION 2.6. If z, we D, then

z—l—w‘éll_l_z—;w‘.

2W +
jow 25

Proof. Let 2<t < . If we define f: D x D— C by
. 2+ w 2+ w
flz, w) = <zw+ ; )/(1 -+ ; ),

then |f| =1 on T x T, hence by the principle of maximum |f|<1
which will suffice to prove Proposition 2.6.

2.7. We recall that if 2, weC and if 2z + 1, then
2.1) Re[d+z+2w)/1l—2)]=l+w]P—|z+wP/|Ll— 2.

LEMMA 2.8. Let ge W(G, p) and let f= @1 + 9)/L —g). If
N(G, p) = {1} and if f is an extreme point of N(G, p), then ¢ =
a(s — a)/(1 — 8a) where a € W(G, p), a is irreducible, seC, s +5 =0,
and 0 < |s| = 1.

Proof. By Proposition 2.1 g = 0. Let g = ab where a ¢ W(G, )
and be W(G).

Let N in T be such that Re [ b(p)] =0, let ¢ = \a, and let d =
Ab. Thus g=cd. Let s=d(p). Thus s+35=0 and |s|<1. If
h = (¢ + d)/(1 — g)] — s, then h(p) = 0. Furthermore

Re(f+h)=Re(f+h+s)=Re[l+g+¢+d)/A—-9g)],
hence by (2.1)

e ),

Rﬂf+M:<P+c;d .

hence by Proposition 2.6 f+ he N(G, p). Likewise f— he N(G, p),
thus » = 0. We have
c+d=s1—g)=s1—ed),
hence
d=(s—2¢)(1+ sc)=(s—¢)(l—5Se).
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If s =0, then d = — ¢, hence g = (i¢)®. Thus by Lemma 2.2 s = 0.
Lemma 2.8 now follows from Proposition 2.4.

3. The action of Aut (@) on N(G, p).

3.1. We define a: Aut (G) X N(G)— N(G, p) by
AZ, )= (foZ — N/t

where A = 4 Im f(Z(p)) and ¢ = Re f(Z(p)). We will omit the proof
(which is straightforward) of the following proposition.

PRrROPOSITION 3.2. If Y, Z<cAut(®), if f, g€ N(@), and if t > 0,
then

@.1) (Z,f+ 9) = aa(Z, f) + balZ, g)
where a,b >0 and a +b=1,

(3.2) (Z, tf) = eZ, f) ,

and

(3.3) (YZ, ) =a(Z, Y, 1)) .
Furthermore tf he N(G, p), then

(3.4) a(l,h)="h.

PROPOSITION 3.3. Let fe N(G, p) and let ZcAut(G). If f 1is
an extreme point of N(G, p), then a(Z, f) is an extreme point of
NG, ).

Proof. Let Y=2"' If a(Z, f) = ag + bh where a,b > 0 and
g, h e N(G, p), then by (3.1) and (3.2)
(Y, e(Z, f)) = ea(Y, g) + da(¥, h)
where ¢,d > 0 and ¢ + d = 1. Furthermore by (8.3) and (3.4)
Y, (z, ) =1T,

hence
f=ca(Y, g) + da(Y, h).

Thus f = a(Y, g), hence
o(Z, f) =azZ,aY,g) =g
which completes the proof of Proposition 3.3.
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3.4. Although a paraphrase of Proposition 3.3 is proved in [2],
it seemed worthwhile to give a proof here.
We define 8: Aut (G) x W(G, p) — W(G, p) by

_1—-1 goZ —p
Z,g) = =
B(Z, 9) = n1-jig-Z

where p¢ = g(Z(p)). We will omit the proof (which is straightforward)
of the following proposition.

PROPOSITION 3.5. Let ge W(G, p) and let f= 1+ g)/1—g). If
Z € Aut (G), then

a(Z, 1) =1+ B(Z, 9)lIL — B(Z, 9)] -
4, The end of the proof of Theorem 1.2.

PROPOSITION 4.1. Let ac W(G). If a s irreducible and +f
HYG, Z) =0, then a(G) = D.

Proof. If te D—a(@), then since H G, Z)=0, (a—1t)/(1—1ta)=>"
where be W(G). We have a = (b* + t)/(1 + tb®). Thus if t = — s?
then

o = b—s b+ s
1—35b1+ 5b°

Since ¢ is irreducible either (b — s)/(1 — sb)eC or (b + s)/(1 + §b)eC,
hence b € C, hence a € C which contradicts the fact that « is irreducible.

PROPOSITION 4.2. Let ge W(G, p) and let f= 1+ g)/A — g).
If NG, »)#{1}, if f is an extreme point of N(G, p), and if
HYG, Z) =0, then g(G) = D.

Proof. By Lemma 2.8
(4.1) g =a(s — a)/(l — 3a)
where a € W(G, p), a is irreducible, and seD. By Proposition 4.1
a(G) = D, hence by (4.1) ¢(G) = D.
4.3. We will now prove Theorem 1.2. By Lemma 2.8
(4.2) g=a(s — a)/l —3sa)

where a € W(G, p), @ is irreducible, se D, and s = 0.
The roots of 35x* + 2ix — s are —i[l + (1 — s5)"?]/s. Thus if
A= — 1]l — (1 — s5)"%]/5, then
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(4.3) AN+ 2n—5=0.

Furthermore if |s| <1, then || < 1. Let = — 2\ let 2z in G be
such that g(z) = ¢ (Proposition 4.2), and let Z in Aut (G) be such
that Z(p) = 2. Thus ¢g(Z(p)) = p. If b =a-Z, then by (4.2)

— _(n.8—0b 2 =y §— b
(9o Z — )l — fgeZ) = (bl =2 4 )/(1 + X 25 §b>
= [\ 4 (s — 5\ — BI[L — (5 — s\9)b — X .

Furthermore by (4.3) s — §A* = 2i\, hence

(9o Z — WA — fgoZ) = (N* + 2iNb — b?)/(1 + 20nb — X%
= [(x + 9b)/(1 + nb)J .

L—g\/ N+ b\
Z,9) = — ) =n
Rz, 0) <1 - ‘u><1 T ixb)
where h e W(G, p). Thus by Lemma 2.2 and Proposition 3.5 a(Z, f)
is not an extreme point of N(G, p) which contradicts Proposition 3.3.
Thus |s| = 1.
We have

Thus

g = as(l — 5a)/(1 — sa) = sa

which completes the proof of Theorem 1.2.
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