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We prove that a congruence relation on a complemented
lattice has a complement if and only if it is the minimal
congruence generated by a central element. This result is
then used to show that a complemented lattice has a Boolean
lattice of congruence relations if and only if it is the direct
product of a finite number of simple lattices. It is also used
to obtain some information on the structure of complemented
lattices whose lattice of congruences is a Stone lattice.

I* Introduction* What does it mean for a congruence relation
^ on a complemented lattice L to have a complement in the lattice
Con (L) of congruence relations of LI The answer to this question
provides the underlying theme for the paper. In case every inter-
val [0, a] is complemented, then some results of Gratzer and Schmidt
([1], Theorem 11, p. 56 and [1], Lemma 8, p. 37) can be used to
show that Θ has a complement in Con (L) if and only if there is a
central element z of L such that θ is the minimal congruence gen-
erated by the ideal [0, z]. In §2 this result is extended to an arbi-
trary complemented lattice. It is then used to obtain the structure
of those complemented lattices for which Con (L) is a Boolean alge-
bra. At this point, it is shown (for a suitable class of lattices) that
Con(L) being a Stone lattice is related to the existence of certain
suprema in L.

2* Complemented congruences* Let θ, θr be congruences on
the bounded lattice L. Suppose θ, θ' are disjoint in that a{θ n θ')b
implies a = b. The key to what is happening is provided by

LEMMA 1. Let 0 denote the least element of L. If 0 < a < b
with Oθaθ'b, then:

(1) (x V a) A b = (x A b) V a for every xeL.
(2) a is neutral in [0, δ].

If L is complemented, we may add:
( 3 ) a is central in [0, 6],
(4) There is an element ce L such that 0 < c < b and Wcθb.

Proof. (1) Given xeL, we note that (x Va)AbθxAbθ(xAb)Va.
Since (xV a) Ab, (x A b) V a e [a, b] with aθ'b, it follows that (xVa)A
b = O Λ b) V a.
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(2) Let x, ye[0, b], and set s = (a Ax) V (x A y) V(ϊΛα), t =
(a Vx)A(x Vy)A(yV a). Then sθt follows from Oθa, and sθ't from
α#'δ. Consequently, s — t, and by [2], α is neutral in [0, 6].

( 3 ) Let α' be a complement for a in L. Then a A (b A ar) = 0,
and by (1), a V (6 Λ a') — (ar V α) Λ b = 6, so 6 Λ α' is a complement
for α in [0, 6]. But this says that a is central in [0, 6].

( 4 ) Take c = 6 Λ α'.

We are now ready to state our principal result.

THEOREM 2. Let L be a complemented lattice. A congruence
relation θ has a complement in Con (L) if and only if there is a
central element z of L such that θ is the minimal congruence
generated by [0, z].

Proof. If z exists, it is clear that θ has a complement in Con
(L). Suppose conversely that θ has a complement θ9 in Con (L).
We may then find a finite chain

0 = x
0

of minimal length such that xi_γθxi or x^θ'Xi for i = 1, 2, , n. If
n = 1, there is nothing to prove, so we may as well assume n ^ 2.
In view of Lemma 1 (4), we may also assume that xβxβ'x2. If
n ^ 3 we must have #20#3. We may apply Lemma 1 (4) to the
interval [0, x2] to obtain an element ceL such that 0< c <x 2 and
0θ'cθx2. But then the chain

0 = = # 0 < c < £ 3 < < xn__t < χn = 1

with Qθ'cθxs is a chain of shorter length than our original minimal
length chain. From this contradiction we deduce that n = 2, so
there is an element z such that 0<z<l and Qθzθ'l. By Lemma 1,
2 is central. Evidently xθy is equivalent to x\/ z = yV z, so ^ is
the minimal congruence generated by the ideal [0, z\.

This leads immediately to

THEOREM 3. Let L be a complemented lattice. A necessary and
sufficient condition for Con (L) to be a Boolean algebra is that L
be the direct product of a finite number of simple lattices.

Proof. Sufficiency is clear. To establish necessity, it suffices
to show that if Con (L) is Boolean, then L must have a finite center.
For then, if zlf z2, —-,zn are the atoms of the center of L, and if
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Lt = [0, zΛ, then L would be isomorphic to the direct product of
the irreducible lattices Llf L2, -> ,Ln. But each Lt is a homomor-
phic image of L, whence each Con (Lt) is Boolean. An application
of Theorem 2 to the complemented lattice L, yields Con (L<) a 2
element chain, since the center of Lt is {0, zt). In other words,
each Li is in fact simple.

We now proceed to show the center of L to be finite. Suppose
this were not true. We could then find an ideal / of the center
of L that is not principal. Define Θ on L by the rule xθy if£xVza =
yVza for some za e J, and note that θ e Con (L). But this forces
the existence of a central element z such that xθy iff x V z = yV z,
contrary to the fact that J is not a principal ideal of the center.

3; Stone lattices* In [3] we asked what it meant for Con (L)
to be a Stone lattice in the sense that for each congruence relation
θ, θ* and #** are complements in Con(L). Here θ* denotes the
pseudocomplement of θ in Con (L). The foregoing results can be
used to show that for a fairly wide class of complemented lattices,
this is related to the existence of certain suprema in L. The class
of lattices we have in mind is the class that satisfies (A), (A*), (B)
and (B*) of [4]. (Note: Axiom (X*) denotes the dual of Axiom X.)
For the reader's convenience we restate (A) and (B) here:

(A) α/0 > c/d with c> d implies c/d > aja2 for suitable
alf a2 such that a^ ax> a2

(B) a > b implies the existence of an element t such that
tθa/bl, t g a.

It should be noted that θa/b denotes the smallest congruence that
identifies a and b. To illustrate the scope of these axioms, we
mention that (A), (A*), (B) and (B*) are satisfied by each of the
following types of lattices:

( i ) any bounded relatively complemented lattice;
(ii) any lattice that is both atomistic and dual atomistic;
(iii) any uniquely complemented lattice;
(iv) any simple lattice;
( v ) the direct product of lattices of any of the preceding

types.
Here then is our result.

THEOREM 4. (1) Let L be a complemented lattice that satisfies
(A*) and (B*). If Con(L) is a Stone lattice, then the kernel of
every congruence relation of L has a supremum in L.

(2) Let L be a bounded lattice satisfying (A), (A*), (B) and
(B*). // the kernel of each congruence relation of L has a supre-
mum in L, then Con (L) is a Stone lattice.
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Proof. (1) Let θ e Con (L) have kernel J. By the dual of
Theorem 2, there is a central element z of L such that θ* is the
minimal congruence generated by the filter [z, 1]. By the dual of
[4], Theorem 3, p. 179, aθ*l iff a is an upper bound for the kernel
of θ. Hence z = V J.

( 2 ) Let (9 G Con (L) and let z be the supremum of the kernel of
θ. By the dual of [4], Theorem 3, p. 179, [z,ϊ\ = {teL:tθ*l}.
Since z is a lower bound for {teL: tθ*l}, we may apply [4], Theorem
3, p. 179 with θ replaced by θ* to deduce that zθ**0. Thus,
Oθ**zθ*l and so 0** is a complement for θ* in Con(L).

COROLLARY. For L a Boolean algebra, Con (L) is α Stone lattice
if and only if L is complete.

Proof. Suppose Con (L) is a Stone lattice. Then for S an
arbitrary nonempty subset of L, the ideal J generated by S is the
kernel of a congruence. Hence V J exists in L, and it is clearly
effective as the supremum of S. The converse is clear.

In conclusion, the author would like to express his gratitude
to the referee for providing more efficient proofs of some of the
results, and in particular, for suggesting the present version of
Theorem 4.
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