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Let XaRd, d > 2, be compact and convex. It is shown
that the space of proper faces (poonems) of X is compact if
and only if the space of ^-exposed (extreme) points of X is
compact, 0 S k ̂  d — 2.

By a flat we mean a translate of a subspace of Rd and by a
hyperplane, a flat of dimension d — 1. If X is a compact convex
subset of Rd the symbols dim (X), rel int (X), and rel bd (X) denote
respectively, the dimension of the flat generated by X, the interior,
and the boundary of X with respect to the flat X generates. A
hyperplane H is called a supporting hyperplane of X if H Π X Φ 0
and H n relint (X) = 0 . A set A is called a face of X if A = X,
A = 0 or if there exists a supporting hyperplane H of X such that
i = J ϊ n X The set of proper faces (those not X or 0) is denoted
by ^(X). A set J3 is called a poonem of X if there exists sets
j?o, Blf , £ m such that £ m = X and B^eJ^iB,) for i = 1, , m.
The set of poonems of X is denoted by &*(X). A point x in X is
called a ^-exposed [A -extreme] point if for some j <^k, x belongs to
a i-dimensional face [i-dimensional poonem] of X. The symbols
expfe (X) and ext^ (X) denote the set of fc-exposed and fc-extreme
points of X respectively. A point x of X is called an exposed point
of X if {x} G ^(X) and x is called an extreme point if whenever
x 6 [a, b] c X, we have x = a or x = b, where [a, b] denotes the closed
line segment from a to 6. The symbols ext (X) and exp (X) denote
the extreme points and exposed points of X, respectively. Note
that exp (X) — exp0 (X) and ext (X) = ext0 (X). Also, let q denote
the Hausdorff metric. Finally, if DaRd, the symbols CI(JD) and
conv (D) denote the closure of D and the convex hull of D re-
spectively.

We require the following results

PROPOSITION. Let X, A and B be nonempty compact convex
subsets of Rd, d ^ 2, with A c X and BaX.

(a) If A, B 6 F{X) (P(X)) and AnBΦ 0, then An Be F(X)

Γ)).
(b) If AeF(X) (P(X)) with relint (B)f]AΦ0 then Be A.
(c) If A6F(X) (P(X)) and i ξ ΰ c l then AeF{B) (P(B)).
(d) extfc(X)ccl(exp,(X)).
(e) If Ae F(X) then ext, (A) c extfc (X).
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Propositions (b), (c) and (e) follow quickly from definitions while
(a) is proved in Grunbaum [2]. Proposition (d) is due to Asplund
[1]. The following theorem is the main communication of this note.

THEOREM. Let XaRd, d > 2, be compact and convex. Then
(i) The metric space (P(X), q) is compact if and only if extk (X)

is compact, 0 <; k ^ d — 2.
(ii) The metric space (F(X), q) is compact if and only ΐ/expfc (X)

is compact, 0 <; k <̂  d — 2.

Proof. We consider part (i). The only if part is obvious. Sup-
pose {An} -* A with An 6 P(X) for all n. Clearly if dim (A) = 0, A
is a limit point of ext (X) aίid we are done. We proceed now by
induction on the dimension of A. Let dim (A) = k + 1. We may
suppose k + 1 ^ cZ — 2 since if fc + 1 = <£ — 1 the sequence {An} is
eventually constant and we are done. We consider cases:

Case 1. For infinitely many nf dim (An) = & + 1. Without loss
of generality we may suppose dim (A J = k + 1 (otherwise we pass
to an appropriate subsequence). Let x e relint (A). Since x is a
limit point of the set extfc^ (X) and k + 1 ^ d — 2 our hypotheses
imply that there exists Q eP(X) with dim (Q) = fc + 1 and a eQ.
By Proposition (b) i c Q . We claim A = Q. Suppose not. Then
there exists # 6 rel bd (A) Π relint (Q) and there exists a sequence
{3/*} — 1/ with yn 6 rel bd (AJ for all w. Let Fn e P(An) with yΛ 6 Fn

and JP% =£ An for all w. Without loss of generality we may suppose
{Fn}—>F for some F. Since dim (FJ <: & for all n we have dim (F) <: &.
Since we have that Fn e P(X) for all w and since dim (F) ^ & the
induction hypothesis implies FeP(X). Since F f] relint (Q) =£ 0 ,
Proposition (b) implies Q c F , a contradiction since dim (ί1) < dim(Q).
Thus A = Q and we are done.

Case 2. There is no subsequence of {An} each element of which
has dimension k + 1. Then there exists {%n}—>x with a?n e rel bd (AJ
for all n. Let i ^ 6 P(An), Fn Φ An, with xn e Fn for all n. Without
loss of generality we may suppose {Fn} —> F for some F. Note Fn e
P(X) and dim (Fn) < dim (AΛ) for all n. If there is a subsequence
of {i^} each element of which has dimension k + 1 then a? is a limit
point of extfc+1(X) and we have returned to the argument of the
first case. If not, we repeat the latter procedure as many times as
needed to return.

We turn now to the proof of part (ii). The only if part is trivial
and is omitted. In view of (i), we need only show "a face of a face
is a face." Let AeJ^(X), dim (A) ^ 1 and let BeJ?~(A) and sup-
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pose dim (B) = k. We may suppose B is a maximal proper face of
A with respect to set inclusion. By definition B c extfc (X) and by
hypothesis and Propositions (e) and (d) i?cexpfc (X). Let x e rel int (B)
and let Q e ^(X) with xeQ and dim (Q) = j ^k. Since rel int (JB) U
(A n Q) ̂  0 , by Propositions (a) and (b), J5c A n Q. Since dim (A Π Q) ^
dim (Q) ̂  j ^ k < dim (A), we have A Π Q Φ A. Since we have that
A Π Q 6 J^~(X) Proposition (c) implies that AπQe ^(A). We must
now have B = Ap\ Q since β is a maximal proper face of A. This
completes the proof of (ii).

If one defines /: rel bd (X) -> P(X) where fix) is the smallest
poonem of X containing x, then one has an example of the face
function introduced by V. Klee and M. Martin [3]. Part (i) provides
a characterization of those compact convex sets X in Rd for which
/ is continuous at each point of relbd(X).

We wish to consider some examples from R* and R\ Let D be
a compact convex subset of Rz with nonempty interior such that
exp (D) is compact but {%βr{D)f q) is not compact. It is not difficult
to show that there is a 1-poonem B of D which is not a face of D.
On the basis of the latter example, one might conjecture that for a
compact subset X of R? (J^iX), q) is compact if and only if exp (X)
is compact and for each i e ^ ( X ) , Jr{A)a^'{X) i.e., "a face of
a face is a face." While this is true in Rz it is not in iϋ4 as the
following example shows.

Let C = {(a?, y) \x2 + y2 = 1, x ^ 0, y ^ 0} and let # = conv {(1, 0),
(-1 , 0), (0, 1), (0, -1)}. Let I be the closed line segment from (0, -1)
to (0, 1) in E. Let {xn} be a sequence of distinct points in C con-
vergent to (1, 0). Regarding R4 as R2 x R2 let F, = {xt} x I for i =
1, 2, and let F o = {(1, 0)} x # . Define I a s l = conv (UΓ=o J^).
One may check that exp (X) is compact and that "a face of a face
is a face." Note also for each i9 Ft e ^(X) and {î } —• .F where
F = {(1, 0)} x Z. However, Fί^(X) so that (^~(X), q) is not com-
pact. (This particular example was pointed out by V. Klee; the
authors had a more cumbersome one.) Returning to the set D in
i?3 mentioned earlier, perhaps the more important observation about
D (as far as higher dimensions are concerned) is not that we have
Be^(D) and Bί^(D) but rather that expx (D) is not compact
since the theorem in R* that generalizes is that (^~(X), q) is compact
if and only if exp (X) and expx (X) are compact.
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