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Let K be a closed subspace in a real or complex normed
linear space L. The "Main Interpolation Problem" as for-
mulated by L. Asimow reads as follows: Given a bounded
convex neighborhood V of 0 in L and a bounded closed
convex U containing 0, their polars V° and U° in the dual
V of L, define the functionals on L pVκ(x) = sup (a?, V°Γ)K°)
and Pu(x) = sup (xf U

Q). For xoeL we are looking for an
element xeL satisfying

(1) x — xoeK (x\κo = xo\κo) and
(2) Pu(x) = PVK(XQ) (exact solution), respectively
(20 Pu(%)=Prκ(%Q)~+~e for given ε>0 (approximate solution).

The problem is formulated in a different but equivalent way
in this paper using the canonical projection p from L to
L/K. For a real linear subspace M of L, a convex cone JV
in M" and bounded closed convex neighborhoods U and V we
prove conditions in terms of the dual space of L which are
necessary and sufficient for the inclusions

p{N Π U) 3 p{M) Π p(V) resp. p(i\T Π U) z> p(M) Π

({u_i} means the topological interior, F 7 7 } , the closure).

Theorem 1 shows the equivalence of the first inclusion to the
existence of a not necessarily linear map with certain properties
form the dual U to K°, the second inclusion is shown to be valid
if the first one holds for a certain family of 0-neighborhoods U and
V. Theorems 2 and 3 are applications of the first one and in the
case L = C(X), where X is a compact Hausdorff space give generali-
zations of several well-known results: Gamelin's extended Rudin-
Carleson theorem [12], theorems by Bjork [10] and Alfsen [1] and
T.B. Andersen's split-face theorem [3]. Some of the following results
are closely related to Ando's paper [4] on closed range theorems,
which gives conditions for the validity of the second inclusion if
there exists a projection in the dual of L with range K\ The
notation of "splitability" there coincides with restrictions on neighbor-
hoods ("strongly admissible") in this paper.

I am grateful to L. Asimow for some useful suggestions on the
subject.

1* A basic theorem* Let L be a real or complex normed linear
space, V its dual. The polar S° of a subset S in L is defined as the
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set of all μeU such that Reμ(f) ^ 1 for every feS. The following
well-known facts on polars are used in this paper (for proofs, for
instance see [17]): The bipolar of S in L is the σ(L, U) closed convex
hull of SU {0}. If Slf S2 are subsets of L, we have (St U S2)° =
SI Π SI. If both Sx and S2 are closed and convex (St U S2)° coinsides
with the σ(L\ L) closure of the convex hull of Sϊ U S°2 in L', and
if in addition Si and S2 are 0-neighborhoods in L this convex hull
is σ{L\ L) compact, hence (Sx Π S2)° = conv (SJ U SI). We state now
our first theorem.

THEOREM 1. Let K be a closed subspace of the real or complex
normed linear space L, M a real linear subspace of L, N a norm
complete convex cone in M, V a bounded convex, U a bounded convex
and closed neighborhood of 0 in L. p: L —> L/K is the canonical
projection. For the following assertions

( a ) p(Nf] U)z>p(M)f)p(V).

(b) ~(
( c ) {p(NnU)Ycz{p(M)()p(V)y.
( d) There is a map φ: U —> K° with the properties:

(dl) For every μeK° (φ(μ) — μ) e M°.
(d2) For every μeU° and every feM such that p(f)εp(V)

we have Re φ(μ)(f) ^ 1.
(d3) For all μ,veL' such that (μ — v) e N° we have

(φ(μ)-φ(v))eM°.
(e) For every heNC\U such that the Minkowski functional of

K + V qκ+v(h) < 1 define

± - h) , X(h) = 1 - qκ+v(h)UhUΠ

\{h)

and we have

p(NΠ Uh)z)p(M)f]p(V) .

(a) and (c) are equivalent, (d) implies (a), (a) implies (d) if N is a
real linear space, (e) implies (b), and (b) implies (a).

Proof. The implications (a) => (c) and (b) ==> (a) are trivial. To
prove (c) => (a) and (e) ==> (b) we need Lemma 1.

(c) => (a): Taking the polars on both sides of inclusion (c) shows
that p(NΠ 17) 3 p(M) Π p(V). Applying Lemma 1, part (1), with
A = L, B = p(M)czL/K, C = Nf] U and D = p(M) n p(TO we con-
clude (a).

(e)=>(b) is a consequence of Lemma 1, part (2) with the same
insertion for A, B, C and D. Then Un l/X(C-h) =Uf] l/λ(JVΠ U-h) =
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Uf] 1/X(N -hΓίU-h)z)UC)Nn l/λ(Z7 - Λ) = NnUh. Obviously for
heNΠϋ both Minkowski-functionals in (e) and in Lemma 1 are
equal:

qo(p(h)) = inf {p \ p(h) 6 p(p(M) Π

= inf {/

So (e) implies the assumptions of Lemma 1, part (2), and we derive
(b).

(d) =» (c): This argument makes use of an extended Hahn-Banach
theorem by Kaufmann [15] which states the following:

Let L be a real linear space, N a convex cone in L, q a sub-
additive, positive-homogeneous functional on L, and let μ be an
additive positive-homogeneous functional on N such that μ ^ q
on ΛΓ. Then there is a linear functional θ on L such that 0 ^ q
and μ <* θ on N.

Now suppose (d) holds and let μ be an element of (p(N Γ\ U))°.
Then μeK° (K° is the dual of L/K) and Re μ{f) ^ 1 for every
feNn U. Let # be the positive-homogeneous subadditive functional
on L generated by U:

q(f) = inf {λei?+ |/eλί7} .

There is a constant r > 0 such that q(f) ^ r | |/ | | for every / in L,
because U is a neighborhood of 0.

Let μ1 be the real functional on L: μγ = Re μ. Then μx(f) <̂  g(/)
for every f in N and applying Kaufmann's theorem we find a real
valued functional μ2 on L such that

μ%{f) ^ q(f) for fe L and ^(/) ^ μJJ) on iSΓ.

Clearly μ2 is continuous, hence the real part of an element μ3eL'.
So we have for every f in M

(This is a consequence of assumption (d3) because μ — μse N°, hence
<p(̂ ) — φ(μ3) 6Λf°, and of (dl) because μ eK°, hence <p(μ) — φeM°.)
Now suppose feM such that p(f)ep(V), then (d2) implies
Re φ{μz)(f) ^ 1, because ^3 6 U\ Therefore Re μ(f) ^ 1, and μ
belongs to the polar of p(M) Π p{V).

If N is a real linear space too we prove the implication
(a) => (d): Suppose p(N Π £7) => p(Λf) Π p(V) and define the map

φ: U —* K° using the axiom of choice as follows:
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[β if there is βeK° such that μ — β e N°
ψ{μ) = (0, else .

Thus φ is well-defined and meets the requirements (dl), (d2), (d3):
(dl) Suppose μeK° and βeK° such that μ — βeN°.
For every feM there exists by assumption geN such that
P(f) = P(9)f hence Re μ(f) = Re μ(g) = Reβ(g) = Reφ(μ)(f).
(d2) Suppose μeU°, β = φ(μ), feM such that p(f)ep(V).
Then for every 7 e (0, 1) 7/e p(ikf) Π p(V), therefore we find
geNftU with p{g) = p(7/), hence Re^μX/) = Re φ(μ)((l/Ύ)g) =
Re β((l/Ύ)g) = Re μ((l/Ύ)g) ̂  (1/7). Thus Re £>(μ)(/) ^ 1.
(d3) Suppose μ,veU such that (μ — v)e N°.
Then in case there is no proper £ in ίΓ0, we have φ(μ) — φ(v) = 0.
Else let be /̂  = φ(μ), v = φ(v). Then μ — μeN°, v — veN°,
hence β — v e N\ and β — v eM° as well because μ — v e K°.
To complete the proof of Theorem 1 we need the following

lemma:

LEMMA 1. Let A and B be normed real linear spaces, p: A—>B
a continuous linear map, C a complete bounded convex subset in A
containing 0, D a bounded convex neighborhood of 0 in B. Then

(1) p(P) 3 D implies p(C) n D.
(2) // there is a bounded neighborhood U of 0 in A containing

C, such that for every h in the algebraic interior of C for which

λ(λ) = sup {p e R+1 p{h) e (1 - ρ)D) = 1 - qD(p(h)) > 0

(where qD denotes the Minkowski-functional of D on B)

X(h)

then p{C) 3 D.

Proof. (1) Suppose p(C) => D and let feD. Given ε > 0 there
is goeC such that | |/ — p(βro)ll < ε. Suppose g19 , gneC have been
selected such that

/ - p(§ (- , for every k = 1, , n

where r > 0 is a constant, such that τEB c Iλ (2£B denotes the closed
unit ball in B.) Then (r/ε)n+\f - p(Σ?=o (e/r)'^)) e ΰ and we find
#w+1 e C such that
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hence

Set g = Σ?=o (e/r)'flf,. Then p(flf) = /, and g e (1/(1 - (e/r)))C, hence for
every 7 > 1, p(7C) 3 D, ?>(C) z> (1/7)D, which proves part (1).

( 2 ) Ϊ7 is bounded, so UaREΛ, where 2^ denotes the unit ball
in A. Let / e Z ) . Then (//2)eZ>(l - (1/2)2) and by hypothesis (set
h = 0) and part (1) there is gx e C(l - (1/2)2) such that p(g,) = (//2)
and | | Λ I I ^ (3/22)Λ (because Λ € ( l - (1/2)2)C7). Suppose glt gu- -,g.
have been selected such that Σ?=i Λ e CC1 - (1/2)M+1), p(flf,) = C/i/2*),

ι)Λ, i = l, ••-,%. Set

Then Λ e Uo^r<i ΎC a n ( i

OW+2 O2 OW+2 O2

2^+2 j 7 U
2n+2 - 1 '

hence

2^+2 _ 2

2

X(h) ^ 1 -
2 _ ! 2 % + 2 - 1

By hypothesis and part (1) of the lemma then

and there is

such that

Now let

P(g') = -§-/
ό
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g + ~ 8 * g'

Then

3 1 <yn+2 1 / / 1 \n+2\

^rw+1 fc ^ - (G — /&) = ( 1 — ( — 1 1(0 — /ι)

hence

Σ

Set g = ΣΠ=i #*• Then p(#) = /and gr e C, which completes the proof.

2 A Rudin-Carleson theorem* Throughout this section we
assume that K° is the range of a norm continuous linear projection
π in the dual space U of L. Applying the implications (d) => (a)
(setting φ — π) and (e) => (b) in Theorem 1 we derive an extended
Rudin-Carleson-type theorem in Banach spaces. Since the above
assumption coincides with Ando's [4] some of the results are related
to his.

Let K be a closed subspace of the Banach space L, π: U —>K° a
continuous linear projection. To apply Theorem 1 we need some
requirements on "admissible" neighborhoods of the origin in L.

DEFINITION. Let U and V be closed convex bounded neighbor-
hoods of 0 in L. (U, V) is called admissible, iff π(U°)(Z V°. U is
called strongly admissible, iff U° = conv {π(U°) U (/ - π)(U0)} ( Π
denotes the closure in the norm topology of I/.)

REMARKS.

(2.1) (E, (l/]|τr||)J57), where E is the closed unit ball in L, is ad-
missible.

(2.2) If L is an AM-space (Banach lattice with property ||/Vβf|| =
11/11VH0II for all positive elements /, g in L, cf. [19]), K an ideal in
L, π: U —* K° the band projection, then the closed unit ball E in L
is strongly admissible: The inclusion E° =) conv (π(E°) U (/ — π)(E0))
is trivial. Conversely let μ e E\ then μ = π(μ) + (I — π)μ, and
because π(μ) and (J — π)μ are orthogonal and U is an AL-space

\\π(β)\\ + \\(I-*)μ\\ = W\π(P)\ + \(I-π)(μ)\\\ ^ M\μ\) + (I-
hence μ e conv (π(E°) U (I - π)(E0)).
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(2.3) Let (Z7Ί, Vλ) and (J72, V2) be admissible O-neighborhoods.
Then {U1 Π ZTa, V1 Π V2) is admissible.

This is an immediate consequence of the fact that (U1 Π U2)° =
conv (IT? U ITS), hence π{{U, Π ZT2)°) = π(conv (IT? U U°2) c conv (π(ZTϊ) U
π(E7J)) c conv ( F ; U V°2) = (F, n F2)°).

(2.4) If both ZT and V are strongly admissible, ZT Γ) F is strongly
admissible, because

(Uf) V)° = conv (Ϊ70 U F°)

= conv (conv (ττ( ZT0)) U (I - ττ)( ZT0)) U conv (τr( F°) U (I - π)( V0))

= conv (7r(C7°) U π(F°) U (I - π)(ίT0) u (J - τr

= conv (τr(conv ([7° U F°) U (I - π)(conv (U° n

- conv (τr(ί7n F)° U (/ - π)(Uf] V)°) .

(2.5) Let U be strongly admissible, heU. Then (ZTA, ΪT) is
admissible (Uh was defined: Uh = Uf] (l/X(h))(U - fe)). To prove (2.5)
it is sufficient (because of (2.3)) to show that ((l/λ(Λ))( ZT — Λ), ZT) is
admissible, i.e., π((l/λ(Λ))(ZT - Λ))° c ZT°, i.e., π(U - h)° cz(imh))U°.
Let μ 6 (ZT - Jt)°, then Re ̂ (/) ^ 1 + Re JM(Λ) for every fell. From
0 6 U we conclude that Re μ(h) > — 1, hence /̂  e (1 + Re μ(h))U\ By
assumption £7 is strongly admissible, hence there is v e 1/ such that
H/i — v|| < e, v = λΛ + X2v2, \ + λ2 = 1, λlf λ2 ^ 0, vγ e (1 + Re (h))π(U°),
v2e(l + Re μ(h))(U°). Then τr(v) = λ^, (J - π){v) = λ2i;2.

From the definition of λ(Λ) = sup {p e R+1p(λ) 6 (1 — p)p(U)} and
because π(y) e iί 0 for every / 6 ZT we conclude Re π(v)(h) + λ Re π(v)(f) ^
sup {π(̂ )(flr) I # 6 ϊ T J ^ λ ^ l + R e ^ ) ) , hence
Re (I - π)(v)(Λ) - Re v(h) ^ λ t(l + Re μ(h)) + λ2(l + Re μ(h)) - Re
1 + Re μ(h) - Re v(h) ̂  1 + ε||h | |. (Note that Λ e Cf, ( I - ττ)(v) 6 λ2(l +
Re /!(&))(! - τr)(ZT°) imply Re (I - π){v)(h) ̂  λ,(l + Re ̂ (A)).)

Thus π(v)6(l + e||A||)(ZT°/λ) for ε > 0. Because π is norm con-
tinuous from this we conclude π(μ)e(U°/X) = (ΪP/X).

Now Theorem 2 is at hand.

THEOREM 2. Let K be a closed subspace of the real or complex
Banach space L, K° be the range of a norm continuous linear
projection π on U, p\L—+ L/K the canonical map. Suppose M is
a real linear subspace of L, N a norm closed convex cone in M. For
the following assertions

( a ) For all closed convex bounded neighborhoods U and V of
0 in L such that (ZT, V) is admissible

p(Nf] U)

( b) For every strongly admissible closed convex bounded neigh-
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borhood U of 0 in L

( c ) π(N°)czM0.
(a) implies (b), and (c) and (a) are equivalent.

Proof.
(a) => (b) is an immediate consequence of implication
(e) => (b) in Theorem 1 and of Remark (2.5). To prove
(c) => (a) we show Condition (d) in Theorem 1 holds with φ = π.
(dl) is trivial, and because of the linearity of π (d3) corresponds

to assertion (c) of Theorem 2. To verify (d2) let μeU\feV. Then
π(μ)e V° because (C7, V) is admissible, hence Re π(ju)(/) ^ 1.

(a) => (c). Assume (a) holds and let μeN°, feM. To prove
ΈLeπ(μ)(f) = 0 we have to define proper 0-neighborhoods U and V.
Let

V=(l/\\π\\)E and UΛ = E Γi {h e L\\(I - π)(μ)(h)\ £ *}

where E denotes the closed unit ball in L. Both Uε and V are
bounded convex and closed and (Uβ9 V) is admissible: U°ε =
conv (.S0 U { }°), hence π( U°ε) c conv (π(E°) U τr{ }°) So obviously
it suffices to verify π{ }° c F°. But { } = ε {eia(I- π)(μ) \ a e [0, 2π]}°,
therefore {• }° = (l/ε){λ(J - π)(μ)\\X\ ^ 1} and ττ{ }° - {0}.

Now select λ > | |/ | | \\π\\. Then (l/λ)/G F and p((l/λ)/) e p(Λf) Π
and by assumption there is gε e Nf] Uε such that p(gB)=zP((XMf)f

hence \(I - π)(μ)(gε)\ ^ ε, i.e., \μ(gε) ~ π(μ){gt)\ ^ ε.
On the other hand we know because gε — (l/X)feK, μeN° and

π(μ) 6 K° that Re π(μ)((l/X)f) = Re π(μ)(gε) ^ Re ^(^£) + ε ^ ε.
The argument holds for every ε > 0 independent of λ, hence

Re π(μ)(f/X) ^ 0 and π(μ) e M°.

3* Applications in Banach lattices* In this section we are
going to take advantage of the fact that the map φ\ U —• KQ in
Theorem (Id) needs not necessarily be linear. For the following
suppose L is a real or complex Banach lattice, i.e., in the complex
case L is the complexification of a real Banach lattice Lo (for
details cf. [19]) L = Lo + iL0. Let K be an ideal in L, then K°
is a band in the order complete dual U — L[ + iLJ of L. By π we
denote the band projection from U onto iΓ\ π is norm continuous
and monotone (cf. ([19]). As before M is a real linear subspace of
L, JV a closed convex cone in Λf. For the construction of φ we
introduce a new parameter:
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Let R be a sup-stable (i.e., fVgsR for all/, gβR) convex cone
in Lo such that

(3.1) Re (lin N) c i?, i.e., R contains all real parts of the elements
of lin N, the complex linear hull of N.

(3.2) R is total in Lo, i.e., R - R = Lo.
(3.3) (ELo Π R) + I/+, where ELQ denotes the unit ball, L+ the

positive cone in Lo, is a neighborhood of the origin in Lo.
In straightforward analogy to the concept of the Choquet ordering

for measures on a convex compact Hausdorff space we define an
order relation "<,R" on L+ (L+ denotes the positive cone in L'o) by
μ<Rv iff μ(f) ^ v{f) for all feR. Here R takes the part of the
continuous convex functions in the classical case (cf. Alfsen [1]).
Like there we show that there are sufficiently many maximal elements
in this ordering (Lemma 2) and then define φ using the axiom of
choice of the composition of a map from U in the set of maximal
elements and the band projection onto K°. According to the choice
of the parameter R Theorem 3 yields a wide range of applications.
For R = Lo for instance, the ordering is trivial and it leads to the
Rudin-Carleson-type theorem of §2. In §4 we shall apply it to the
case L — C(X) with different choices for R.

The proof of Lemma 4.1 in [16] can be adapted to derive the
following lemma on the existence of maximal elements in L'+. (Note
that condition (3.3) for R guarantees the σ(U, L) compactness of the
set {ve L+\v > Λ μ) for given μ e L+.)

LEMMA 2. For every μeL'+ there is μ e L'+ such that μ ># μ
and μ is maximal in the ordering " > # " .

For every feL0 define the upper respectively lower iϋ-envelope
(cf. [1], §5) in L", the order complete bidual of Lo

f='mΐ{he-R\h^f}, f = sup {h e R\h ^ /} .

Then for μ,veL+ μ<Rv implies μ(f) ^ v(f) and μ(f) ^ v(f). This
is an immediate consequence of Propositions 4.2 and 4.5 in Schafer's
book [19], because μ(f) = inf {μ(h)\he —R, h ^ /} for positive μ.

Corresponding to the set of boundary measures in Choquet-theory
we define

dU = {μeLf\ \μ\ is i?-maximal} .

(Recall that \μ\ = supαeco^ilcosaT*! + sinα^l GLΌ where μ = μγ + iμ2.)
For every μeU there is μ e dU such that μ — μ e (lin JV)°, be-

cause there is a decomposition of μ = (μt — μ2) + i(μ3 — μ4) such that



206 WALTER ROTH

ft e L+. According to Lemma 2 select ft e L'+ such that the μt are
jβ-maximal and μt > Λ μi9 hence μt — ft e (lin iV)°. Set μ = (ft — ft) +

A very useful characterization of the elements of 31/ is given
by a reformulation of [1], Proposition 1.4.5.

LEMMA 3. μedU if and only if \μ\(f) = \μ\(f) for every feL0.
dU is an order ideal in L'.

The proof of the first assertion follows straightforward the proof
of Proposition 1.3.5 and the argument in Proposition 1.4.5 in Alfsen's
book [1]. To verify that 31/ is an order ideal in 1/ let μ,ve dU.
Then for fe Lo /-/is clearly positive in L", \μ+v\(?-f)£\μ\(f~f) +
I *> I ( / - / ) = 0, hence ^ + vεdU. If μedU and veL' such that
\v\^\μ\. Then \v\(f - /) ̂  |JM|(/ - /) = 0, which completes the
proof.

To formulate the main theorem we need some additional require-
ments on K and on 0-neighborhoods in L.

DEFINITION. Let U and V be subsets in L. (IT, V) is called
unstable, iff for every μ e U° there is μ e V° Π dL' such that μ — μe
(liniS/y. A subset U in L is called i2-stable iff (IT, IT) is jR-stable.

REMARKS.

(3.4) Let ITΊ, Z72, T ,̂ F2 be closed convex 0-neighborhoods in L
such that (Ulf V,) and (IT,, V2) are Λ-stable. Then (Ux Π IT,, F, n ya)
is i?-stable.

To prove (3.4) let μ e (U, Π IT,)0 = conv (Σ7? U IT'S). Then μ = λ^i +
λ2μ2> ft e ITJ, ft e U°2, λ! + λ2 = 1, λw λ2 ^ 0. By hypothesis there are
ft e VI Π 3L' and fteFίn 32/ such that ft-^e(liniV)°, i = 1, 2.
Set // = λift+λ2ft, then jδ e 3L', /Z~^ e (lin iST)° and £ e conv (F? U F2°) =

(3.5) Suppose U is an i2-stable closed convex bounded 0-neigh-
borhood in L, heNf)U. Then 17 — h is ϋNstable.

Let μe(U- h)°. Then Re #(fc) > - 1 and Re μ(f) ^ 1 + Re μ(h)
for every feU, hence μ 6 (1 + Re β(h)) IT0. Because U is i2-stable
there is μedU Π (1 + Reμ(h))U° such that £ - μe(lin JV)0. From
Reμ(h) = Reμ(h) we conclude Reμ(/) ^ l + Re/ΐ(λ) for every / e IT,
hence μe(U — fc)°.

(3.6) There is a handy characterization for i?-stable admissible
0-neighborhoods in the case L is a real Banach lattice:

Suppose U is a 0-neighborhood such that /*+(/+) + μΛf~) ̂  1
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for all μe U°, fe U, then Z7is jβ-convex and (U9 U) is admissible
for every band projection π on U.

To derive the first assertion, let μ = μ+ — μ_ 6 U° and select
μ+f μ- e dU (Ί I/+ such that μ+ >B μ+9 μ_ >R μ_. Then μ = μ+ — μ_e
dU and μ — μ e (lin N)° and for every feU

μ(f) ^ jδ+(/+) + //_(/_) ^ /ϊ+(Λ) + μΛf-)

hence // e U°. Secondly assume π is a band projection on U. Then

hence TΓ^ 6 U°.
Now we state

THEOREM 3. Let L be a real or complex Banach lattice, M a
real linear subspace of L, N a closed convex cone in M, R a sup-
stable convex cone in Lo (the underlying real Banach lattice of L)
such that (3.1), (3.2), and (3.3) hold. Suppose K is an R-stable ideal
in L, p: L-*L/K the canonical projection, π: U —• K° the band
projection from U onto K°. For the following assertions

(a ) For each triple (U, W, V) of closed convex bounded 0-neigh-
borhoods in L such that (U, W) is R-stable and (W, V) is admissible
{with respect to π)

p(Nf)U)z)p(M)r)p(V) .

( b) For every strongly admissible R-stable closed convex bound-
ed ^-neighborhood U in L

p(NnU)z>p(M)np(U).

( c ) π{dΠ n N°) c M° and K° n (lin N)0 c M°.
(a) implies (b), and (c) and (a) are equivalent.

Proof.
(a) ==> (b). For every heNnU Uh = U n (l/λ(A))( U - h) is R-

stable (Remarks (3.4) and (3.5)) and (Uh, U) is admissible, (b) then
is a sequence of implication (e) => (b) in Theorem 1.

(c) => (a). To apply Theorem 1, (d) => (a), we construct φ: U —* K°
as follows: Let μeU and λ = inf {p e R+ \ μ e p U0}. There is
μ e \W° Π 31/, such that μ - μe (lin N)°. Define φ(μ) = π(μ) e XV°.
Conditions (dl), (d2), (d3) hold.

(dl): Let μeK°. Because of the instability of K there is
v 6 K° Π dU such t h a t μ - v e (lin N)\ hence μ -ϊ>eK° Γi (lin N)° c M°

by assumption (c). On the other hand μ in the construction of φ(μ)
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was selected such that μ — μ e (lin N)\ hence μ — v e dU Π (lin N)° a
dU Π N° and again by (c) we conclude π(μ — v) = ττ(jδ) — ϊ7 = <p(μ) —
£eΛf°, hence, φ(μ) — μeM\ (d2) is obvious, because μe U° implies
φ(μ) 6 V°. To verify (d3) let μ,veU such that (μ-v)e N°. Then
jδ - v e dU n iV0, hence by (c) π(μ - v) = φ(μ) - £>(i;) 6 Λf°.

(a) —> (c). Clearly K° Π (linN)° c F is a necessary condition for
(a) because (a) implies p(N) = p(M). To prove the other inclusion let
μedU Π N°, feM. To show ΈLe π(μ)(f) <Z 1 we construct a proper
triple of neighborhoods Uε, Wε, V: Define

Uε - E n {h e L\ |(I - τr)(^)W| ^ ε}

(E denotes the unit ball in L). By assumption (3.3) for R there is
a constant r > 0 such that rj&Lo c (JS'LO Π i2). (JEχ0 is the unit ball in
Lo.)

Let TFε = (r/4)JB Π {h e L\ \(I - π)(jeι)(λ)| ^ ε}, F = (r/4)E. The
pair (Wβ, F) is admissible (cf. the proof (a) =* (c) in Theorem 2). We
shall prove now (Uε, Wε) is jB-stable. Let μ e E°, then there is a
decomposition μ — μx — μ2 + ί(μ3 — μd such that μt 6 E° Π ί/+. Let
jδ€ be J?-maximal in L+ such that μ>i*>Rμi. Suppose ferELo then
there is ft e ELo f] —R such that h ^ /, hence //<(/) ^ Jδt(Λ) ^ JM/Λ) ^ 1,
hence μt e (rELQ)°, and for ferE we conclude / = fγ + i/2, /i, /2 e
hence Re μlf) = ^ ( / J ^ 1, and & e (rJ57)°. Thus

P = fii-P* + i(fc - ft) e 4(rJ5;)°

and (E, (r/4)E) is i2-stable. Because of Remark (3.4) all left to show
now is instability of the set {h e L\(I — π)(μ)(h)\ < ε}. But this is
obvious because μ e dU implies (f — π)(μ) e dU (cf. Lemma 3) and
{.. }° = {λ(I - π)(μ)I |λ| ^ 1} c dU. Therefore (Uε, Wε) is jβ-stable,
and to complete the proof we adapt the conclusion in (a) => (c) in
Theorem 2.

4* The case L = C(X). There are some interesting applications
of Theorem 3 to the case L = C(X), where X is a compact Hausdorff
space. With proper choice of the parameter R then quite a few
generalizations of well-known results about dominated extensions of
continuous functions are at hand. We have to distinguish the cases
L = CR(X) (real valued continuous functions on X) and the complex
case L = CC(X). The latter one requires more sophisticated techni-
ques to stady iϋ-stable neighborhoods, corresponding to Hustad's [14]
method to derive a norm preserving complex Choquet theorem. We
apply a generalization of his result [18].

Throughout the chapter suppose X is a compact Hausdorίf space,
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L = CR{X) (resp. L — CC(X)) provided with the supremum norm.
Let K be the closed ideal in C(X) of all functions vanishing on the
compact subset Γ c l , U then is the space of all real (resp. com-
plex) valued Borel measures on X, π: U —• K° the usual restriction
to the subset Y.

To define strongly admissible 0-neighborhoods in L let 7 =
{z6C\ \z\ = 1}, j θ : I x 7^/?+ a lower semicontinuous bounded strictly
positive function and

U={fe CC(X) I Re (zf(x)) ^ p(χ, z) for all x e X, z e 7} .

To see that U is a strongly admissible 0-neighborhood in L — CC(X)
with respect to the restriction map π, let f, geU, μe U\ χγ the
characteristic function of Y. We shall prove first that

(4.1) Re μ(fχγ + g(l - χr)) rg 1 .

Given ε > 0 there is a compact subset KeX\Y such that

\μ\(X\(YUK))<6.

Let xeX\(Y U K). Urysohn's lemma guanties the existence of con-
tinuous functions χx and φx such that 0 ^ φx9 ψx ^ 1 and

ψ*\κu{x) = 0 > ΨX\Y = 1

^xlruix} — 0 , 0a, I # = 1 .

Let α; < 1 and f = af, g = ag, and

G, - {(a?, ^ ) e ! x 7 | E e (z(ψj + f^)) < /o(a?, z)}

then Γ X T , K x Ύ, {x} x 7 all are subsets of G ,̂ which is open in
X x 7, because ^ is lower semicontinuous. Re z(φxf + ψxg) is con-
tinuous on X x 7. Thus U* Gx = X x 7, which is compact, and there
are xlf x2, , xn e X\(Y U ϋΓ) such that U?=i Gβ< =_-Σ" x 7. Let ^ =
inf ^ . , 0 = inf φH. Thus h = φf + ψg e U, h\γ = /, ΛU = g, and

and

IM*) - Kflr + 9(1 - ZF))I ^ e(||/|| + Hflfll) + \\μ\\(l - a) .

Because | |/| |, \\g\\, \\μ\\ are bounded, ε > 0 and a < 1 arbitrary, and
heU we conclude (4.1).

Now set λ = sup {Re π(μ)(f)\fe U}, δ = sup {Re (1 - π)(μ)(f)\fe U}.
Then λ, <5 ^ 0, λ + <? ^ 1 by (4.1), and π(μ) e XU°, (1 - π)(μ) e δU°,
hence π(μ)e\π(U°), (1 - π)(μ)eδ(l - π)(J7°), and

μ = ττ(̂ ) + (l - τr)(^) econv (τr(Z7°) U (1 - π)(U0))

Ud conv (ττ(Z7°) (J (1 - π)( J70)) .
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The converse is obvious, since μe U°, fe U implies by (4.1) π(μ)(f) =
KfXr) ^ 1> hence πμ e U°.

As a first corollary of Theorem 3 choosing R = CR(X) we now
prove a Rudin-Carleson theorem, which generalizes Gamelin's [10]
version by requiring N only to be a convex cone:

COROLLARY 3.1. Let Y be a closed subset of the compact
Hausdorff space X, M a real linear subspace of CC(X), N a closed
convex cone in M. Then the following conditions are equivalent'.

( a ) For every ^-neighborhood U in CC(X) defined by a strictly
positive bounded lower semicontinuous function p: X x 7 —> R+ (as
above) and every feM such that flYe U]γ (restrictions to the subset
Y) there is a function geNf]U such that glY — fγ.

(b) For every complex Borel measure μ on X μ e N° implies
μlYeM°.

Proof.
(b) => (a) is an immediate consequence of (c) => (b) in Theorem 3.

To prove the converse suppose μeN°, heMsuch that h φ 0. Define
U by p{x, φ) = ||Λ|| if x e G and p(x, φ) = ε else, where G is an open
neighborhood of Y. Clearly hlYeUlY and by assumption there is
geNf)U such that hΪY = gι

γ, hence

0 ^ Re μ(g) - Re μlY(g) + Re μΪG^γ(g) + Re μ]z-σ(g)

^ ReμΪY(h) - h\μ\(G - Y) - e\μ\(X - G) ,

and because G and ε were arbitrary and μ is regular 0 ^ Re μlY(h),
hence μlYeMQ.

We are going to state now a corollary, which implies and
generalizes results by Bjork [10], Alfsen-Hirsberg [2], and T.B.
Andersen [3]. Recall that the Choquet boundary of R dRX is defined
to be the subset of all xeX such that the Dirac measure ex is
maximal in the " < β " ordering. Every "boundary measure" μ e dU
on X is known to vanish on every Baire set disjoint from the
Choquet boundary (cf. [1] or [14]). For a linear subspace N in CC(X),
which separates the points of X and contains the constants, we say
dNX = dBXf where R is the sup-stable cone in CR(X) generated by
the real parts of N.

Note that in the real case the instability of a given neighbor-
hood U is relatively easy to be checked, whereas in the complex
case the arguments turn out to be much more complicated. Hustad
[14] (along with Hirsberg's [13] interpretation) proves the jβ-stability
of the unit ball in CC{X). We shall apply a generalization of his
result given in [18]:
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Suppose U is defined by a strictly positive l.s.c. function
ρ:X x 7 —>R\J {00}

U= {feCc\Re(zf(x))^p(x,z), for all a?6X, 267}

and for every z e 7, the function

^ : X — R U {00} , A(a?) = p(z, x)

i s i 2 - s u p e r h a r m o n i c , i . e . , pz(x) ^ μ ( f t ) f o r a l l xeX a n d μ > β ε x ( D i r a c
m e a s u r e i n a?). T h e n U i s u n s t a b l e .

COROLLARY 3.2. Leέ Xbe a compact Hausdorff space, M a real
linear subspace in CC(X) (resp. CR(X)), N a closed convex cone in M,
which separates the points of X and contains the constant functions,
R a sup-stable convex cone in CR(X) which contains the real parts
of all functions in lin N.

Suppose Y is a compact subset of X such that
(1) for every measure μ supported by Y there is a boundary

measure μ supported by Y such that μ — μ e (lin N)\
(2 ) for every complex boundary measure μ e N° implies μ\γβ M°.
(3) liniV|F is dense in M\γ.
Suppose U is a ^-neighborhood in CC{X) defined by a strictly

positive bounded l.s.c. function p:XxΎ—>R, such that pz:X—»R is
R-superharmonic for every zβΎ.

Then for every feM such that flYe UlY there is geN f]U such
that flY = glY.

With the above notations and remarks this follows directly from
Theorem 3. If 7 is a subset of dlinNX condition (1) is obviously
true, (2) implies (3), so Corollary (3.2) generalizes Bjork's [10] result
and the main theorem in the Alfsen-Hirsberg paper [2]. To derive
a complex version of T.B. Andersen [3] extension theorem about
continuous affine functions on split-faces let Y be a closed split-face
in the compact convex set X, N = A(X) the space of all continuous
(complex) affine functions on X, M the subspace of GC(X) such that
all function in MlY are affine on X. Conditions (1) and (3) then are
obvious, because Y is a face and because A(X)lY is dense in A(Y).
(2) is known to be a characterization for split-faces (cf. [1], Theorem
Π.6.12).

Note that in the real case p reduces to two strictly positive
bounded l.s.c. functions fQ,fu:X—*R+ defining U by

U={feCR(X)\ -Λ^/^/β}.

U is J?-stable if both fπ and /0 are ϋJ-superharmonic.
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Another obvious consequence of our main result is Alfsen's
Theorem II. 4.5 [1].

COROLLARY 3.3. Let Y be the topological closure of the set of
extreme points deX of the compact convex set X, f: deX—+R a con-
tinuous function. Then f can be extended to a function in A(X)
iff the following two conditions are satisfied:

(1) / and f coincide on deK
(/ is defined to be inf{geA(X)\g ^ /}).

Λ V _ _ _ _ _

(2) The common restriction of f and f to deX is annihilated
by every μ e dU Π A(X)°.

To prove this set ΪV = A(X), M = A + Rf, where / is any con-
tinuous extension of / on X, U the unit ball in CR(X). With the
same choice of K and R as before the assertion is obvious.

Finally we are going to derive a corollary of the type of Bauer's
classical theorem on the abstract Dirichlet-problem (cf. [8], [1]
Theorem II. 4.3, [17]).

COROLLARY 3.4. Let N be a closed convex cone in C(X) (CC(X)
resp. CR(X))f where X is a compact Hausdorff space, which separates
the points of X and contains the constant functions. Set Y = dnτLNX
and R the sup-stable convex cone generated by lin N. Then NlY = ζ!(Y)
if and only if N° Π dU = {0} and dlinNX = Y.

To prove this set M = C(X). K = {/ e C(X) \f[γ = 0} is _β-stable
as well as the unit ball U in CR(X). All left to show is K° Π
(lin _V)° c M°. But this is obvious because μeK°Π (lin N)° implies
μedU (K° is the set of all measures carried by 7 = dnτιNX, hence
the set of all boundary measures), therefore μ e dU Π N° = {0}.
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