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We prove the Goodman conjecture for a class of multi-
valent functions including close-to-convex functions under
the restriction that the coefficients are real. We obtain
similar results for other classes of multivalent functions.

1. Introduction. Let S denote the class of all functions f
analytic and univalent in the unit disc U with f(0) =0 and f/(0)=1
and let S* and K denote the subclasses of starlike and close-to-
convex functions, respectively. Several authors ([3], [5], [6], [9])
have defined multivalent analogs of these subclasses. A commonly
used definition is that fe S(p), the class of p-valent starlike func-
tions, if and only if there are numbers z; with |z;] < 1 and a fune-
tion g € S* such that

(L.1) f(&) = 119Gz, 2a)g(a)
where
W2, 20) = (2 = 2,1 = Za2)J2 -

A function ¢(z) is said to be a Bazilevic function of order «,
a >0, if

o) = | | o@mesas |,

where ¢ is a univalent starlike function and Re i(z) > 0, (0) = 1.

If g belongs to the class B(p) of univalent Bazilevic functions of
order p, then f belongs to the class K(p) of p-valently close-to-
convex functions [6]. The representation (1.1) holds for multivalent
analogs of several classes of vnivalent starlike functions [7]. A
similar representation holds for the class V,(») multivalent functions
of bounded boundary rotation, with f and g replaced by their de-
rivatives [8].

We say that a function f belongs to the class M(p) of multiva-
lent functions of order p if there are z, ---, 2z, with |2,,| =<1 and a
function ge S such that (1.1) holds. We note that S(») and K(p)
are proper subsets of M(p).

This paper is divided into four sections. In §2, we prove a
preliminary result on the coefficients of a polynomial in 2(1 — 2)™.
In §8, we obtain the Goodman conjecture for functions in M(p) with
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real coefficients. Finally, in § 4 we obtain as corollaries some coef-
ficient conjectures for functions with real coefficients in K(p), Vi(p)
and certain other classes.

2. Preliminary results. The following two results are moti-
vated by a result of Goodman [3] and Goodman and Robertson [4].
They show that the extremal functions for the coefficient problem
in several classes of functions are the same.

LEMMA 1. If f(2) = Smpr a2z = 32, cPu” where u(z) =
(1 —2)7 and 2., 18 real, then fi.(2) = ¥(2, 2,1.) (%) = Xvp i a2
is also a polynomial 32, i, ¢k u in u. If sgnal® = (—1)*~7 for
p—k=<3j=<p, then for fired n and fixed z,., >0, the signs of
af*t alternate for p — k — 1< 7 < p and for n > p,

(2.1) laytt| = i‘, D(p, n, j)(—1)"9af*,
where

2j(n + p)! .
@+MN@—-NM0m—p—-1! @0~ 77

-D(p, n, j) =

Proof. Since z,,, is real,

— 2+ (L + (22492 — 210
VA

=1+ (Zp) — 21+ 2%)/2

= (1 - zk+1)2 - zlc+1/u

V(2 Zpyr) =

which proves the first statement. To prove the second statement
note that

aftt = — zk+1“§ﬂl + @1+ (zk+1>2)a;zk) — Zp 0
= — (1P A+ (L )17 ol
— Zp(— 1" @l |
= (=1 "zl el ] + 1 + Ed) P ] + Ziga| @i ]]

where we define a{® = a) = 0. The remaining statement was proved
in [3]. (See also [4].)

LEMMA 2. Suppose 2z, = Z,. Then there are real numbers b, b,,
and b, so that

V(2 2)U(2) Zm) = by + bUT + bu™*,

where u(z) = 2(L — z)7%
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Proof. From (1.2),

1
zz
SRCERENL S

V@, 2P (@) B) = !zmlz[ + zﬂ F (4 |2n®)zn + zm)(—i- + z>

and the result follows after a short calculation.

3. The Goodman conjecture for M(p). In 1948, A. W. Goodman
[2] conjectured that if f(z) = 3.7 @,2" is analytic and at most p-
valent in |z| < 1, then for 1 < 5 < » <,

(3.1) a,| = z D(p, n, §)|a;]
where
3.2)  D(p,m, ) = 25(n + p)!

@+NN@-—Nn—p—D (-5

This conjecture reduces to the Bieberbach conjecture |a,| < n|a,| if
p =1. The conjecture has been proved by A. W. Goodman and
M. S. Robertson [4] if feS(p) and each @, is real and by A. E.
Livingston if fe K(p) for » = p + 1 with no restrictions on a,, ---, a,
[9] and if fe K(p) for all n=p + 1 provided o, =@, =+ =@, ,=0
[10].

We will prove that (3.1) holds if fe M(p) and has all coefficients
real. As a corollary we will obtain the Goodman conjecture for
functions in K(p) with real coefficients. Our method of proof is
induction on the number % of z; that are not at the origin.

THEOREM 1. Suppose f(z) = 3.7 a,2" € M(p) and that each a, is
real. Then for 1< 1< p<m,

2 25(n + p)! )
B3 =TT —Mm—p—Diw— 7 %

Proof. Suppose first that
f(@) = 11 ¥(z, 2,) - 9(2)
and that each z,, is real. We define the functions fi,(2), 0=k < p, by

(8.4) Jo(2) = (9(2))
(3.5) Jis1(2) = (2, 2442)f3(2) -

We note that the power series expansion of f;, is of the form

(3.6) f@) =3 abzt .

fn—p—
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Since each z, is real, z,., = Z,,, and (3.5) yields

(=]
fin(® = 3, a2

n=p—k—1

— (2 — 2p)1 — z’“*lz>fk(z)
2

— (2 — zk+1)(1 — zk+1z) i a,z" .
z n=p—k
A short calculation shows
3.7 a;k-&-l) = — zk+1a4(nk-|‘)—1 + @1+ (zk+1)2)a'\;¢k) - zk+1af(nk—)1

where we define a{*,_, = ai, , = 0 to make the formula simpler.
We begin by showing that (3.3) holds for k= 0. If g =2z +
b2 + ++-, then from (2.4) and (2.6),

) oo P
S aper = [z + > b,,z":l .
n=p =2

Since each a,, is real, each b, is real and hence |b,| < n with equality
for each n only if g(z) = 2(1 — 2)™® or z(1 + z)"%. An elementary
computation shows that

e = D(p, n, p)|ay’

which proves the coefficient conjecture for f,.
Suppose now the conjecture is true for f,. That is, for n > p,

(3.8) lad| = ,%‘_,kD(p, n, §la| .
j=p~
We write (3.8) in the form

(3.9) a = 3, dlp, m, aif’,

where we choose the d(p, n, j) by

a,’ = d(p, n, play’
and we choose the remaining d(p, %, 7), » — k< 7 < p — 1 so that
(3.10) |2, n, D] = D(p, n, J) -

The choice of d(p, n, j) is clearly not unique. We will show that
there is a method of choosing d(p, n,7), » — &k < § < p which leads
naturally to a d(p, n, p — k — 1) such that

(3.11) e = 3, dlp,m, faft

n=p—k—1
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where the additional expression d(p, n, » — k — 1) satisfies (8.10) with
j=p—k—1. From (3.7) we obtain

(3.12) ay :,-=,§H [—2end(p, 7 + 1, ) + (L + (244D, 7, J)

- zk+ld(p7 n — 1’ j)]a’(ik) ’

where for simplicity we define d(m, n, j) for m <p as L if m = J
and 0 if m # 5. Let

»
ayt™ = >, e(p,m, aft

j=p—k—1
p—1

= Z 10(2), n, j)['—'zk+1a§’ﬁ-)1

j=p—k—
(3.18) + 1+ @ep))a® — z,.a8]
? .
+ (P, My D) — 211 2, o, p + 1, Hai

+ @+ (zk+1)2)a§)k) — zk+1a§,’°_’1] .
Equating coefficients of a; in (8.12) and (3.13) we obtain
_zk+1[c(p’ /no j - 1) + C(p, n; .7 + 1) + 0(p, nr p)d(pr p + 1’ j)]

(B.14) + 1+ (24))e(D, 1, )
= _‘zk+1[d(p, n + 1, j) + d(p, n — 1’ .7)] + (1 + (zk+1)2)d(p’ n, .7) ’

where we have set ¢(p, %, p + 1) = 0. One solution to the system
(3.14) is

(3.15) ep,n J)=dp,n3J) p—E=j=p
ep,n,p—k—1)=dpn+1p—k)
(3.16) +do,n—1,p—k) —dp,n,p—k+1)

— d(p, n, p)d(p, p + 1, p — k)

and we note that this solution is independent of 2z,,,. Since S is
compact in the topology of uniform convergence on compact subsets
of |z <1 and since the only restriction on the z, is that |z,| <1,
M(p) is compact in the topology of uniform convergence on compact
subsets of |2| < 1. Consequently, any subset of M(p) where either
the 2, are fixed or some of the coefficients have fixed absolute value
is also compact in this topology.

Let fipn = Die—pi-1 @,2" be an extremal function in the set {f;,,}
of all f,,,(#) of the form (3.5). That is, suppose there is a non-
negative constant E = E(p, n, p — k — 1) such that

4
@] = 3, Do, m, 9)|af*| + Blafi



138 RONALD J. LEACH

and for any fi,, = b} z",
Ib(k+1)| < Z D(p’ n, J)lb(k+1)i + Elb(k-&-ll

Because of equation (2.1), the function f,,, of Lemma 1 shows that
E=Dp,n,p—k—1). We claim that if f,,, is extremal for {f..}
then the function f, defined by (2.5) is extremal for {f,}. Suppose
not. Then

(3.17) |a®| < 3 D(v, n, )la] .
j=p—
Since by (3.7) a¥**" is a continuous function of z,.,, m=p — k — 1,
a0 < 3 D(p, n, )|a*| + Blaid,|
I=p—

at least for z,,, sufficiently close to 0. Since F = D(p, n, »p —k — 1),
there must be a z,,, for which a¥*" (considered as a function of
2,4y must satisfy

(3.18) lag | = 5 Do, Dlaf] .
j=p—k—1

The set of all extremal functions {f,,,} for which |a{¥%|, «--, |al"
and |a{’| are fixed and (3.17) holds is a normal and compact family
and hence there is an ¢ > 0 so that

]
lad™ <> D(p, m, 5)laf*|
j=p—k—1

for |z,..] < e and (3.18) holds if |z,,,| = . We may suppose 2,,, <0
since if not we consider f(—z). Our extremal function then solves
the problem of maximizing |ay¥*’| when z,,, <0 is fixed and
@], «++, |aiP| are fixed and (3.17) holds.

We W111 need the following result.

LEMMA 3. Let g,(2) = o 02", with [, «--, || fized and
let 2., < 0. Then |03tV | is maximal when the signs of b\™ alternate
forp—k=j=np.

Proof. From (3.7) and (8.9),

b = —2bitl 4+ (1 4 (20" — 244,00
» ;} [—2ed(D, 7 + 1, 5) + A + (Zer))d(p, 7, J)

— Zend(p, m — 1, 5)1b5)
= 3 [—#.d@ n + 1, 5) + L+ (@00, n, 5)

— Zpud(p,m — 1, 3)] Z *h(r, Y,
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where h(r, j) is a rational function of z,,, obtained by solving (3.7)
for b”. An elementary calculation shows that
(3.19) sgn h(r, 3) = (—1)".

Since z,,, < 0, the maximum value of |a{*"| must occur when

sgnd(p, n + 1, j) = sgnd(p, », j) = sgnd(p, n — 1, 7)

and the signs must alternate because of (8.19), which proves the

lemma.
By Lemma 3, for fixed la,"”kl, ., la®| and fixed z,,, <0, |+
is maximal only when |a{*%2,|, .-, Ia‘““[ are minimal,

sgnd(p, n, j) = sgna® (P —k=j=p)

and these signs alternate. An elementary but lengthy calculation
shows that

Dp,n,p—k—1) =D, n+1,p—k)
(3.20) +Dp,n—1,p—~k)+Dw,np—k+1)
— D(p, n, p)D(p,» +1,p — k).

We note that |al™| is maximal when
d(p, n, ) = (—1y D(p, n, J) .
In view of (3.19) and (3.20),
dp,n,p —k —1)=(-1"D(p,n,p—k—1)

and therefore this maximum can occur only if

lal | = Z D(p, n, 5)|a®],
=2
which contradicts (3.17). Therefore f, is extremal for {f,}. Applying
this argument to fi_, fi_s *++, fo, We see that the only possible ex-
tremal functions occur when f, is an extremal function; that is,
when g(z) = 2(1 — 2)* or g(z) = 2(1 + 2)%. We may assume g(z) =
2(1 — 2)™* since if not we could consider f{—z).
By Lemma 1, each function f, can be written

finl®) = 3 aif™e

n=p—k—1

»
— Z cfﬁkﬂ)un,
n=p—k—1

where u(z) = z(1 — 2)>. By Lemma 3, ai}"" is maximized only when
the sign of a{**" alternates for »p — k — 1 < j < p, which is equiva-



140 RONALD J. LEACH

lent to the alternating of sgna{® by Lemma 1. It follows then from
Lemma 1 that for n > p,
a0 < 3 D, m, §)laf+] .
j=p—k-1
The result now follows if f has only real zeros.

If f has a nonreal zero z,, since f has real coefficients, f must
also have Z, as a zero. If we use Lemma 2 in place of Lemma 1,
the argument in this case is similar to that in the case of real
zeros. We omit the straightforward modification. This completes
the proof of the theorem.

4, Applications. In the proof of Theorem 1 we showed that
the only possible extremal functions were of the form

f(z) = Za,z" = ,}i V() 2a)* 9(2)"

where the signs of a; alternate for 1 £ j < p and where ¢ is an
extremal function in S or of the form f(—2). Since functions f in
K(p) have the representation

£1@) = 1L ¥z, 2)0@)

where ¢(z) = b,2” + -+ is in K(p) and |b,| < D(p, n, p)|b,| [9] with
equality if and only if g(2) = b,[2/(1 — x2)*]?, where z is a constant
with |#| = 1, the method of Theorem 1 proves

THEOREM 2. Let f(z) = Ya,z" € K(p) and suppose each a, is real.
Then for m = p,

|a'n| é;p(p’ n, j)]ail ’
where the D(p, n, j) are given by (3.2).

A similar result holds for the class V,(p) of multivalent funec-
tions of bounded boundary rotation. Recall that fe V,(p) if there
isap, 0<p<lsothatif 0<p<r<li,

2r /re'iﬂfll Teiﬂ) .
(4.1) S Re {1 + W}da = op
and
. 2T ,reiﬁfll(,reiﬁ)
(4.2) hni sup So Re {1 + “Fre® ) }l =< pkr .

It was shown in [8] that if fe V(p), then
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fKZ)=.Aiiw@,@0'z”1¢@H”

where ¢g(z) = 2z + b,2° + ---, eV, (1). In[1], D. Brannan, J. Clunie, and
W. Kirwan proved that if ge V,(1), then

|b.| < B, ,
where
(4.3) Glz) = %[(-‘1‘ - z)'” —~ 1] — IB2",

with equality only for g(z) = G(z) or its rotations. Consequently, the
technique of Theorem 1 applies and we obtain the following.

THEOREM 3. Let f(z) = Za,2"€ Vi (p) and suppose each a, s
real. Then for n > p,

p -
l%JéédunJHwh
where ¢(p, n, j) is defined by

eo,m, ) =0 (5>p),

e(n, p) = 71?/— X {coefficient of 277 in (2 mB,z™1)?}

and
cp,m,p—k—1)=cp,n+1p—Fk)
-{—c(p,’n——1,p—k)+0(p,’n,p—k+1)

- c(p, n, P)e(n, p + 1, p — k)
O0=k=s=p—1).

This extends a result in [8] for the case n =p+1if @, = --- =
@,y = 0.

We note that this technique works for any class of functions
having a representation similar to (1.1) and where the coefficients of
[g(z)]F are simultaneously maximized by a single function with real
positive coefficients. This is the case for the class S,(p, @) defined
in [7].
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